
To appear at ICSE’05

Automatic Discovery of APILevel Exploits

Vinod Ganapathyy, Sanjit A. Seshiax, Somesh Jhay, Thomas W. Repsy, Randal E. Bryantx
yComputer Sciences Department xSchool of Computer Science
University of WisconsinMadison Carnegie Mellon University

Madison, WI53706 Pittsburgh, PA15213

fvg,jha,repsg@cs.wisc.edu, fsanjit,bryantg@cs.cmu.edu

ABSTRACT

We argue that finding vulnerabilities in software components is dif-
ferent from finding exploits against them. Exploits that compro-
mise security often use several low-level details of the component,
such as layouts of stack frames. Existing software analysis tools,
while effective at identifying vulnerabilities, fail to model low-level
details, and are hence unsuitable for exploit-finding.

We study the issues involved in exploit-finding by considering
application programming interface (API) level exploits. A soft-
ware component is vulnerable to an API-level exploit if its se-
curity can be compromised by invoking a sequence of API op-
erations allowed by the component. We present a framework to
model low-level details of APIs, and develop an automatic tech-
nique based on bounded, infinite-state model checking to discover
API-level exploits.

We present two instantiations of this framework. We show that
format-string exploits can be modeled as API-level exploits, and
demonstrate our technique by finding exploits against vulnerabili-
ties in widely-used software. We also use the framework to model
a cryptographic-key management API (the IBM CCA) and demon-
strate a tool that identifies a previously known exploit.

Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms: Algorithms, Security, Verification

Keywords: API-level exploit, bounded model checking

1. INTRODUCTION
A vulnerability in a software component is an error in its imple-

mentation that can possibly be used to alter the intended behavior of
the component. An exploit is a sequence of operations that attacks
the vulnerability, typically with malicious intent and devastating
consequences. Recent years have witnessed a sharp increase in the
number of security exploits. They are tricky to craft, because they
often use several low-level details about the program’s execution.
For instance, a typical exploit against a buffer-overrun vulnerabil-
ity uses details such as the layout of the stack, constraints on buffer
sizes, and the architecture of the machine.

Supported by ONR contracts N00014-01-1-0796 and N00014-01-
1-0708, and by ARO grant DAAD19-01-1-0485.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA
Copyright 2005 ACM 1581139632/05/0005 ...$5.00.

Given the growing concern over security, it is important to find
exploits in a controlled environment before they are found and used
by attackers. An analysis tool that finds a security exploit against
a potential vulnerability in a component not only provides concrete
evidence that the vulnerability exists, but also gives an analyst bet-
ter insight into its consequences. For instance, static analyzers such
as BOON [39] and Percent-S [33] would benefit from an analysis
that finds exploits for vulnerabilities they identify. These tools pro-
duce false positives because of imprecision in their analysis, and
the process of classifying warnings as real vulnerabilities or false
positives is typically manual. A security exploit generated against a
vulnerability identified by such tools offers several benefits. First, it
provides evidence that the threat posed by the vulnerability is real.
Second, the exploit can be used as a test case to stress the resilience
of patched versions of the component. Finally, in cases where the
analysis fails to produce a security exploit, the vulnerability can
automatically be classified as a false positive, thus reducing the
manual effort involved in classifying warnings.

Current tools do not adequately address the problem of finding
security exploits in software. Tools based on model checking (e.g.,
[3, 10, 21]) have proved effective at finding control-flow-intensive
vulnerabilities. However, these tools use finite-state abstractions,
which abstract away details such as the layout of the program’s
stack and heap in the interest of keeping the analysis tractable.
These very details are important to produce security exploits; as
a result, counter-examples produced by these tools lack the detail
to generate security exploits. Similarly, type-based analysis tools
[18, 33] and constraint-based analysis tools [39] do not keep track
of actual values of program variables. As a result, while these tools
are effective at localizing vulnerabilities, they are not as effective
at generating exploits against them.

In this paper, we study the issues involved in exploit-finding by
considering API-level security exploits. A component is vulnerable
to an API-level exploit if its security can be compromised by invok-
ing an allowed sequence of operations from its API. For instance,
the sequence seteuid(0) followed by execl(), allowed by UNIX, can
be used to obtain root privileges [10].

We make the following contributions:

1. We present a formal framework to capture low-level details of
API operations. The key idea is to abstract away as few de-
tails as possible, and produce a model that mimics the concrete
system closely. The resulting model, which is typically infinite-
state, is analyzed by model checking to determine if a state that
violates a specified property is reachable. If so, the counter-
example produced is translated into an exploit.

2. As an instantiation of the above framework, we consider two
real-world APIs of significant complexity. We present a novel
way to analyze printf-family format-string exploits as API-

level exploits, interpreting a format-string as a sequence of API
operations. Reasoning about this API critically depends on mod-
eling the runtime execution stack of the application precisely.
We use the formal framework to model the above API, and
demonstrate a tool to discover format-string exploits. We have
used the tool to generate exploits against known vulnerabilities
in real-world software packages. We also consider the use of
our technique to analyze a subset of the IBM Common Crypto-
graphic Architecture (CCA) API, which is a cryptographic key
management API. In this case, it is crucial to model how an
attacker can enhance his knowledge using operations from the
API. Using a tool based on our technique, we discovered a pre-
viously known exploit.

3. Because our technique models data more precisely than existing
tools [3, 10, 12, 21, 33], it is able to demonstrate the presence
of a vulnerability by producing a security exploit that uses low-
level details about the system. We demonstrate this by show-
ing how our technique can find exploits against the vulnerabil-
ities identified by Percent-S [33], a format-string vulnerability-
finding tool. As discussed earlier, we demonstrate that finding
exploits can benefit vulnerability-finding tools by automatically
classifying vulnerabilities as real threats or as false positives.

The rest of this paper is organized as follows: We first present
an overview of the technique in Section 2. We then present the
formal framework in Section 3, and apply it to analyze printf
(Section 4) and the IBM CCA API (Section 5). We discuss related
work in Section 6, and conclude in Section 7.

2. OVERVIEW OF THE TECHNIQUE
In this section, we describe, using a toy protection system (Har-

rison et al. [20]), the framework used to specify APIs and the tech-
nique used to check such a specification. Section 4 on printf-
family format-string attacks shows how the framework and checker
can be used to generate security exploits that use low-level details,
such as the organization of the program’s runtime stack.

A protection system is defined by a finite set of rights and com-
mands, and its state is given by a triple (S, O, P), where S is a set
of subjects, O is a set of objects, and P is an access matrix with a
row for each subject and a column for each object. As presented by
Harrison et al., each subject is also an object, and we have S � O.
The entry P[s, o] of the access matrix is a set of rights that subject
s has on object o. We restrict ourselves to three rights, own, read,
and write, with their natural meanings.
Specifying the API. The first step in the analysis involves speci-
fying the API in the formal framework, and specifying the safety
property to be checked. The framework we use has four ingredi-
ents: (1) a set of variables that describe the state of the compo-
nent that implements the API, (2) the initial state of the compo-
nent, (3) the set of API operations and the semantics of these op-
erations in terms of how they change the state of the component,
and (4) a representation of the set of sequences of API operations
to be checked. The fourth component helps to encode restrictions
on the ordering of API commands. Such restrictions can be useful
to exclude sequences of API commands that are inconsequential
when analyzing the system, either because they can never arise in
the execution of the system, or because the environment in which
the system operates never generates such a sequence of API calls.
When the set of sequences forms a regular language, this compo-
nent can be expressed as a finite-state automaton.

As discussed earlier, the state of the protection system is de-
scribed by the triple (S, O, P). The initial state of the protection
system is given by the initial values of S, O, and P. Assume that

these are S = O = fA, Bg, P[A, A] = P[B, B] = fown,read,writeg,
and P[A, B] = P[B, A] = ;. In other words, A and B have all possi-
ble rights upon themselves, but no rights on each other.

The commands presented by the protection system define the
API; each command changes the state of the protection system. We
restrict ourselves to three types of commands shown below with
their semantics.

� Create(s, o): If s 2 S and o =2 O, adds o to O, creates a new
column o in P and enters own into P[s, o].

� Confer
read

(s
1

, s
2

, o): If s
1

, s
2

2 S and o 2 O, enters read into
P[s

2

, o] if own 2 P[s
1

, o].

� Confer
write

(s
1

, s
2

, o): Analogous to Confer
read

(s
1

, s
2

, o).

We assume that the protection system allows these operations to
be applied in any order. Let us assume that we wish to check that
the protection system obeys the security policy: “no subject can
both read and write to an object that it does not own”.
Checking the API. As explained earlier, to discover security ex-
ploits, it is important to work with the concrete system. Checking a
finite-state abstraction often results in the loss of low-level details
required to craft a security exploit. As a result, finding a security-
exploit corresponds to checking the infinite-state system. For this
purpose, we use bounded model checking [5]. An overview of the
technique is shown in Figure 1.

Safety
condition

API
specification

Integer
bound

(counter−example)
Violation of safety

Model Checker
Bounded

Increase bound and iterate

No violation

.

Figure 1: A schematic overview of the method.

The model checker accepts a description of the API specified in
our framework, a safety property, and an integer bound. It system-
atically explores all allowed sequences of API operations shorter
in length than the integer bound and determines whether any trace
satisfies the safety condition. If the model checker finds a violation
of the safety policy, it terminates with a trace of API operations
that demonstrates the vulnerability. For instance, a bound of at
least 3 discovers the following API-level vulnerability in the pro-
tection system: Create(A, file) ! Confer

read

(A, B, file) !
Confer

write

(A, B, file). This sequence of API operations adds
(B, file, read), and (B, file, write) to P, but does not add (B,
file, own). This violates the safety condition, because B does not
own file, but can read and write it.

If the model checker terminates without a counter-example, we
must increase the bound and iterate. In Section 3, we note that it
is undecidable to check if an arbitrary system is vulnerable to API-
level exploits. Thus, in general, the iterative process could go on
forever. Our procedure is sound, but incomplete. Thus, any vulner-
abilities found will indeed be exploitable in the model; however,
it is not always possible to discover all vulnerabilities. In certain
cases, including the study in Section 4, it is possible to derive val-
ues of the bound for which the procedure is complete.

3. FORMAL FRAMEWORK
We present a formal framework to model and analyze APIs. An

API is the interface that a component (the system to be analyzed)
presents to client modules. Each command in the API changes the
state of the component in a predefined way and hence is a state

transformer. A sequence of API operations defines a state trans-
former obtained by composing the state transformers of the individ-

ual API operations. We focus on such sequences of API operations,
and how they affect the security of the underlying component.

Formally, a component S is defined by (V , Init, �, L):
� V denotes a finite set of variables fv

1

; v

2

; : : : ; v

n

g where v

i

2

D

i

for some (possibly infinite) domain of values D
i

. The value
of the vector ~x = (v

1

; v

2

; : : : ; v

n

) is the state of the component S .
Note that ~x 2 D = D

1

� : : :�D

n

.
� Init: D ! BOOL is a predicate that characterizes the initial
states of the component. Each state ~x such that Init(~x) holds is a
possible initial state of the component.
� � denotes a finite set of API operations fop

1

; op
2

; : : : ; op
m

g.
Each operation op

i

may also take some input parameters, denoted
by the vector ~a

i

, from some domain A
i

. Each op
i

defines a family
of relations: op

i

(~a
i

) � D � D. The semantics of op
i

(~a
i

) is given
by predicates that define its pre- and post-conditions, Pre

i

(~a
i

): D
! BOOL and Post

i

(~a
i

): D�D ! BOOL, as: op
i

(~a
i

)(~x, ~y) =
Pre

i

(~a
i

)(~x) ^ Post
i

(~a
i

)(~x, ~y), where ~x and ~y denote, respec-
tively, the state of S before and after the application of op

i

(~a
i

). If
Pre

i

(~a
i

)(~x) does not hold, then op
i

(~a
i

) aborts.
� L � �

� is a language of API operations. It plays two roles:

1. It encodes temporal restrictions on API operations that are in-
herent in the implementation of the component S . This could,
for example, be specified using a reference monitor.

2. It formalizes the notion of “usage patterns”, i.e., API operation
sequences that could be invoked by a client of S . For instance,
suppose the API in question is the set of system calls supported
by an operating system, and that we wish to verify that an appli-
cation that uses system calls conforms to a safety property and
does not launch an API-level exploit on the operating system.
Rather than considering all possible sequences of system calls,
it is sufficient to restrict our attention to call sequences that can
be generated by the application [38].

Formally, L can be viewed as the intersection of two languages
of API operations, one that plays the first role, and one that plays
the second. The two-fold use of L is conceptually similar to the
“optimistic” approach to interface design [13].

A language recognizer R for L is a machine that accepts a string
of API operations and determines whether it is a member of L or
not. In general, a recognizer need not exist for L. We restrict our-
selves to cases where a recognizer R exists, for instance, when L
is regular or context-free. For the case study in Section 4, we con-
sider a special case of the framework presented above, in which L
will be a regular language, and its recognizer will be a finite-state
machine called the API-automaton.

In addition, a predicate Bad: D! BOOL defines the set of error
states; each state ~x such that Bad(~x) holds is a state that the com-
ponent should never enter. Bad is defined based on the security
properties required for S .

In verifying that S never enters a state satisfying Bad, we restrict
our attention only to sequences of API operations in L. This avoids
wasteful exploration of the state space during verification, and also
reduces false alarms. Formally, we check for the following notion
of API-safety:

DEFINITION 1 (API-SAFETY). For a predicate Bad, a com-
ponent S is safe with respect to ~x if there is no satisfying assign-
ment to the following formula for any finite value of k:

9 op
i

1

; op
i

2

; : : : ; op
i

k

, ~a
1

;~a

2

; : : : ;~a

k

:

Init(~x) ^ (op
i

1

� op
i

2

� : : : � op
i

k

2 L) ^
(op

i

1

(~a
1

) Æ op
i

2

(~a
2

) Æ : : : Æ op
i

k

(~a
k

)) (~x, ~y) ^ Bad(~y)

‘�’ denotes concatenation and ‘Æ’ denotes relational composition,
i.e., (R

1

Æ R
2

)(~x, ~z) = 9~y: R
1

(~x, ~y) ^ R
2

(~y, ~z).

An API-level exploit on the component S is defined as a se-
quence of API operations op

i

1

; op
i

2

; : : : ; op
i

k

, where op
i

1

� op
i

2

�

: : :�op
i

k

2L, that violates API-safety of S for some predicate Bad.
Not surprisingly, for an arbitrary component S and predicate

Bad, checking if S is safe with respect to state ~x is undecidable.
The proof of undecidability follows easily from a similar theorem
for protection systems [20].

Our approach to the API-safety problem is based on bounded,

infinite-state model checking. To restrict attention to sequences
of API operations in L, we first construct the product of the lan-
guage recognizer of L (e.g., the API-automaton) with the infinite-
state system defined by (V , Init, �). The safety property :Bad
is then checked on the resulting infinite-state system S

tot

using
bounded model checking. The bounded model checker explores all
API operation sequences of length up to an integer bound N in
S

tot

, checking, for each state reached in that sequence, if Bad is
satisfied. If so, it generates a concrete error trace; i.e., a sequence
of states leading to the error state in which each variable v

i

gets a
value from the domain D

i

. An exploit is extracted from this con-
crete error trace.

While recent advances in SAT solving [29, 34] have made bounded
model checking practical for analyzing finite-state systems, they
have also led to the development of efficient SAT-based decision
procedures for expressive, decidable first-order logics (e.g., [8, 14,
35]). This, in turn, has fueled progress in infinite-state bounded
model checking, and is a key reason for our use of this technique.

3.1 Illustrative Example
We illustrate the concepts developed above using the protection

system example from Section 2. Recall that in the example, we
initially had two subjects and objects, A and B. In our framework,
we have S = (V , Init, �, L), where:

� V is fS, O, Pg. Note that all three variables are set-valued, be-
cause the matrix P can also be viewed as a set of triples (s, o,
r), where r denotes a right.

� Init is (S = O = fA, Bg) ^ (P[A, A] = P[B, B] = fown, read,
writeg) ^ (P[A, B] = P[B, A] = ;).

� � is fCreate, Confer
read

, Confer
write

g. The predicate Pre(s,
o) for Create(s, o) asserts that such an entry does not already
exist in P, while Post(s, o) asserts that an entry (s, o) is cre-
ated in P and own 2 P[s, o]. The predicate Pre(s

1

, s
2

, o) for
Confer

read

(s
1

, s
2

, o) asserts that own 2 P[s
1

, o], and Post(s
1

,
s

2

, o) asserts that read2 P[s
2

, o]. The predicates for Confer
write

are similar.

� L is ��. That is, all possible interleavings of the API operations
are permitted in this example.

To verify that “no subject can both read and write to an object
that it does not own”, we use the predicate Bad = 9s,o. (s 2 S)
^ (o 2 O) ^ (read, write 2 P[s, o]) ^ (own =2 P[s, o]). The API-
automaton for L is a single-state finite-state machine with three
transitions, one for each of the API operations in �. Bounded
model checking for this case is equivalent to “unrolling” this API-
automaton a finite number of times and checking that the property
holds. When presented with a bound of at least 3, a bounded model
checker discovers the exploit Create ! Confer

read

! Confer
write

.

4. FORMATSTRING VULNERABILITIES
Format-string vulnerabilities [22, 30] are a dangerous class of

bugs that allow an attacker to execute arbitrary code on the victim
machine. printf is a variable-argument C function that treats its
first argument as a format-string. While we restrict our discussion

to printf, the concepts discussed apply to other printf-family
functions as well, e.g., syslog, sprintf. A format-string con-
tains conversion specifications, which are instructions that specify
the types that this call on printf expects for its arguments, and
instructions on how to format the output. For instance, the conver-
sion specification "%s" instructs printf to look for a pointer to
a char value as its next argument, and print the value at that loca-
tion as a string. When arg does not contain conversion specifiers,
the statements printf("%s", arg) and printf(arg) have the
same effect. However, if printf(arg) is used in an application,
and a user can control the value passed to arg, then the application
may be susceptible to a format-string vulnerability. A possible fix
for such vulnerabilities is to do a source-to-source transformation
that replaces all occurrences of printf(arg) with printf("%s",
arg), but this may not always be possible, for instance when the
source code of the application is not available, or when the appli-
cation generates format-strings dynamically.

Shankar et al. [33] have built a tool, Percent-S, to analyze source
code and identify “tainted” format-strings that can be controlled by
an attacker. Potentially vulnerable printf locations can also be
identified in binary executables [22]. However, the aforementioned
techniques do not produce format-strings that exploit the vulnera-
bilities they identify.

We present a novel way to analyze and understand printf-
family format-string vulnerabilities. The format-string can be viewed
as a sequence of commands that instructs printf to look for dif-
ferent types of arguments on the application’s runtime stack. We
have built a tool that can analyze potentially vulnerable call sites
to printf and determine if an exploit is possible. If an exploit
is possible, our tool produces a format-string that demonstrates the
exploit. Our technique does not require the source code of the ap-
plication and can analyze potentially vulnerable printf locations
from binary executables. We have also used the tool in conjunction
with Percent-S to generate format-strings that exploit the vulnera-
bilities identified (see Section 4.5). Our discussion and implemen-
tation make the following platform-specific assumptions, although
the technique applies to other platforms as well:

1. We work with the x86 architecture. In particular, the runtime
stack of an application grows from higher addresses to lower
addresses, and the machine is assumed to be little-endian.

2. The arguments to a function are placed on the stack from right
to left. A call to foo(arg

1

, arg
2

) first places arg
2

on the
stack, followed by arg

1

. This is a popular C calling convention
implemented by several compilers.

3. We analyze printf from the glibc-2.3 library.

4.1 Understanding printf

(1) int foo (char *usrinp) {

(2) char fmt[LEN];

(3) int a, b;

(4) strncpy(fmt, usrinp, LEN - 1);

(5) fmt[LEN - 1] = ’\0’;

(6) printf(fmt);

(7) }

Figure 2: A procedure with a vulnerable call to printf.

This section reviews how printf works. Consider the code
fragment shown in Figure 2. Procedure foo accepts user input,
which is copied into the local variable fmt, a local array of LEN
characters. printf is then called with fmt as its argument. Be-
cause the first argument to printf can be controlled by the user,
this program can potentially be exploited. When printf is called
on line (6), the arguments passed to printf are placed on the

stack, the return address and frame pointer are saved, and space
is allocated for the local variables of printf, as shown in Fig-
ure 3(A). In this case, printf is called with a pointer to fmt,
which is a local character buffer in foo. This pointer is shown as
the darkly shaded region in Figure 3(A).

As mentioned earlier, printf assigns special meaning to the
first argument passed to it, and treats it as a format-string. Any
other arguments passed to printf appear at higher addresses than
the format-string on the runtime stack. In our case, only fmt was
passed as an argument, and hence there are no other arguments on
the runtime stack.

The printf implementation internally maintains two pointers
to the stack; we refer to these pointers as FMTPTR and ARGPTR.
The purpose of FMTPTR is to track the current formatting character
being scanned from the format-string, while ARGPTR keeps track of
the location on the stack from where to read the next argument. Be-
fore printf begins to read any arguments, FMTPTR is positioned
at the beginning of the format-string and ARGPTR is positioned just
after the pointer to the format-string fmt, as shown in Figure 3(A).

When printf begins to execute, it moves FMTPTR along format-
string fmt. Advancing a pointer makes it move towards higher
addresses in memory, hence FMTPTR moves in the direction op-
posite to which the stack grows. printf can be in one of two
“modes”. In printing mode, it reads bytes off the format-string and
prints them. In argument-capture mode, it reads arguments from
the stack from the location pointed to by ARGPTR. The type of the
argument, and thus the number of bytes by which ARGPTR has to
be advanced as it reads the argument, is determined by the contents
of the location pointed to by FMTPTR. As FMTPTR and ARGPTR

move toward higher addresses, they reach intermediate configura-
tions, as shown in Figure 3(B). Note that ARGPTR advances only
if the contents of fmt causes printf to enter argument-capture
mode at least once.

other local
variables of foo

return address,
frame pointer.

return address,
frame pointer.

FMTPTR

ARGPTR

FMTPTR

ARGPTR

local variables
of printf

p
r
i
n
t
f

s
ta

c
k
 f

ra
m

e
s
ta

c
k
 f

ra
m

e
f
o
o

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

other local
variables of foo

D
ir
e
c
ti
o
n
 o

f
s
ta

c
k
 g

ro
w

th

DIS

LEN

of printf
local variables

������������������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

(A) (B)

fmt fmt

......

Figure 3: Runtime execution stack for the program in Figure 2.

To take a concrete example, suppose that fmt is "Hi%d" when
printf is called in Figure 2. printf starts off in printing mode,
and advances FMTPTR, printing Hi to stdout as a result. When
FMTPTR encounters the byte "%", it enters argument-capture mode.
When FMTPTR is advanced, it points to the byte "d" – which in-
structs printf to read four bytes from the location pointed to by
ARGPTR and print the resulting value to the terminal as an integer.
This also results in ARGPTR being advanced by four bytes, the size
of an integer. Note that no integer arguments were explicitly passed
to printf in Figure 2, hence instead of reading a legitimate inte-
ger value off the stack, in this case ARGPTR reads the values of
local variables in the stack frame of foo. As a result, it is possible
to read the contents of the stack, which may possibly contain values
of interest to an attacker, such as return addresses.

In the format-string exploits discussed in this paper, the goal of
the attacker is to control the contents of the format-string in such
a way that ARGPTR advances along the stack until it enters the
format-string itself. By doing so, the attacker can control the ar-
guments read by printf. Section 4.3 develops this point further.

4.2 Formally Specifying the printf API
The key observation is that each byte in the format-string is an

instruction to printf to move FMTPTR and ARGPTR by an appro-
priate amount. These bytes also instruct printf as to the types
of the arguments passed to it. Hence, in our formulation, each
byte in the format-string is treated as an API command to printf
and thus the format-string specifies a sequence of API operations.
Our goal is to discover possibly malicious sequences, which corre-
sponds to finding format-strings that can be used for an exploit.

Each printf call is characterized by two parameters, namely
the values DIS and LEN shown in Figure 3. The format-string vul-
nerabilities we consider occur when the format-string that can be
controlled by the attacker is a buffer on the runtime stack. LEN
denotes the length of this buffer. DIS denotes the number of bytes
that separate the pointer to the format-string from the format-string
itself. Figure 3 shows a simple scenario where the stack frame
containing the format-string and the stack frame of printf are
adjacent. In general, they can be separated by stack frames of sev-
eral intermediate functions, resulting in larger values of DIS. Note
that the values of DIS and LEN are sufficient to capture the relevant
details of the problem. Moreover, the values of DIS and LEN for
each printf call can be obtained by disassembling the binary ex-
ecutable of the application that calls printf, and examining the
call graph and the sizes of various functions’ stack frames.

Formally, printf is described by S = (V , Init, �, L), where:

� V denotes the set of local variables in the implementation of
printf that capture the current state. We identified 24 local
variables (or “flags”) with integer and Boolean values1 by exam-
ining the source code and manuals of printf. While our im-
plementation considers all these flags, for purposes of explana-
tion we restrict ourselves to just four flags: FMTPTR, ARGPTR,
DONE, and IS LONGLONG. FMTPTR and ARGPTR are pointers
whose functionality was discussed earlier. We shall treat these
as integer values. DONE is an integer that counts the number
of bytes printed, and IS LONGLONG is a Boolean variable that
determines whether the argument on the stack is a long long

value or not (a long long int is 8 bytes in length).

� Init: The initial state of printf is determined by the ini-
tial values of the flags in V . We assume that all addressing is
relative to the initial location of ARGPTR, and hence Init is
defined as (ARGPTR = 0) ^ (FMTPTR = DIS) ^ (DONE = 0) ^
(IS LONGLONG = FALSE) for the four variables discussed here.

� �: As explained, each byte in the format-string is interpreted
as an instruction to printf. Hence � is [0::255℄, i.e., all
possible byte values. The values of Pre and Post for each
operation are based on how it changes the state of printf,
and were obtained by examining the source code of printf.
For instance, "%" 2 � has Pre = TRUE, and Post captures
the following semantics: if printf is in printing mode (deter-
mined by a variable MODE in V), then FMTPTR is incremented,
and printf enters argument-capture mode. If printf is in
argument-capture mode, then FMTPTR and DONE are incremented,

1
In the actual implementation of printf, the flags are C integer and pointer data

types, i.e., finite-precision bit-vectors. In our model, flags that just take two values, 0
and 1, are treated as Boolean, while the rest are treated as (unbounded) integers. While
this approach achieves efficiency by raising the level of abstraction, it does not model
integer overflow, and may lead to imprecision.

and printf enters printing mode (corresponds to printing a
"%" to stdout). Formally, [(MODE = printing) ! (FMTPTR

0

= FMTPTR + 1) ^ (MODE
0 = argument-capture)] ^ [(MODE =

argument-capture) ! (FMTPTR
0 = FMTPTR + 1) ^ (DONE

0 =
DONE + 1) ^ (MODE

0 = printing)], where primed variables de-
note next-state values of the corresponding variables.

� We set L to be the language of all legal format-strings, which
turns out to be a regular language. We extracted an API-automaton
that recognizes all legal format-strings from the control-flow
graph of the implementation of printf.

There are several possibilities for Bad, each of which determines
an attack that exploits format-string vulnerabilities. We present a
few possibilities for Bad in Section 4.3. In general, this predicate
can be expressed as a formula on the elements of V in a decidable
logic that includes quantifier-free Presburger arithmetic, uninter-
preted functions, and a theory of memories (arrays). (A formula
in quantifier-free Presburger arithmetic consists of a set of linear
constraints over integer variables combined using the Boolean op-
erators :, ^, and _.)

We implemented a tool to examine the above system and de-
tect format-string exploits. The tool encodes printf as described
above, and is parameterized by the values of DIS, LEN, and the
predicate Bad. Our choice of a bounded model checker was in-
fluenced by the logic needed to express our model of printf, as
elaborated below:

1. We need to model certain values in the stack precisely. In partic-
ular, we need to track the contents of the format-string because
it serves as a concrete counter-example if Bad is satisfied. This
necessitates the use of a theory of memories and uninterpreted
functions.

2. printf uses integer and Boolean variables, where the integer
variables are modified using linear-arithmetic operations (addi-
tion and multiplication by a constant). To express formulas over
these variables, we need quantifier-free Presburger arithmetic.

Based on these requirements, we chose to use the bounded model
checking capabilities of the UCLID verifier. The details of how
UCLID works are outside the scope of this paper, and may be found
elsewhere [8, 32]. The description of printf (S) can be encoded
as an UCLID model in a straightforward manner. If Bad is satis-
fied, then UCLID produces a counter-example that can be directly
translated to a format-string that demonstrates the exploit. At each
call-site to printf, we only need to examine format-strings of
length less than or equal to LEN�1 (we exclude the terminating
‘n0’). Hence, a bound of LEN�1 suffices to make bounded model
checking complete at that call-site; i.e., a printf location deemed
safe using our tool with the bound LEN�1 will indeed be safe with
respect to the property checked.

4.3 Checking the printf API
In exploits that we consider, the goal of the attacker is to ma-

nipulate the contents of the format-string so as to force ARGPTR

to move into the format-string. Hence, ARGPTR has to move by
at least DIS bytes by the time FMTPTR moves LEN�1 bytes. Be-
cause the attacker controls the value of the format-string, he can
control the value of the arguments that printf reads from the
stack. As demonstrated below, this vulnerability can be used to
read data from, or write data to, nearly any location in memory.
Reading from an arbitrary location. One of the ways an attacker
can print the contents of memory at address a

4

a

3

a

2

a

1

, where a
4

is
the most-significant byte, is to construct a format-string that moves
FMTPTR and ARGPTR such that when printf is in printing mode
and FMTPTR points to the beginning of a "%s", ARGPTR points to

(A) Bad for Read Exploit (B) Bad for Write Exploit

[FMTPTR < DIS + (LEN � 1) � 1℄
^ [ARGPTR > DIS℄
^ [ARGPTR < DIS + (LEN � 1) � 4℄
^ [�FMTPTR = ‘%’℄

^ [�(FMTPTR + 1) = ‘s’℄

^ [�ARGPTR = a

1

℄

^ [�(ARGPTR + 1) = a

2

℄

^ [�(ARGPTR + 2) = a

3

℄

^ [�(ARGPTR + 3) = a

4

℄

^ [MODE = printing℄

[FMTPTR < DIS + (LEN � 1) � 1℄
^ [ARGPTR > DIS℄
^ [ARGPTR < DIS + (LEN � 1) � 4℄
^ [�FMTPTR = ‘%’℄

^ [�(FMTPTR + 1) = ‘n’℄

^ [�ARGPTR = a

1

℄

^ [�(ARGPTR + 1) = a

2

℄

^ [�(ARGPTR + 2) = a

3

℄

^ [�(ARGPTR + 3) = a

4

℄

^ [DONE = WRITEVAL ℄

^ [MODE = printing℄

Figure 4: The predicate Bad used for (A) Read exploit and (B)

Write exploit.

the beginning of a sequence of 4 bytes, whose value as a pointer
is a

4

a

3

a

2

a

1

.2 Then, when printf reads the "%s", it interprets
the argument at ARGPTR as a pointer and prints the contents of
the memory location specified by the pointer as a string, which
would let the attacker achieve his goal. This is formalized using
the predicate Bad shown in Figure 4(A). Also, note that:

1. The little-endianness of the machine is reflected in the formula-
tion of Bad: bytes are arranged from most-significant to least-
significant as addresses decrease; for example, a

1

appears at a
lower address than a

4

.

2. Symbolic values of different stack locations, such as those at
FMTPTR and ARGPTR, appear in Bad, and show the need to
track stack contents precisely.

Figure 5 shows some results produced by the tool for various val-
ues of DIS and LEN. For instance, line (3) shows that the format-
string "a

1

a

2

a

3

a

4

%d%s" can be used to read the contents of mem-
ory at a

4

a

3

a

2

a

1

when DIS and LEN are 4 and 16, respectively.
The exploit proceeds as follows: initially FMTPTR points to the
format-string, and ARGPTR is 4 smaller than FMTPTR. printf

starts execution in printing mode; it advances FMTPTR and prints
the bytes a

1

, a
2

, a
3

, and a

4

to stdout. When printf reads
the ‘%’, it advances FMTPTR by one and enters argument-capture
mode. When it reads ‘d’, it advances FMTPTR by one, reads an in-
teger (4 bytes) from the location pointed to by ARGPTR, prints this
integer to stdout, and returns to printing mode. As a result ARG-
PTR points to the beginning of the format-string, and FMTPTR is
positioned at the beginning of the sequence "%s". When printf
processes the "%s", the contents of memory at location a

4

a

3

a

2

a

1

are printed to stdout. A few more observations on Figure 5:

1. In line (2), the tool is able to infer that an exploit is not possi-
ble. Intuitively, this is because the format-string is too small to
contain a sequence of commands that carry out the exploit.

2. Lines (3) and (4) present two format-strings for the same pa-
rameters. We achieved this by first observing case (3), and run-
ning the tool again, appending a suitable term to Bad to exclude
case (3). This technique can be iterated to infer as many variants
of this exploit as desired.

Writing to an arbitrary location. Another kind of format-string
exploit allows an attacker to write a value of his choice at a location
in memory chosen by him. To do so, he makes use of the "%n"
feature provided by printf. When printf is in printing mode
and encounters a "%n" in the format-string, it reads an argument
off the stack, which it interprets to be a pointer to an integer. It then
writes the value of the flag DONE to this location, where DONE

2
The only constraint on a

1

; a

2

; a

3

; a

4

is that they must be non-zero, because a zero
value is interpreted as ‘n0’, and terminates the format-string. For ease of explanation,
we impose the additional restriction that a

i

6= "%", for i 2 f1; 2; 3; 4g. If a
i

=

"%", the address can contain (parts of) a conversion specifier. However, our tool can
also discover exploits where the address a

4

a

3

a

2

a

1

contains "%".

counts the number of bytes that have been output by this call on
printf. Figure 4(B) shows the case where an attacker writes the
integer WRITEVAL to the address a

4

a

3

a

2

a

1

.
Figure 5 shows some format-strings obtained by the tool to write

the integer 234 to memory address a

4

a

3

a

2

a

1

. Consider line (5)
for instance; for the values 8 and 16 for DIS and LEN, respec-
tively, the tool inferred the format-string "a

1

a

2

a

3

a

4

%230g%n".
When printf starts execution, it is in printing mode, and ARG-
PTR is 8 bytes below FMTPTR on the stack. As FMTPTR moves
along the format-string, a

1

, a
2

, a
3

, and a

4

(4 bytes) are printed
to stdout, thus incrementing DONE by 4. The next byte "%"

increments FMTPTR by 1 byte and forces printf into argument-
capture mode. The next 3 bytes, ‘2’, ‘3’ and ‘0’ are treated as
a width parameter, and printf stores the value 230 in an internal
flag WIDTH (part of V for printf). When printf processes the
next byte, ‘g’, it advances ARGPTR by 8 bytes, reads a double
value from the stack, prints this value (appropriately formatted) to
stdout, increments DONE by the value of WIDTH, and returns to
printing mode. At this point, ARGPTR points to the beginning of
the format-string, whose first four bytes contain a

1

a

2

a

3

a

4

, DONE

is 234, and FMTPTR points to the beginning of the sequence "%n".
When printf processes "%n", the value of DONE is written to
a

4

a

3

a

2

a

1

, completing the exploit.
The execution times shown in Figure 5 were obtained on a ma-

chine with an Intel Pentium-4 processor running at 2GHz, with
1GB of RAM, running Redhat Linux-7.2. All runs completed within
a few minutes. As a general trend, the time taken increases as
LEN increases, although not monotonically. The reason is that
for larger values of LEN, it is necessary to run the bounded model
checker UCLID for more steps, leading to a larger formula for it to
check; the largest formulas were Boolean combinations of several
thousand linear constraints over about a hundred integer variables.
UCLID translates the problem into one of checking the validity of
a Boolean formula, which we checked using a SAT solver called
Siege [34]. Note also that the time taken for finding read exploits
is much lower than that for finding write exploits. This is because
finding a write exploit involves solving a more constrained problem
than for the read exploit: In addition to finding a sequence of con-
version specifications that moves ARGPTR into the format-string,
one needs to find associated width values that add up to the desired
value (234 in Figure 5). Furthermore, the length of this sequence
can be at most LEN�1.

4.4 Optimizations
In our model of printf, each byte in the format-string is con-

sidered as an API operation. As an optimization we can add aggre-

gated API operations to �, i.e., treat certain sequences of “primi-
tive” API operations as a single operation. For example, we could
create the aggregated API operation "%Lg", which moves FMTPTR

by 3 bytes, ARGPTR by 12 bytes, and reads a long double

value. Similarly, we can use conservative width specifiers to form
such an aggregate API operation;3 e.g., "%60Lg" increments DONE

by 60 in addition to changing the other flags as described above.
Augmenting � in this way does not affect soundness because all
the format-strings that UCLID could previously generate can still
be generated. It is an optimization because longer strings can po-
tentially be found with fewer iterations of bounded model checking.

4.5 Comparison with Existing Tools
To demonstrate the effectiveness of our tool, we compared it

with Percent-S [33], a tool that analyzes source code using type-

3
The number of bytes printed is the maximum of the width specifier and that needed

to precisely represent the output; so the width specifier must be conservatively large.

Sl.no. DIS LEN Read exploit Write exploit
Exploit string discovered Time (sec.) Exploit string discovered Time (sec.)

(1) 0 7 "a
1

a

2

a

3

a

4

%s" 0.2 No exploit possible. 0.3
(2) 4 7 No exploit possible. 0.3 No exploit possible. 0.3
(3) 4 16 "a

1

a

2

a

3

a

4

%d%s" 0.4 "%234Lg%na
1

a

2

a

3

a

4

" 4.8
(4) 4 16 "%Lx%ld%sa

1

a

2

a

3

a

4

" 1.0 "a
1

a

2

a

3

a

4

%%%229X%n" 13.1
(5) 8 16 "a

1

a

2

a

3

a

4

%Lx%s" 0.9 "a
1

a

2

a

3

a

4

%230g%n" 22.2
(6) 16 16 "%Lg%Lg%sa

1

a

2

a

3

a

4

" 1.1 "a
1

a

2

a

3

a

4

%137g%93g%n" 106.5
(7) 20 20 "a

1

a

2

a

3

a

4

%Lg%g%s" 5.3 "a
1

a

2

a

3

a

4

%210Lg%20g%n" 148.7
(8) 24 20 "a

1

a

2

a

3

a

4

%Lg%Lg%s" 2.1 "a
1

a

2

a

3

a

4

%61Lg%169Lg%n" 204.2
(9) 32 24 "a

1

a

2

a

3

a

4

%g%Lg%Lg%s" 13.5 "a
1

a

2

a

3

a

4

%78Lg%80g%72Lg%n" 343.5

Figure 5: Some exploits generated by our tool. For the write exploit, we chose to write the integer 234 to the memory location with a

specific address a
4

a

3

a

2

a

1

.

Sl.no. Software DIS LEN Exploit Exploit string discovered
("?" represents a non-zero non-% ASCII character)

(1) php-3.0.16 [12] 24 1024 Write 0xbfff8cc3 to 0xbfff88c3 (a
4

a

3

a

2

a

1

) "a
1

a

2

a

3

a

4

%36000Lg%31Lg%n" +
Assume that b

4

b

3

b

2

b

1

= a

4

a

3

a

2

a

1

+ 2. "?b
1

b

2

b

3

b

4

%13000Lg%111g%n"

(2) qpopper-2.53 [31] 2120 1024 Read contents at 0xbfff88c3 (a
4

a

3

a

2

a

1

) ("%Lg")240 + ("?")52 + "%Ld%Ld%d%d%sa
1

a

2

a

3

a

4

"

(3) wu-ftpd-2.6.0 [37] 9364 4096 Write 0xbfffbcab to 0xbfff88c3 (a
4

a

3

a

2

a

1

) "a
1

a

2

a

3

a

4

%99gb
1

b

2

b

3

b

4

" +

Assume that b
4

b

3

b

2

b

1

= a

4

a

3

a

2

a

1

+ 2. ("%60Lg")778 + "%912g%600Lg%n%852X%n"

Figure 6: Exploits generated against known vulnerabilities in some real-world software packages.

qualifiers [18] to identify “tainted” (i.e., user-controlled) inputs that
could potentially be used as format-strings. We report on two ex-
periments here: the first showing how we can reduce the false alarm
rate, and the second showing how we can confirm a true vulnera-
bility by generating an exploit.

Consider the program in Figure 2. When compiled on our ma-
chine, the value of DIS is 28 bytes. Irrespective of the value of
LEN, the size of the buffer fmt, Percent-S reports that the printf
statement on line (6) is exploitable. Clearly, small values of LEN
preclude the possibility of attack. As a result, Percent-S produces
false alarms, because it does not account for the values of the pa-
rameters DIS and LEN.

On the other hand, using our model of printf, we were able
to infer that a read-exploit (similar to the one reported earlier) is
not possible unless LEN is at least 15 bytes, and a write-exploit
(to write the integer 234) is not possible unless LEN is at least
20 bytes. In each of these cases, our analysis produces a format-
string that demonstrates the exploit, while Percent-S does not.

We also used the tool to analyze known format-string vulnerabil-
ities real-world software packages; Figure 6 has the details. php-
3.0.16 is a language-processor for the widely-used web-scripting
language php, qpopper-2.53 is a POP3 mail server, and wu-
ftpd-2.6.0 is a popular file-transfer daemon. We explain in
detail the exploit against wu-ftpd-2.6.0; the others are simi-
lar. Percent-S correctly identified the location of the vulnerability
in wu-ftpd-2.6.0, but did not produce a format-string demon-
strating the exploit. The value of DIS and LEN for this example
were 9364 and 4096, respectively, which we obtained by disas-
sembling the binary executable. For these values of DIS and LEN,
we checked whether the attacker could perform the following ex-
ploit: The attacker uses the buffer that stores the format-string to
additionally store malicious code, and then overwrites the return
address in the stack frame of printf using a write exploit (Sec-
tion 4.3) so as to point to the beginning of the malicious code se-
quence instead. We assumed that the return address to be overwrit-
ten is at the stack location 0xbfff88c3, and that the malicious
code is located at the address 0xbfffbcab, 13288 bytes above
(and hence located within the buffer that stores the format-string).
These address values are easily read off the stack using another ex-
ploit, as explained in Section 4.1. Because the value to be written
is fairly large, we used a variant of the predicate Bad that allows
for writing to a single address using multiple, slightly misaligned
writes of smaller values. (Details on doing such misaligned writes
can be found in [30, 37].)

Because the values of DIS and LEN are quite large, we had to
use the optimizations described in Section 4.4. We were able to
infer, in about 10 minutes, a format-string that is the concatenation
of the following three strings: A prefix "a

1

a

2

a

3

a

4

%99gb
1

b

2

b

3

b

4

",
a middle part ("%60Lg")778 consisting of 778 repetitions of an ag-
gregated API operation, and a suffix "%912g%600Lg%n%852X%n",
where a

4

a

3

a

2

a

1

is 0xbfff88c3 and b

4

b

3

b

2

b

1

= a

4

a

3

a

2

a

1

+2. It
can be verified that this string writes the desired value to the desired
location. One write is performed by each "%n": the first writes
0xbcab to a

4

a

3

a

2

a

1

and the second writes 0xbfff to b

4

b

3

b

2

b

1

.
Existing format-string exploit generators attempt to construct for-

mat strings from fixed conversion specifiers. For instance, Thuem-
mel [37] constructs format-strings with the "%.8x" conversion
specifier as the only building block. As a result, these techniques
lack soundness: there may be exploit strings outside the space of
strings explored by these tools. By doing an exhaustive search
of the state space, our technique guarantees soundness within our
model of printf. In addition, existing tools are incapable of find-
ing variants of an exploit. As demonstrated in lines (3) and (4) of
Figure 5, our technique can be used to discover variants of an ex-
ploit for the same values of DIS and LEN.

5. THE IBM CCA API
We present a second case study: the IBM CCA API. The CCA

API [24] is a cryptographic-key management API used with secure
hardware devices (coprocessors) such as the IBM 4758. The copro-
cessor provides cryptographic services, such as key-management,
to the host computer. Each IBM 4758 is loaded with a distinct,
secret master key (denoted by MK), which is safeguarded by the
physical security of the device. The security of the host relies on
the secrecy of MK.

5.1 Background on CCA
CCA is often used with the IBM 4758 for key-management. The

host computer issues commands from the API, which are commu-
nicated by CCA to the coprocessor. A noteworthy feature of CCA
is the ability to assign “types” (called control vectors [27]) to keys.
The control vector of a key determines a subset of the operations
from the API accessible to it. CCA defines control vectors for sev-
eral classes of keys, such as those to compute message authentica-
tion codes, PIN numbers, and so on. Control vectors are used by
CCA to implement role-based access control (RBAC) [17].

Because it is important to preserve the integrity of cryptographic
keys, clear values of keys should never be stored on the host com-

puter. Similarly, to preserve the integrity of RBAC, a key should
be tightly coupled with its control vector. The IBM 4758 achieves
both these objectives by storing each key on the hard disk of the
host computer as an operational key-token. For the discussion in
this paper, we restrict ourselves to two components of the key-
token, denoted as (EMK�CVK

(K), CVK). Here � denotes bit-wise
exclusive-or, and EK(P) denotes the symmetric-key encryption (us-
ing an algorithm such as 3DES) of P using key K. Thus, the first
component is the encrypted value of K, and the clear value of CVK.
When presented with this key token, the IBM 4758 can use CVK

from the second component, and use it to decrypt the first compo-
nent to retrieve K. Of course, this clear value should not be revealed
outside the IBM 4758. Observe that the value of K cannot be re-
trieved if the second component of the key-token is modified. Also
note that this key-token will not function with another IBM 4758
because the master keys will be different.

It is often necessary for two hosts to share cryptographic-keys,
for instance, to establish session-keys for communication. We dis-
cuss communication between two hosts A and B, each of which has
an IBM 4758 (with keys MKA and MKB, respectively), and uses
the CCA API for key management. One of the supported methods
for communication involves establishing a secure communication
channel between A and B, using a symmetric key-encrypting key,
which is used to encrypt all CCA-managed keys transported over
the channel. The key-encrypting key, whose clear value we de-
note as KEK, is itself a CCA key, and is associated with a control
vector CVKEK. It is stored at A and B as operational key-tokens
(EMKA�CVKEK

(KEK), CVKEK) and (EMKB�CVKEK
(KEK), CVKEK), re-

spectively. One of the techniques supported by CCA for installing
key-encrypting keys works as follows: One of the parties, say A,
generates two (or more) key parts, KP

1

and KP
2

, such that KEK
= KP

1

� KP
2

. These key parts are transported (in the clear) sep-
arately to B, where they are entered using Key Part Import, a CCA
API-operation (see Figure 7). The result of this API-operation is
an operational key-token for KEK. The idea is that the clear value
of KEK cannot be retrieved unless all the key-part holders collude.

Consider a situation where A has a key (with control vector CVK)
stored as a key-token (EMKA�CVK

(K), CVK), that it wants to share
with B. Clearly, this key-token cannot directly be used by B be-
cause the clear value of K is encrypted with MKA. To allow key-
sharing between two IBM 4758s, CCA provides an API-operation
Key Export (shown in Figure 7) which makes the key-token “device-
independent”. This API-operation uses the operational key-tokens
corresponding to KEK and K and to produce the token (EKEK�CVK

(K),
CVK). This export key-token is device-independent. Intuitively,
the key-token (EMKA�CVKEK

(KEK), CVKEK) is used to retrieve the
value KEK within the IBM 4758, which is then used to produce
KEK�CVK, where CVK is retrieved from key-token (EMKA�CVK

(K),
CVK). The IBM 4758 can also use (EMKA�CVK

(K), CVK) to retrieve
the value K. These values are used to produce the export key-token.

The export key-token can be transported over the network to
B, where it is referred to as an import key-token. At B, an API-
operation Key Import (see specification in Figure 7) is used to con-
vert this key-token into an operational key-token for B. The first
input to this API-operation is the operational key-token of KEK,
while the second input is the value of the key-token received over
the communication channel. As with Key Export, Key Import first
retrieves the clear value of KEK, and uses this value with the value
of CVK from the second input to produce KEK�CVK. This value
is used to retrieve K by decrypting EKEK�CVK

(K). The clear value
of K and the value of CVK are then used to produce an operational
key-token (EMKB�CVK

(K), CVK), which can be used at B.

5.2 Formally Specifying the API
We formalize the CCA API using the framework developed in

Section 3. Our focus is on the security of the CCA API, and hence
we will restrict our attention to the sequence of API operations
that can be issued on just one coprocessor. We make the follow-
ing assumptions: (1) The host we analyze, A, can communicate
with other hosts, such as B. (2) To do so, A and B establish a se-
cure communication channel for key-exchange, protected by a key-
encrypting key KEK. We assume that B initiates the communica-
tion, and the key-encrypting key is stored at B as (EMKB�CVKEK

(KEK),
CVKEK). (3) The API-operation Key Part Import is used to install
key-encrypting keys.

Using the framework in Section 3, S = (V , Init,�, L), where,

� V denotes a single set-valued variable keytokens, which de-
notes the set of all key-tokens known to A.

� Init: keytokens = ;, the empty set.

� � = fKey Part Import, Key Import, Key Exportg, i.e., the subset
of the CCA API that we analyze.

� L = �

�

Intuitively, we keep track of the set of key-tokens available on the
IBM 4758 using the variable keytokens, and assume that this set is
initially empty. We assume that API-operations can be interleaved
arbitrarily, denoted by L = �

�. The operations in � accept two
arguments each, and Pre and Post are defined as follows:

1. Key Part Import(�, �): Pre(�, �) is TRUE while Post(�, �) is
(EMKA�CVKEK

(���), CVKEK) 2 keytokens.

2. Key Import(�, �): Pre(�, �) asserts that � and � have the struc-
ture of key-tokens. Let �enc and �

cv denote the first half and
second half, respectively, of key-token �, and similarly for �.
Post(�, �) asserts that EMKA��

cv (Key) 2 keytokens, where

Key is such that �enc = EVal��cv(Key), and Val is such that �enc

= EMKA��
cv (Val).

3. Key Export: Analogous to Key Import.

Intuitively, Val denotes the clear value of the key-encrypting key,
retrieved from �, and this value is used to retrieve the value Key
from �. This value is then used to produce an operational key-
token, which is required by Post to be in keytokens.

The safety property that we verify is the integrity of RBAC, i.e.,
the operational key-token obtained at A using Key Import should
be associated with the same control vector as the control vector
associated with the export key-token sent by B. That is, if the value
sent by B over the communication channel is (EKEK�CVK

(K), CVK),
then the operational key-token at A must be (EMKA�CVK

(K), CVK).
Bad is defined as (EMKA�CVnew (K), CVnew) 2 keytokens, where
CVnew 6= CVK, for some key K sent by B.

To study the security provided by the CCA API, we assume that
an attacker has complete control over A. In particular, the attacker
can observe and manipulate messages sent across the communica-
tion channel. In addition, he can manipulate any key-token stored
on the host computer at A, and invoke CCA API operations on the
IBM 4758 at A with arguments of his choice. These assumptions
follow the standard Dolev-Yao attacker model [15]. A formal state-
ment of the attacker’s abilities is shown in Figure 8. In the figure,
� is used to denote the set of terms known to the attacker, and the
rules capture how the attacker can enhance his knowledge using the
set of terms that he knows. For instance, the first rule says that if
the attacker knows two terms a and b, he also knows a � b.

5.3 Checking the API
We built a Prolog-based bounded model checker to analyze the

above specification. We chose Prolog because the inference rules,

API operation Expected Input 1 Expected Input 2 Output

Key Part Import KP
1

(clear) KP
2

(clear) (EMK�CVKEK
(KP

1

�KP
2

), CVKEK)

Key Export (EMK�CVKEK
(KEK), CVKEK) (EMK�CVK

(K), CVK) (EKEK�CVK
(K), CVK)

Key Import (EMK�CVKEK
(KEK), CVKEK) (EKEK�CVK

(K), CVK) (EMK�CVK
(K), CVK)

Figure 7: Some API operations from the IBM CCA. MK denotes the master key of the coprocessor CCA operates with, KEK denotes

the clear value of the key-encrypting key, K denotes the clear value of a CCA key, CVK denotes the control vector associated with K,

and CVKEK denotes the control vector for key-encrypting keys.

� rules : � ` a � ` b

� ` a�b

� ` a�b � ` b

� ` a

(En/De)cryption : � ` k � ` p

� ` E

k

(p)

� ` k � ` E

k

(p)

� ` p

(Un)pairing : � ` a � ` b

� ` (a;b)

� ` (a;b)

� ` a � ` b

Figure 8: Knowledge enhancement rules. Associativity and

commutativity rules for � are not shown.

such as those presented in Figure 8, and the API operations could
easily be encoded as Prolog rules. We refer the reader to an accom-
panying technical report [19] for details on the model checker.

For the API specification discussed, the model checker produces
the counter-example trace shown in Figure 9. This is the “chosen-
difference” exploit on control vectors, first discovered by Bond [6].

(1) Key Part Import:
Input 1: KP

1

Input 2: KP
2

�CVK�CVnew

Output: (EMKA�CVKEK
(KEK�CVK�CVnew), CVKEK)

(2) Key Import:
Input 1: (EMKA�CVKEK

(KEK�CVK�CVnew), CVKEK)

Input 2: (EKEK�CVK
(K), CVnew)

Output: (EMKA�CVnew (K), CVnew)

Figure 9: Counter-example trace showing exploit.

The exploit works as follows: Suppose that the attacker knows
KP

2

, where KP
1

� KP
2

= KEK. This happens, for instance, when
the attacker is the holder of KP

2

. In statement (1) of Figure 9,
the attacker installs a key of his choice as the key-encrypting key
at A. Because the attacker can manipulate key part KP

2

, he can
produce KP

2

�CVK�CVnew, where CVK is the control vector of
the key transported over the network, and CVnew is another control
vector, chosen by the attacker. When Key Part Import is executed
with the modified key part as the second argument, the key-token
(EMKA�CVKEK

(KEK�CVK�CVnew), CVKEK) results, and A thinks
that this is the key-token for the shared key-encrypting key. In-
put 2 of Statement (2) of Figure 9 corresponds to a step in which
the attacker first uses the unpairing and pairing rules in Figure 8 to
obtain (EKEK�CVK

(K), CVnew) from (EKEK�CVK
(K), CVK), a value

that he knows. Second, he invokes Key Import with this modi-
fied key-token and the key-token of the shared key obtained in
the first step of the attack. Key Import produces MKA�CVKEK us-
ing the value of CVKEK from Input 1, which is then used to re-
trieve KEK�CVK�CVnew from the first half of Input 1. Under
normal operation this would have retrieved the value KEK instead.
Key Import then extracts CVnew from Input 2, and xor’s this with
KEK�CVK�CVnew to obtain KEK�CVK. This value is used to
retrieve K from the portion EKEK�CVK

(K) of Input 2. In the pro-
cess, A has been fooled into thinking that the key is associated
with the control vector CVnew. Hence, Key Import terminates by
producing an operational key-token (EMKA�CVnew (K), CVnew). This
violates the integrity of RBAC, and completes the exploit; Bond [6]
demonstrates how this can be used to learn sensitive values, such
as PIN-encrypting keys.

It is worth noting that analyzing different APIs requires model-
ing different kinds of low-level details. For instance, in Section 4,
we considered the layout of stack frames to discover format-string
exploits. On the other hand, for the CCA API, we considered how
an adversary could increase his knowledge using standard rules,

such as those in Figure 8. We note that such rules are often em-
ployed by security-protocol verifiers (e.g., [28]), and the CCA API
can potentially be analyzed by a security-protocol verifier as well.

6. RELATED WORK
Model Checking. Several software model checking tools (e.g.,
[3, 10, 11, 16, 21]) have been proposed in recent years. These
tools check software for violations of user-defined assertions or of
temporal-ordering rules on events. They use finite-state abstrac-
tions to model data values, and have been successful at verifying
control-flow-intensive properties.

As discussed earlier, an API-level exploit is a concrete trace in
the model that satisfies Bad. The key difference between an API-
level exploit and concrete counter-examples produced by the above
tools is that an exploit uses several low-level details. Unlike the
aforementioned tools, our technique is capable of finding exploits
because it permits modeling low-level details, such as the layout of
the program’s runtime stack.

The strategy we employ for finding exploits is based on bounded,
infinite-state model checking. The use of the UCLID verifier in
the printf case study was driven by the need to reason about
quantifier-free Presburger arithmetic, and a bound of LEN�1 guar-
antees completeness. In general, the choice of an analysis tool
would depend on the logic needed to reason about the system; e.g.,
if the underlying logic is first-order relational logic, the Alloy ana-
lyzer [23] could be used. Similarly, unbounded, infinite-state model
checking techniques (e.g., [9]) can also be potentially used.
Test Generation. Formal specifications of software have been used
to generate test cases, using bounded exhaustive testing [7, 36]. The
specifications are typically in the form of pre- and post-conditions,
and these tools exhaustively generate input data structures, upto
a given size, that satisfy these conditions. Counterexamples pro-
duced by model checking tools [4] have also been used to generate
test cases. Our analysis can also be viewed as a form of test gener-
ation. The API-level exploits generated can be used to test patched
versions of the component that implements the API.
Ad-hoc Techniques. There is some prior work on security-exploit
generators, including generators of format-string exploits [22, 30,
37]. However, as noted in Section 4.5, the techniques proposed
are typically ad-hoc, and provide no soundness guarantees: they
search only for specific attack patterns (e.g., format-strings using
only a fixed conversion or width specifier), and hence might miss
other kinds of attacks. In addition, these techniques are incapable
of generating variants of an exploit. Thus, our paper presents a
more general and formal framework that can generate exploits that
previous exploit-generation tools cannot find.
Type- and Constraint-based Analysis. Static analyzers for spe-
cial classes of vulnerabilities, such as buffer overruns (e.g., [39])
and format-string vulnerabilities (e.g., [33]) have also been pro-
posed. As demonstrated in Section 4, our analysis complements
such tools. An exploit generated against a vulnerability identified
by these tools provides evidence that the vulnerability is real. On
the other hand, if an exploit cannot be generated, the vulnerability
can automatically be classified as a false alarm.
Interface Synthesis. Complementary to the analysis of finding

API-level exploits is the problem of synthesizing correct usage rules
for APIs. Several techniques have been proposed to synthesize in-
terfaces, including techniques that mine execution traces [2] and
techniques based on model checking [1]. The output from these
techniques, typically a finite-state machine over API operations,
can be used as the API-automaton in our formal framework.
Superoptimizers. A code generator that produces code optimized
with respect to certain criteria (e.g., number of instructions) is called
a superoptimizer [26]. Recent work [25] has explored the use of
SAT solvers and theorem-provers (using a technique similar to the
one presented in Section 3) to produce superoptimized code. The
space of possible code sequences is explored using a propositional
Boolean formula, while the theorem prover is used to identify code
sequences that satisfy the optimization criterion. Superoptimizers
also model low-level instruction semantics; consequently, they of-
ten generate intricate, but compact, code sequences [26].

7. CONCLUSIONS
The main message of this paper is that it is necessary to model

low-level details of a software component’s implementation in or-
der to find exploits against it. We demonstrated this by considering
API-level exploits, and presented a framework to model and ana-
lyze APIs for exploits. We also showed the use of the framework
by considering two real-world APIs of significant complexity. We
briefly discuss some difficulties we encountered while modeling
and analyzing APIs:
Modeling low-level details. As demonstrated by our case studies,
different APIs can be exploited in different ways. Thus, the main
problem is to identify the low-level details to model for each API.
One possible solution is to model each API operation at the bit-level
[11, 40], i.e., how each bit in the system is affected by applying
the API operation. While this approach may solve the problem of
identifying appropriate low-details for each API, it may not scale.
We expect that, as with each of our case studies, the use of domain-
specific expertise is the best solution to identify appropriate low-
level details for each API.
Constructing the predicate Bad. Consider Figure 4: We used the
fact that a "%s" can be used to read from a memory location. Con-
sequently, the exploits found by our tool followed this blueprint.
While this covers a large class of exploits, there may be other ways
to read from memory, which our tool will miss. As before, domain-
specific expertise is needed to construct an appropriate predicate
Bad that covers a large class of exploits.
Automating model construction. The models of printf and the
IBM CCA API were constructed manually by examining source
code, and studying their manuals. This is clearly a tedious and
error-prone process. Modern software model checkers [3, 21] auto-
matically construct finite-state models using predicate abstraction.
In our case, the main obstacles to automatic model construction are
twofold: (1) low-level details to be modeled are domain-specific,
and (2) the resulting model is often infinite-state (e.g., Section 4).
In future work, we intend to investigate techniques, that, given the
set of low-level details to be modeled, automatically extract models
amenable for exploit-analysis.

8. REFERENCES
[1] R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface

specifications for Java classes. In Proc. 32nd POPL. ACM, 2005.

[2] G. Ammons, R. Bodik, and J. Larus. Mining specifications. In Proc. 29th

POPL. ACM, 2002.

[3] T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via

static analysis. In Proc. 29th POPL. ACM, 2002.

[4] D. Beyer, A. J. Chipala, T. A. Henzinger, R. Jhala, and R. Majumdar.

Generating tests from counterexamples. In Proc. 26th ICSE. IEEE, 2004.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking

without BDDs. In Proc. 5th TACAS, LNCS 1579. Springer, 1999.

[6] M. Bond. A chosen key difference attack on control vectors. Manuscript,
November 2000. http://www.cl.cam.ac.uk/�mkb23/research/CVDif.pdf.

[7] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on
Java predicates. In Proc. ISSTA. ACM, 2002.

[8] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and verifying systems
using a logic of counter arithmetic with lambda expressions and uninterpreted

functions. In Proc. 14th CAV, LNCS 2404. Springer, 2002.

[9] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with
unbounded integer variables: Symbolic representations, approximations, and
experimental results. ACM TOPLAS, 21(4):747–789, 1999.

[10] H. Chen and D. Wagner. MOPS: An infrastructure for examining security

properties of software. In Proc. 9th CCS. ACM, 2002.

[11] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C

programs. In Proc. 10th TACAS, 2004.

[12] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and
J. Lokier. FormatGuard: Automatic protection from printf format-string

vulnerabilities. In Proc. 10th Security Symp. USENIX, 2001.

[13] L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. 8th ESEC and

9th FSE. ACM, 2001.

[14] L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model
checking over infinite domains. In Proc. CADE, LNCS 2392. Springer, 2002.

[15] D. Dolev and A. Yao. On the security of public key protocols. IEEE

Transactions on Information Theory, 29(2):198–208, 1983.

[16] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using

system-specific, programmer-written compiler extensions. In Proc. 4th OSDI.
ACM/USENIX, 2000.

[17] D. F. Ferraiolo and D. R. Kuhn. Role based access control. In 15th National

Computer Security Conference, October 1992.

[18] J. S. Foster, M. Fahndrich, and A. Aiken. A theory of type qualifiers. In Proc.

PLDI. ACM, 1999.

[19] V. Ganapathy, S. A. Seshia, S. Jha, T. W. Reps, and R. E. Bryant. Automatic
discovery of API-level vulnerabilities. Technical Report 1512, CS Dept., Univ.
of Wisconsin, 2004. http://www.cs.wisc.edu/wisa/papers/tr1512/tr1512.pdf.

[20] M. Harrison, W. Ruzzo, and J. Ullmann. Protection in operating systems.
Comm. ACM, 19(8), 1976.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In

Proc. 29th POPL. ACM, 2002.

[22] G. Hoglund and G. McGraw. Exploiting Software: How to Break Code.
Addison Wesley, Boston, MA, 2004.

[23] D. Jackson. Automating first-order relational logic. In Proc. FSE. ACM, 2000.

[24] D. B. Johnson, G. M. Dolan, M. J. Kelly, A. V. Le, and S. M. Matyas. Common
cryptographic architecture cryptographic application programming interface.
IBM Systems Journal, 30(2):130–150, 1991.

[25] R. Joshi, G. Nelson, and K. Randall. Denali: A goal-directed superoptimizer. In
Proc. PLDI. ACM, 2002.

[26] H. Massalin. Superoptimizer—A look at the smallest program. In Proc. 2nd

ASPLOS. ACM, 1987.

[27] S. M. Matyas, A. V. Le, and D. G. Abraham. A key management scheme based
on control vectors. IBM Systems Journal, 30(2):175–191, 1991.

[28] C. Meadows. The NRL Protocol Analyzer: An overview. Journal of Logic

Programming, 26(2):113–131, 1996.

[29] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

Engineering an efficient SAT solver. In Proc. 38th DAC. ACM, 2001.

[30] T. Newsham. Format string attacks. www.securityfocus.com/guest/3342.

[31] SecurityFocus. Qualcomm qpopper vulnerability.
www.securityfocus.com/advisories/2271.

[32] S. A. Seshia and R. E. Bryant. Deciding quantifier-free Presburger formulas

using parameterized solution bounds. In Proc. 19th LICS. IEEE, 2004.

[33] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Automated detection of

format-string vulnerabilities using type qualifiers. In Proc. 10th Security Symp.

USENIX, 2001.

[34] Siege SAT solver. http://www.cs.sfu.ca/�loryan/personal.

[35] A. Stump, C. W. Barrett, and D. L. Dill. CVC: A cooperating validity checker.

In Proc. 14th CAV, LNCS 2404. Springer, 2002.

[36] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson. Software
assurance by bounded exhaustive testing. In Proc. ISSTA. ACM, 2004.

[37] A. Thuemmel. Analysis of format string bugs. Manuscript, 2001.
http://downloads.securityfocus.com/library/format-bug-analysis.pdf.

[38] D. Wagner, and D. Dean Intrusion Detection via Static Analysis. In Proc. Symp.

on Security and Privacy. IEEE, 2001.

[39] D. Wagner, J. S. Foster, E. Brewer, and A. Aiken. A first step towards automated
detection of buffer overrun vulnerabilities. In Proc. NDSS. ISOC, 2000.

[40] Y. Xie and A. Aiken. Scalable error detection using Boolean satisfiability. In

Proc. 32nd POPL. ACM, 2005.

