
1/14

Threat Intelligence Team January 6, 2021

Retrohunting APT37: North Korean APT used VBA self
decode technique to inject RokRat

blog.malwarebytes.com/threat-analysis/2021/01/retrohunting-apt37-north-korean-apt-used-vba-self-decode-
technique-to-inject-rokrat

This post was authored by Hossein Jazi

On December 7 2020 we identified a malicious document uploaded to Virus Total which

was purporting to be a meeting request likely used to target the government of South

Korea. The meeting date mentioned in the document was 23 Jan 2020, which aligns with

the document compilation time of 27 Jan 2020, indicating that this attack took place

almost a year ago.

The file contains an embedded macro that uses a VBA self decoding technique to decode

itself within the memory spaces of Microsoft Office without writing to the disk. It then

embeds a variant of the RokRat into Notepad.

Based on the injected payload, we believe that this sample is associated with APT37. This

North Korean group is also known as ScarCruft, Reaper and Group123 and has been

active since at least 2012, primarily targeting victims in South Korea.

In the past, this APT has relied on Hangul Office documents (hwp files) to target victims,

as it’s software that’s commonly used in South Korea. However, in this blog we describe

an interesting alternative method, delivered via self-decoding VBA Office files. To the best

of our knowledge, this is a first for this APT group.

Document analysis

https://blog.malwarebytes.com/threat-analysis/2021/01/retrohunting-apt37-north-korean-apt-used-vba-self-decode-technique-to-inject-rokrat/


2/14

The actor used the VBA self-decoding concept in its macro that was first introduced in

2016. A malicious macro is encoded within another that is then decoded and executed

dynamically.

Figure 1: Malicious document

We can consider this technique an unpacker stub, which is executed upon opening the

document. This unpacker stub unpacks the malicious macro and writes it into the

memory of Microsoft Office without being written to disk. This can easily bypass several

security mechanisms.

https://blog.sevagas.com/IMG/pdf/my_vba_bot.pdf
https://blog.malwarebytes.com/wp-content/uploads/2021/01/apt37-doc.jpg


3/14

Figure 2: Self decoding technique

Figure 3 shows the macro used by this document. This macro starts by calling the

“ljojijbjs” function, and based on the results will take different paths for execution.

Figure 3: Encoded macro

Microsoft by default disables the dynamic execution of the macro, and if an attacker needs

to execute one dynamically—which is the case here—the threat actor needs to bypass the

VB object model (VBOM) by modifying its registry value.

To check if it can bypass the VBOM, it looks to see if the VBOM can be accessed or not.

The “ljojijbjs” function is used for this purpose and checks read access to the

VBProject.VBComponent. If it triggers an exception, it means the VBOM needs to be

bypassed (IF clause). If there is no exception, it means the VBOM is already bypassed and

VBA can extract its macro dynamically (Else clause).

https://blog.malwarebytes.com/wp-content/uploads/2021/01/self.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/01/pat37-macro1.jpg


4/14

Figure 4: Check VB object model accessibility

“fngjksnhokdnfd” is called with one parameter to bypass VBOM. This function sets the

VBOM registry key to one.

Figure 5: Modifying VBOM registry key

After bypassing VBOM, it calls another function which creates a Mutex in the victims’s

machine by calling CreateMutexA API call and names it “mutexname”. This could be used

by the actor to make sure it infects its victim only once but in this document we didn’t

observe any evidence of checking the mutex.

Figure 6: Mutex creation

Finally, in order to perform the self-decoding process, it needs to open itself by creating a

new Application object and load the current document in it in invisible mode.

Figure 7: Self open

https://blog.malwarebytes.com/wp-content/uploads/2021/01/apt37-loj.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/01/vbom.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/01/mutex.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/01/selfopen.jpg


5/14

If VBOM is already bypassed, The function Init is called and generates the malicious

macro content in obfuscated format.

Figure 8: Obfuscated macro

In the next step, this obfuscated macro is passed to “eviwbejfkaksd” to be de-obfuscated

and then executed into memory.

Figure 9: De-obfuscator

To de-obfuscate the macro, two string arrays have been defined:

StringOriginal which contains an array of characters before de-obfuscation

StringEncoded which contains an array of characters after de-obfuscation

https://blog.malwarebytes.com/wp-content/uploads/2021/01/obfuscated-macro.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/01/deobfuscator.jpg


6/14

A loop has been defined to de-obfuscate the macro. For each iteration it takes a character

in the obfuscated macro and looks for its index in StringEncoded. When it finds its index,

it looks for its equivalent index in StringOriginal, takes that character from it and adds it

to the new macro. As an example “gm* bf” as encoded macro will be decoded to “Option”.

Figure 10: De-obfuscation loop

Following this process gives us the final macro that will be executed in the memory space

of Microsoft Office. In order to execute this decoded macro, it creates a module and writes

into it before calling its main function to execute the macro.

The main function defines a shellcode in hex format, and a target process which is

Notepad.exe. Then, based on the OS version, it creates a Notepad.exe process and

allocates memory within its address space using VirtualAlloc. It then writes the shellcode

into the allocated memory using WriteProcessMemory. At the end it calls

CreateRemoteThread to execute the shellcode within the address space of Notepad.exe.

https://blog.malwarebytes.com/wp-content/uploads/2021/01/loop.jpg


7/14

Figure 11: De-obfuscated macro

Shellcode analysis (RokRat):

The shellcode injected into Notepad.exe downloads an encrypted payload from

http://bit[.]ly/2Np1enh which is redirected to a Google drive link.

https://blog.malwarebytes.com/wp-content/uploads/2021/01/final-macro.jpg


8/14

Figure 12: Download URL

Downloaded payload is a variant of a cloud-based RAT known as RokRat which has been

used by this group since 2017. This sample compilation date is 29 Oct 2019. This RAT is

known to steal data from a victim’s machine and send them to cloud services (Pcloud,

Dropbox, Box, Yandex).

Figure 13: Encoded cloud services

 

Similar to its previous variants, it uses several anti-analysis techniques to make sure it is

not running in an analysis environment. Here are some of the checks:

https://blog.malwarebytes.com/wp-content/uploads/2021/01/bit.jpg
https://blog.talosintelligence.com/2017/04/introducing-rokrat.html
https://blog.malwarebytes.com/wp-content/uploads/2021/01/cloud.jpg


9/14

Checking the DLLs related to iDefense SysAnalyzer, Microsoft Debugging DLL and

Sandboxies

Calling IsDebuggerPresent and GetTickCount to identify a debugger

Checking VMWare related file

Figure 14: Anti-analysis techniques

This RAT has the following capabilities:

Capture ScreenShots

https://blog.malwarebytes.com/wp-content/uploads/2021/01/anti-analysis.jpg


10/14

Figure 15: Capture screenshots

Gather system info (Username, Computer name, BIOS)

https://blog.malwarebytes.com/wp-content/uploads/2021/01/screenshots.jpg


11/14

Figure 16: Gather BIOS data

Data exfiltration to cloud services

https://blog.malwarebytes.com/wp-content/uploads/2021/01/bios.jpg


12/14

https://blog.malwarebytes.com/wp-content/uploads/2021/01/c2.jpg


13/14

Figure 17: Data exfiltration

 

Stealing credentials

File and directory management

For more detailed analysis of this RAT you can refer to the reports from NCC Group and

Cisco Talos.

Conclusion

The primary initial infection vector used by APT37 is spear phishing, in which the actor

sends an email to a target that is weaponized with a malicious document. The case we

analyzed is one of the few where they did not use Hwp files (Hangul Office) as their phish

documents and instead used Microsoft Office documents weaponized with a self decode

macro. That technique is a clever choice that can bypass several static detection

mechanisms and hide the main intent of a malicious document.

The final payload used by this threat actor is a known custom RAT (RokRat) that the

group has used in previous campaigns. In the past, RokRat has been injected into

cmd.exe, whereas here they chose Notepad.exe.

https://blog.malwarebytes.com/wp-content/uploads/2021/01/c2.jpg
https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/2018/november/rokrat-analysis/
https://blog.talosintelligence.com/2017/11/ROKRAT-Reloaded.html


14/14

 
Indicators of Compromise

Maldoc:

 
3c59ad7c4426e8396369f084c35a2bd3f0caa3ba1d1a91794153507210a77c90

RokRat:

 
676AE680967410E0F245DF0B6163005D8799C84E2F8F87BAD6B5E30295554E08

 
A42844FC9CB7F80CA49726B3589700FA47BDACF787202D0461C753E7C73CFD2A

 
2A253C2AA1DB3F809C86F410E4BD21F680B7235D951567F24D614D8E4D041576

 
C7CCD2AEE0BDDAF0E6C8F68EDBA14064E4A9948981231491A87A277E0047C0CB

 

 

https://blog.malwarebytes.com/wp-content/uploads/2021/01/block.jpg

