

ASEC REPORT VOL.96 Q3 2019

ASEC (AhnLab Security Emergency–response Center) is a global security response group consisting of malware analysts and security experts. This report is published by ASEC and focuses on the most significant security threats and latest security technologies to guard against such threats. For further details, please visit AhnLab, Inc.'s homepage (www.ahnlab.com).

SECURITY TREND OF Q3	2019 Table of Conte	ents
SECURITY ISSUE	Analysis Report on Operation Red Salt	04
ANALYSIS IN-DEPTH	• Analysis on the Malicious SDB File Found in Ammyy Hacking Tool	17

SECURITY ISSUE

Analysis Report on Operation Red Salt

Security Issue

Analysis Report on Operation Red Salt

During an analysis of the attacks made on July 2019 against the South Korean government agencies, ASEC (AhnLab Security Emergency-response Center) observed a series of activities suspected as targeted email attacks. Although these attacks did not exploit a new weakness or use a high-level of attack methods, it was highlighted due to its activity of targeting specific personnel of the the South Korean government agencies with the intention of stealing personal information.

It appeared that these attacks were not one-time but rather closely related to the previous attacks that have been targeting the South Korean government agencies since early 2015. Moreover, similar malware being used during attacks in the following year suggest that it is a continuation of attacks that have gone on for years against the South Korean government agencies and major diplomatic organizations. Because of the file names used during attacks, such as, 'WinSAT.exe,' ASEC has named the series of attacks as 'Operation Red Salt.'

This analysis report contains information on the relationship between the malware and files used during the attacks while also focusing on the attack method of 'Operation Red Salt' analyzed by ASEC.

1. Attack method used during Operation Red Salt

First, let's take a look at the attack method used during Operation Red Salt, which targeted the South Korean government agencies in July, 2019. Although the details regarding the attack method is still unknown, the attacker carried out targeted email attacks.

[Fig 1-1] shows the relationship of the malware used during the attack towards the South Korean government agencies in July 2019.

Figure 1-1 | Relationship of the malware used during the attack towards the South Korean government agencies in July 2019

When the user executes the attached malicious script file, "참고.txt.wsf (translated as 'reference. txt.wsf')," a malware is activated. Then it downloads 'ChromeDrop.rar' after accessing a hacked website that belonged to a specific law firm. The downloaded file is a password-protected RAR archive and cannot be unzipped without a password. It can be unzipped using a password if an archiving software, such as WinRAR, exists on the system.

After the archive is unzipped, 'ChromeDrop.dat' accesses a specific FTP server and downloads

'ChromeSearch.dat' when 'ChromeDrop.dat' inside the RAR archive is executed. 'ChromeSearch. dat' saves user input, and collects screenshot and file list to steal.

2. Detailed analysis of the files

Now, let's look at the analysis on the downloader and the stealer files used during the attacks.

2-1. Downloader file analysis (1) – 참고.txt.wsf (translated as reference.txt.wsf)

[Table 1-1] shows detailed information about the downloader file, "참고.txt.wsf (translated as 'reference.txt.wsf')."

File name	참고.txt.wsf (translated as 'reference.txt.wsf')
File Length	3,284 bytes
Time Created	-
MD5	e3ffe08efc006f54e0d206bf656af414
SHA1	ada95f65fed4c445d035f92038519fe2f018a443
SHA256	40d1685e4e38b624e4a5856c2de2c316239d0ddadf0aa04a72af6020c739ec87
Key Features and Characteristics	Download file
AhnLab Alias	JS/Downloader
Table 1-1 File information	

It is a Javascript file, which downloads 'ChromeDrop.rar' from a hacked corporate website. Based on the file name used, the attacker attempted to disguise the file as a Chrome-related file. However, according to the analysis, the file was not related to the Chrome browser. [Fig 1-2] shows the script used in the downloader.

The downloaded file, 'ChromeDrop.rar' is a password-protected archive. A pre-defined password is used to unzip the archive, as shown in [Fig 1-3], if an archiving software, such as ALZip or WinRAR, is installed on the system. When the archive is unzipped, 'ChromeDrop.dat' is created and the DLL file is loaded.

Figure 1-3 | Unzipping codes

2-2. Downloader file analysis (2) - ChromeDrop.dat

[Table 1-2] shows detailed information about another downloader file, 'ChromeDrop.dat.'

File name	ChromeDrop.dat
File Length	75,776 bytes
Time Created	2019/7/7 13:01:49 (UTC)
MD5	b8c63340b2fc466ea6fe168000fedf2d
SHA1	066a4ed05d868932cdecd9b79b60b7aad3787fe3
SHA256	eeb11d63878f8577674be30dcdfeda82b97a99743a9c1e2768e5be927f8c2771
Key Features and Characteristics	Accesses a specific FTP server and downloads a file
AhnLab Alias	Downloader/Win32.Agent
Table 1-2 File information	

As shown in [Fig 1-4], 'ChromeDrop.dat' examines the process it loaded, and terminates the process that are not 'notepad.exe,' 'winword.exe,' or 'cmd.exe.' Such behavior is assumed to ensure that the downloader is not analyzed by a scanning software, such as an automatic analysis system.

Also, it registers itself in the registry and runs the chromeCheck function in the DLL file through 'rundll32.exe.' This function downloads 'ChromeSearch.dat' from a specific FTP site.

[Fig 1-5] shows the download code. The exact file information is unknown because the file was no longer available at the time of analysis.

2-3. Stealer file analysis - ChromeSearch.dat

[Table 1-3] shows detailed information about the stealer file, 'ChromeSearch.dat.'

File name	ChromeSearch.dat
File Length	134,656 bytes
Time Created	2019/7/7 13:01:39 (UTC)
MD5	f82c07feea45f745fa1e7be834f92bdb
SHA1	2a5e848ff95df52950b2b8c55a0a2cd6b0a71a7c
SHA256	9fc8d922fe99cf83954b31a8af5a41a8dac0e14c55724cd62cbcda5c3689ab90
Key Features and Characteristics	Collects system information, such as key logs
AhnLab Alias	Trojan/Win32.Akdoor
Table 1-3 File information	

'ChromeSearch.dat' was not available on the FTP server at the time of analysis. However, 'ChromeSearch.dat,' which was identical to the file downloaded from the attacked site, was additionally found. Thus. It is assumed that 'ChromeDrop.dat' had downloaded 'ChromeSearch.dat.' After the DLL file is loaded, 'ChromeSearch.dat' determines if it is running as 'explorer.exe' process, as shown in [Fig 1-6], and terminates the process if the 'explorer.exe' has not already been loaded.

```
BOOL stdcall DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved)
  char *v3; // eax
  CHAR Filename; // [esp+4h] [ebp-108h]
 DisableThreadLibraryCalls(hinstDLL);
  if ( fdwReason == 1 )
  ł
    GetModuleFileNameA(0, &Filename, 0x104u);
    v3 = strrchr(&Filename, 0x5C);
    if ( v3 )
    4
      if ( !_stricmp(v3 + 1, "explorer.exe") )
        GetModuleFileNameA(hinstDLL, ::Filename, 0x208u);
        MalwareMain_10001280();
    }
  }
  return 1;
```

Figure 1-6 | Main function

Afterward, 'ChromeSearchRealMutex' creates a mutex to prevent duplicate execution. Also, as shown in [Fig 1-7], it collects data such as user input key strings, system screen, and system information and stores it in files, such as, 'ChromeSearch.klg,' 'ChromeSearch.scf,' 'ChromeSearch.lst.'

```
Destination[i] = 0;
v2 = GetVolumeInformation_100048B0();
sprintf_s(::Buffer, 0x10u, "%X", v2);
GetTempPathA(0x104u, &Buffer);
vsprintf_10003C20(ExistingFileName, "%s%s", &Buffer, "ChromeSearch.klg");
vsprintf_10003C20(MultiByteStr, "%s%s", &Buffer, "ChromeSearch.scf");
vsprintf_10003C20(Filename_10020270, "%s%s", &Buffer, "ChromeSearch.cif");
vsprintf_10003C20(FileName, "%s\\%s", Destination, "ChromeSearch.lst");
CreateThread(0, 0, StartAddress, 0, 0, 0); // Keylogging
CreateThread(0, 0, (LPTHREAD_START_ROUTINE)Thread_ScreenCapture_10001A50, 0, 0, 0);// Screen Capture
CreateThread(0, 0, (LPTHREAD_START_ROUTINE)Thread_10001BA0, 0, 0, 0);
CreateThread(0, 0, (LPTHREAD_START_ROUTINE)Thread_10001BA0, 0, 0, 0);
result = (DWORD)CreateThread(0, 0, (LPTHREAD_START_ROUTINE)Thread_10001D20, 0, 0, 0);
```

Figure 1-7 | System information stealing function

3. Malware used during the attack

The malware used in Operation Red Salt can be classified into three categories: downloader, dropper, and stealer.

3-1. Downloader

A downloader first made its appearance in September 2015. Its file size is about 70 KB and is sometimes packed with a UPX file, which results in a file size of about 35 KB. File names, mainly used for downloader files, include 'wsat.dll,' WinSAT.dll,' WinSat64.dll,' and 'Mcx2Svc.dat.'

[Fig 1-8] shows the main function of the downloader.

Figure 1-8 | Main function of the downloader

According to the initial analysis of the file, variants were mostly in the form of DLL files, with only a few being PE file format. Commonly, downloaders download files from a web server. However, as shown in [Fig 1-9], this variant downloads the file from an FTP server.

```
if ( FTPDown_401463(lpFileName) && Decoder_40169F((int)lpFileName, (int)v8) )
{
    DeleteFileA(lpFileName);
    Registry_401000((BYTE *)v8);
    mem_404790((int)&StartupInfo.lpReserved, 0, 0x40u);
    ProcessInformation.hProcess = 0;
    ProcessInformation.hThread = 0;
    ProcessInformation.dwProcessId = 0;
    ProcessInformation.dwThreadId = 0;
    StartupInfo.cb = 68;
    CreateProcessA(0, (LPSTR)v8, 0, 0, 0, 0, 0, 0, 0, &StartupInfo, &ProcessInformation);
    v6 = 1;
}
```

Figure 1-9 | Code for FTP download

3-2. Dropper

A dropper is a malware that generates a stealer for stealing user information. It was first discovered in September 2015. Its file size is about 230 KB, and includes names, such as 'WINWORD.exe' and 'WinSAT.exe.'

As shown in [Fig 1-10], it compresses and stores the 32-bit and 64-bit malware file in a resource called 'LUCK.'

```
SHGetFolderPathA(0, 26, 0, 0, &pszPath);
strcat_s(&pszPath, 0x104u, "\\WinSAT");
CreateDirectoryA(&pszPath, 0);
sprintf_s(&v29, 0x104u, "%s\\%s", &pszPath, "wsat.dll");
    ystemDirectoryA(&Buffer, 0x104u);
sprintf_s((char *const)&Data, 0x208u, "%s\\rundll32.exe \"%s\\%s\",RunAssessment", &Buffer, &pszPath, "wsat.dll");
v25 = 0;
v4 = GetModuleHandleA("kernel32.dll");
v5 = GetProcAddress(v4, "IsWow64Process");
if ( v5 )
{
  v6 = GetCurrentProcess();
 ((void (__stdcall *)(HANDLE, int *))v5)(v6, &v25);
if ( v25 )
{
  v7 = FindResourceA(0, (LPCSTR)0x66, "LUCK");
  v8 = v7;
 if ( v7 )
  {
    v9 = LoadResource(0, v7);
```

Figure 1-10 | Disabling stored code in a resource

Then, it checks the operating system and generates the file accordingly. The generated file is

the stealer, which is then used to steal user information.

3-3. Stealer

A stealer is malware, generated by the dropper or the downloader to steal data and has a file size of 120 KB. Frequently used file names in 2015 by the stealer were 'wsat.dll,' 'WinSAT.dll,' and 'HwpUpdateCheck.dll.' In 2019, they disguised as Chrome-related files, such as 'ChromInst. dat' and 'ChromeSearch.dat.'

[Fig 1-4] shows the changes in the names of stealer codes

```
wsat.dl -> WinSAT.dll -> HwpUpdateCheck.dll -> WinSat.dat -> ChromInst.dat -> ChromeSearch.dat
```

Table 1-4 | Changes in malware names

The malware collects and stores user key inputs, screen captures, and system information in files with similar names of its own.

apkmng.db	IEUpdate.klg
ChromeSearch.cif	IEUpdate.lst
ChromeSearch.dat	IEUpdate.scf
ChromeSearch.klg	NaverAddress.db
ChromeSearch.lst	sponge.apk
ChromeSearch.scf	WinSat.cif
ChromInst.cif	WinSat.klg
ChromInst.klg	WinSAT.lst
ChromInst.lst	WinSAT.rem
ChromInst.scf	WinSat.scf
IEUpdate.cif	

From 2015 to 2019, the attacker has been continually attempting to attack both the South Korean government agencies and major diplomatic organizations. However, because similar codes and files names were used, the malware used during the attacks can be easily identified.

4. Response and prevention via AhnLab solutions

AhnLab's V3 solutions detect the malware used during the Operation Red Salt under the following product aliases.

<V3 Product Aliases>

- Backdoor/Win32.Akdoor
- Downloader/Win32.Agent
- JS/Downloader
- Trojan/Win32.Agent
- Trojan/Win32.Downloader

5. IoC (Indicators of Compromise)

Names of major file samples

The names of the major file sample used during the Operation Red Salt are as follows.

ChromeDrop.dat	OfficeFontMgr.dll
ChromeSearch.dat	OfficeFontMgr64.dll
ChromInst.dat	WinSAT.dll
ChromSrch.dat	WinSAT.exe
HncCheck64.dll	WinSAT64.dll
HncUpdate.dll	WINWORD.exe
HwpUpdateCheck.dll	wsat.dll
Mcx2Svc.dat	wsat.exe

Hashes - md5

Hash codes for Operation Red Salt are as follows.

01f80d36583501db80ee35a8722a32c3	11ffe6cf023aa33650f8016a1d6c22e7
0763768e90f7f553b64023dc406a07bd	146ffca3460faf639ee016524120de82
0bae7be10be7eed4a1cf0d8046ad7144	1a2ea344a20788d82cf806023b05ccdd

1b8306cf9ffe54b1402f3399de35dc30 244d3ed9ff4585caf79edbf097ae727b 25039b0c0c64e3083ee375489bebcdfc 2516fd16d39e745170a06a68670e5fc0 2df292523d6ce61b93c90d7b08374845 50e1a9c1aaf0c48db4fe12ff0618ace5 51c3102cf3fe667a1a763989c32fa4da 57b0f442ab1eb3801311536b6fa6fc7c 5904a38b1cc66bc64f4b1e7019a71004 5bc87519b3e86402b6edef5275b73597 5fa632889b1979302db69db715972c90 60f933a94447617331e5b9e7f6573170 62ef65f5712649716d71f6ccf90bf696 660329868b60099e2593f315a2c09269 6934fccd887142772bace30613c8407d 70acdc9a8b5467da439cf8cb081ec9c1 7662a7d4ab1dcc6c914c01ac4079d5a0 807d99fb54b1bc70e3d5f3bdc6629c09 81737a04a99a51dacca6dc9f8f10ebb9 87399c869bf4c0205406acdaa9adbed9 8b4550f588037ad726c469b1674a585a 8dd9d62f8091d826cd438c9dcd595123 9035b0127fbd611ebdf916690136b646 92ea31fe6a3b6af0b9407a06350579ef 93ceb72e35c88d51fc9947a14d8164d1

a80703e792de3390cd54a6100a4a381d aa82334ed38b3adb2c7f28377c1b550d ab3428f7f3340ae107096f9a1d4a8f90 aeea0915f0b59335a80e0096bf932b63 af8ee6ccd13a1f41305607ed84e18a27 b66466a51d9efc2b418cedb966301be2 b8c63340b2fc466ea6fe168000fedf2d ba4bb480eff2610a04d8ba55fbdd6520 bc7bb996d48b4c6a4013d23aad600848 bf1a9df237014925c89af1d248916dfc c86efec98f69cc3a178b48436fdb5936 ccc0724347e1c7996fb7a150b56cce47 ccd417a4d0f5ad82aa2bbae63043783f cdc2c5b0d2b462a450720909c715030c cf5d05a9627c3b6fb52a7aca7e82eef0 cfac51f1a10d6a176617ffd3a3a261cb d393c064418db59c60b76e375d9cbc49 dac025ede5f8dba11c5f7398167df083 e318fe6a58ba06e53e4c1f4811a2b3ca e3ffe08efc006f54e0d206bf656af414 ef6ed9bb1549954e8a6c07cb52fd767d f5d4e4726a0d41ceda1599cf2b3da4aa f82c07feea45f745fa1e7be834f92bdb fa4a623f4d3dcca2dd54d7549791e2de fdf9be8cf45b07f61c3e0380241b580c

Export functions

The export functions used during the Operation Red Salt are as follows. One of the most frequently used exploit function is RunAssessment.

CheckUpdate chromeCheck ExportName IEUpdate insrchmdl RunAssessment

ANALYSIS-IN-DEPTH

Analysis on the Malicious SDB File
 Found in Ammyy Hacking Tool

ANALYSIS-IN-DEPTH

Analysis on the Malicious SDB File Found in Ammyy Hacking Tool

Early this year, there was a major distribution of Clop ransomware, mainly targeting Korean government agencies. Clop ransomware distributed using a hack tool called 'Ammyy,' is unlike common ransomware and attacks after a period of latency. Since the end of May 2019, Clop ransomware has emerged again with the sudden increase in the distribution of Ammyy hack tool.

While analyzing Ammyy, ASEC found a malware utilizing the SDB (Shim Database) file, created during the installation and uninstallation of Ammyy. Let's take a closer look at the operation, flow, and features of the SDB-based malware, based on the analysis made by ASEC (AhnLab Security Emergency-response Center).

1. Distribution flow of Clop ransomware via Ammyy downloader

Let's begin with the distribution flow of Clop ransomware using the Ammyy hacking tool. Ammyy hacking tool uses social engineering and distributes ransomware via email. As shown in [Fig 2-1], the ransomware downloads the Ammyy downloaders, and installs the malicious backdoor as a result.

As shown in [Fig 2-1] flowchart, processes that lead up to Ammyy installation are explicit. However, how the installation of ransomware is carried out is still under study. The installation and uninstallation of Ammyy backdoor has a short cycle period. Among the files that are found to have been created during this period, ASEC found and analyzed the SDB-based malware, which is quite rare in Korea.

2. The operation, flow, and features of the SDB-based malware

Let's take a look at the operation flow of the SDB-based malware. Ammyy backdoor uses an SDB(Shim Database) file to generate malware to install other backdoors on the system in a way that the users can hardly notice. The created malware include injectors, commonly named as 'loader32.exe,' and malware, such as 'SDB_msf_32_crypted.dll,' which installs the malicious SDB file.

The SDB file is a Windows mechanism to support backward compatibility, which accepts

various types of 'compatibility fixes.' When an application calls a DLL file, it uses the codes in the SDB file to maintain compatibility.

[Fig 2-2] shows the installation process of a backdoor utilizing the SDB file.

Figure 2-2 | Backdoor installation process utilizing the SDB file

[Table 2-1] shows an overview of malware flow utilizing the SDB file.

1. Ammyy backdoor generates loader32.exe and SDB_msf_32_crypted.dll.

- 2. loader32.exe directly loads SDB_msf_32_crypted.dll or injects it into another process.
- 3. **loader32.exe** writes encoded backdoor PE on a specific registry.
- 4. Then it generates a malicious SDB file and registers it using **sdbinst.exe**. The SDB file targets **services.exe**, or its program function 'ScRegisterTCPEndpoint()' to be more specific.

5. At system reboot, **services.exe** is executed, and the registered malicious SDB codes are applied.

6. Function 'ScRegisterTCPEndpoint()' is executed during the initial routines of **services.exe**. This means that the patched shellcode of **services.exe** is executed as soon as **services.exe** is executed.

7. The shellcode reads the registry, which includes encoded backdoor PE, decodes it, then launches it on the memory.

8. Finally, following a system reboot, the malicious backdoor code is running inside **services.exe**.

Table 2-1 | Flow of SDB-based malware

This way, the SDB-based malware writes the encoded backdoor malware in the registry, as

shown in [Fig2-3]. The encoded backdoor is registered to the registry path 'HKLM\SOFTWARE\ Microsoft\[randum string].'

Then, it generates a malicious SDB file and registers it using the 'sdbinst.exe' utility software. The registered SDB file is located at 'C:\Windows\AppPatch\Custom.'

Observation on the generated SDB file structure reveals that the SDB file is targeting a 'services.exe' process, as shown in [Fig 2-4]. The 'services.exe' process is capable of overwriting a specific offset with its shellcode, which is not an official feature supported by 'Shim,' but is used nonetheless by the attacker to patch a specific address within the memory.

Name	Value
RBC	P C
 File name 	
▲ INDEXES	
▶ INDEX	
A DATABASE	
NAME	Microsoft KB2720155
DATABASE_ID	02fe0e60-c1db-27d4-3c46-3f7bd03acaf6
OS_PLATFORM_OR_E	DEPRECATED_OS_PLATFORM 1
PATCH: Compatibility	Fix
NAME	Compatibility Fix
▲ PATCH_BITS	(Binary data)
PATCH_REPL/	ACE services.exe
EXE: services.exe	
NAME	services.exe
APP_NAME	Microsoft Services
EXE_ID	22f8f956-6b84-0d41-7c24-08d08aaace89

The ScRegisterTCPEndpoint() function is one of the internal features of 'services.exe.' If this function is called while 'services.exe' is running, the shellcode is executed instead. The shellcode decodes the encoded PE file that has already been registered and launches it on the memory.

Action Size:	0x2E1		//UL															
Pattern size:	0x64	9																
Rva: 0xF93B	icoc o	~~																
Module: serv	ices.e	xe																-
										00								
	00	01	02	03	04	05	06	07	08	09	0A	0 B	0 C	0 D	0 E	0 F		
00000000	55	8 B	EC	83	E4	F 8	83	ЕC	4C	53	56	57	B9	FD	42	72	<mark>U</mark> .ì.äø.ìLSVW [‡] ýBr	
00000010	B6	C7	44	24	18	70	00	00	00	E 8	52	01	00	00	B9	C1	¶ÇD\$.pèR¹Á	≡
00000020	6D	68	ΕD	8 B	FO	E 8	46	01	00	00	B9	21	3 B	DF	50	8 B	mhí.ðèF¹!;BP.	
0000030	F 8	E 8	ЗA	01	00	00	B9	91	FD	47	59	8B	D8	E 8	2 E	01	øè:¹.ýGY.Øè	
00000040	00	00	B9	7 F	28	A0	69	89	44	24	20	E 8	20	01	00	00	¹ .(i.D\$ è	
00000050	B9	2 F	44	D4	9 B	89	44	24	24	E 8	12	01	00	00	89	44	1/DÔD\$\$èD	
00000060	24	28	E 8	C9	01	00	00	50	8D	44	24	3 C	50	FF	D6	8D	\$(èÉP.D\$ <pÿö.< td=""><td></td></pÿö.<>	
00000070	44	24	18	50	8D	44	24	34	50	FF	D6	8D	44	24	38	C7	D\$. P. D\$4PÿÖ. D\$8Ç	
00000080	44	24	40	18	00	00	00	89	44	24	48	8D	44	24	40	50	D\$@D\$H.D\$@P	
00000090	68	19	00	02	00	8D	44	24	10	C7	44	24	4C	00	00	00	hD\$. CD\$L	

[Fig 2-5] shows the offset address to be patched by 'services.exe' in the memory, and [Fig 2-6] shows the 'ScRegisterTCPEndpoint()' function used during this process.

f	ScHandleServiceFailure(_SERVI	.text	0100F62B	0000007C
f	ScAutoStartServices(int *)	.text	0100F77F	0000015B
f	ScRegisterTCPEndpoint(void)	.text	0100F93B	000003E0
f	CDelayStartContext::GetAutost	.text	0100FBF5	00000E4
f	ScInitDelayStart(void)	.text	0100FCD8	0000017A

Figure 2-6 | 'ScRegisterTCPEndpoint()' function

The malware defines the offset address while generating the SDB file because the offset address of the 'ScRegisterTCPEndpoint()' function may vary depending on the version of the operating system. In the routine, 'services.exe' is read onto the memory from the Windows system path, as shown in [Fig 2-7].

```
v1 = 0;
v36 = 0;
v2 = CreateFileW(_services_exe, 0x80000000, 1u, 0, 3u, 0x80u, 0);
v3 = v2;
v39 = v2;
if ( v2 != (HANDLE)-1 )
{
  v4 = GetFileSize(v2, 0);
  v5 = v4;
  v34 = v4;
  v6 = CreateFileMappingW(v3, 0, 0x1000002u, 0, 0, 0);
  hObject = v6;
```

Figure 2-7 | Routine to directly read 'services.exe'

Then, the code seeks a hard-coded string, 'DisableRPCOverTCP,' which is specific to the 'ScRegisterTCPEndpoint()' function. As shown in [Fig 2-8], this string is located at the end of the 'ScRegisterTCPEndpoint()' function. Then, from this location, the code searches upwards to initiate the start routine of the function.

Figure 2-8 | Hard-coded string at the end of the 'ScRegisterTCPEndpoint()' function

Shim is applied when a process is generated. Because the code is targeting 'services.exe,' a normal system process, 'services.exe' will become the agent of the malicious behavior for the SDB file after the system reboot.

The malicious backdoor learns the necessary information of the infected system and sends it to a C&C server, then runs commands after a connection to the server is established. These commands include features such as searching, generating, and deleting files. Besides this, the backdoor can carry out basic functions, such as running CMD commands through a pipe and sending the result to the C&C server.

The backdoor also searches for related files. First, it checks the 'ip.txt' file in the 'system32' folder (where 'services.exe' is located) or the system root path (C:\). In the file, additional C&C server addresses are assumed to be added. If such addresses do not exist in the file, the backdoor will attempt to access the basic C&C server address that is hard-coded.

Prior to sending the basic information to the server, the backdoor searches for 'BotInfo.txt' in the 'system 32' folder. This file is assumed to contain information about the infected system. If such file does not exist, it accesses http://ip-api.com/json and obtains various information, such as the IP address, city, country, and Internet Service Provider, then acquires additional system information, such as the operating system version, PID, and user name before sending it to the C&C server.

[Fig 2-9] shows the routine to acquire information about the infected system.

Therefore, other than removing the Ammyy and injector codes, disinfection must be performed for the installed SDB file if a malicious SDB file has already been installed by Ammyy backdoor. Otherwise, the backdoor will continue to run within the 'services.exe' process. Users can hardly recognize the infection because a normal system process, 'services. exe,' has become an agent for the backdoor's malicious behavior.

Such attacks utilizing the malicious SDB file are similar to the previous attacks made by FIN7 attack group, also known as the Carbanak attack group. (Reference URL: <u>https://www.fireeye.</u> <u>com/blog/threat-research/2017/05/fin7-shim-databases-persistence.html</u>)

3. Malicious factors based on the SDB file structure

To fight against such attacks utilizing the SDB file, ASEC invented a diagnostics process to detect malicious SDB files. As it was stated earlier, the SDB file is a database file designed to support the backward compatibility of software applications. It operates when the function operation changes, calling API functions and converting the codes given to it. The malware that we found this time manipulates the operation of 'services.exe' to launch the SDB file with a shellcode when 'ScRegisterTCPEndpoint()' is called.

Then the question is, how is the SDB file composed, and how did the shellcode operate when the 'services.exe' process is loaded? The previous example of [Fig 2-4] explains how a significant amount of data is located in the SDB file.

First, the SDB file is composed of a header (0xC sized) and a repeated pair of tags and data following it. The data that follows may vary depending on the tag, and the 'tag and data' pair

is listed in that exact order. Therefore, to understand the complete structure, the data must be read from the first offset although the preceding tag may predict the following data. As shown in [Table 2-2], the 4 upper bytes determine the tag type.

Tag types	Description				
0x1000	TAG_TYPE_NULL				
0x2000	TAG_TYPE_BYTE				
0x3000	TAG_TYPE_WORD				
0x4000	TAG_TYPE_DWORD				
0x5000	TAG_TYPE_QWORD				
0x6000	TAG_TYPE_STRINGREF (string table attribute)				
0x7000	TAG_TYPE_LIST (list of items)				
0x8000	TAG_TYPE_STRING (unicode string ending with NULL)				
0x9000	TAG_TYPE_BINARY				
Table 2-2 SDB file tag types					

After the header (0xC sized), a 4-byte tag and matching data are listed. For example, in the case of the '0x7007' tag in [Table 2-2], the data for list of items can be predicted to follow the first part, '0x7.'The '0x7007' tag is used to list information about 'TAG-EXE.'

[Fig 2-10] shows the structure of the SDB file used for the malware based on this information.

Offset(h)	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0000000	02 00 00 01 00 00 00 73 64 62 66 02 78 26 00 HEADED
00000010	00 00 03 78 20 00 00 02 38 07 70 03 38 01 60 FAC HINTYS
0000020	16 40 01 00 00 01 98 0C 00 00 03 45 43 49 14G INDEXS
0000030	56 52 45 53 54 03 00 00 01 70 62 03 00 00 01 60
00000040	06 00 00 07 90 10 00 00 00 60 0E FE 02 DB C1
0000050	D4 27 3C 46 3F 7B D0 3A CA F6 23 40 01 00 00 TAG_DATABASE
0000060	05 70 EE 02 00 00 01 60 34 00 00 02 90 E1 02
0000070	00 00 02 00 00 0E1 02 00 00 89 02 00 00 3B F9
00000080	00 00 00 00 00 73 00 65 00 72 00 76 00 69 00
00000090	63 00 65 00 73 00 2E 00 65 00 78 00 65 00 00 00
04000000	00 00 00 00 00 00 00 00 00 00 00 00 00
000000B0	00 00 00 00 00 00 00 00 00 00 00 00 00
00000000	00 00 00 00 00 55 8B EC 83 E4 F8 83 EC 4C 53
00000D0	56 57 B9 FD 42 72 B6 C7 44 24 18 62 00 00 00 E8
00000E0	52 01 00 00 B9 C1 6D 68 ED 88 F0 E8 46 01 00 00
000000F0	B9 21 3B DF 50 8B F8 E8 3A 01 00 00 B9 91 FD 47
00000100	59 8B D8 E8 2E 01 00 00 B9 7F 28 A0 69 89 44 24
00000110	20 E8 20 01 00 00 B9 2F 44 D4 9B 89 44 24 24 E8
00000120	12 01 00 00 89 44 24 28 E8 C9 01 00 00 50 8D 44
00000270	03 F6 03 F6 96 5F FC 36 50 18 76 58 88 37 33 C0
00000280	
00000285	
00000230	
00000280	De ob er fe ob bi fer de se de se de
00000255	
00000220	
00000250	
00000220	
00000220	
00000310	
00000310	
00000320	
00000330	
00000340	
00000350	
00000380	
00000370	
00000380	
00000390	
00000380	1 7 00 00 00 00 73 00 05 00 05 00 74 00 20 00 TAG STRINGTABLE
00000380	
00000300	
00000300	

Figure 2-10 | The structure of the malicious SDB file (partial data section is omitted)

The highlighted section in red is the 0xC sized header, where the version information takes the upper 0x8 bytes, and the succeeding data, '0x73646266,' is for a string, 'sdbf,' which stands for SDB file. The subsequent tag, '0x7802,' stands for TAG_INDEXS, which indicates that the index list data of the file will follow.

The next section, '0x26,' indicates that the '0x26' sized data will be contained. This way, we can figure out that TAG_DATABASE and TAG_STRINGTABLE information will follow afterward, and that the SDB file is composed of four main sections: HEADER, INDEXS, DATABASE, and STRINGTABLE.

TAG_DATABASE section provides information including shellcode and SDB file execution target process. [Fig 2-11] shows the data listed within the TAG_DATABASE section.

	00000020	16	40	01	00	00	00	01	98	00	00	00	00	53	45	43	49	
	00000030	56	52	45	53	54	03	00	00	01	70	62	03	00	00	01	60	
	00000040	06	00	00	00	07	90	10	00	00	00	60	0E	FE	02	DB	C1	
	00000050	D4	27	3C	46	ЗF	7B	D0	3A	CA	F6	23	40	01	00	00	00	TAG_DATABASE
	00000060	05	70	EE	02	00	00	01	60	34	00	00	00	02	90	E1	02	TAG PATCH
	00000070	00	00	02	00	00	00	E1	02	00	00	89	02	00	00	3B	F9	
	0800000	00	00	00	00	00	00	73	00	65	00	72	00	76	00	69	00	
	00000090	63	00	65	00	73	00	2E	00	65	00	78	00	65	00	00	00	
	0A000000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	000000B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	00000000	00	00	00	00	00	00	55	8B	EC	83	E4	F8	83	EC	4C	53	SHELLCODE
	00000D0	56	57	B9	FD	42	72	B6	C7	44	24	18	62	00	00	00	ES	SHELLOOL
									•									
	00000370	84	6B	41	0D	7C	24	08	DO	8A	AA	CE	89	80	70	0C	00	TAG_MACHING_FILE
	00000380	00	00	01	60	5E	00	00	00	09	60	AA	00	00	00	0A	70	TAG NAME
	00000390	0C	00	00	00	01	60	34	00	00	00	05	40	60	00	00	00	In the last of the
	000003A0	01	78	D6	00	00	00	01	88	28	00	00	00	4D	00	69	00	
Figure 2-11 Data v	vithin the TAG	DAT	- ABA	ASE 4	sect	ion												

There is a tag, '0x7005,' in the database, which stands for TAG_PATCH. This means that patch data will follow this tag. In the HEX table, '0x2EE' following the '0x7005' tag indicates the size of the patch data that will follow. Information on shellcode is also included in this data. In the offset after '0x2EE,' there is another tag, '0x7008,' which stands for TAG_MACHING_FILE. This tag indicates that the following data includes information about the target process. Tag '0x6001' represents the TAG_NAME, which is the names of these tags, thereby it can be assumed that the following '0x5E' will be data related to the target process information.

Tags are generally followed by the 'data-size' or 'actual data.' However, the values in the string table must be referenced to identify tags starting with '0x6,' as shown by the SDB file tag types in [Table 2-2].

0000003A0 01 78 D6 00 00 00 01 88 28 00 00 04 D0 69 00 .xököki. 000003B0 63 00 72 00 6F 073 00 6F 00 66 00 74 00 20 00 .xököki. 000003C0 4B 00 42 00 32 00 37 00 32 00 30 00 31 00 35 00 .xökök. 000003D0 35 00 00 00 01 88 24 00 00 00 43 00 6F 00 6D 00 kök. 000003E0 70 00 61 00 74 00 69 00 62 00 69 00 6C 00 69 00 kök. 000003F0 74 00 79 00 20 00 73 00 65 00 78 00 00 00 01 88 se.r.v.i.c. 00000400 1A 00 00 00 73 00 2E 00 65 00 72 00 76 00 69 00 63 00 se.r.v.i.c. 00000410 65 00 73 00 2E 00 65 00 78 00 65 00 72 00 76 00 69 00 63 00 se.r.v.i.c. 00000420 26 00 00 00 4D 00 69 00 63 00 72 00 6F 00 73 00 se.r.v.i.c.	00000390	0C	00	00	00	01	60	34	00	00	00	05	40	60	00	00	00	·····`4····@`···
000003B0 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 20 00 70.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	000003A0	01	78	D6	00	00	00	01	88	28	00	00	00	4D	00	69	00	TAXO TOTAL COMM. 1.
000003C0 4B 00 42 00 32 00 30 00 31 00 35 00 K.B.2.7.2.0.1.5. 000003D0 35 00 00 00 01 88 24 00 00 043 00 6F 00 6D 00 5*\$C.o.m. 000003E0 70 00 61 00 74 00 69 00 62 00 69 00 62 00 69 00 1*\$ p.a.t.i.b.i.l.i. 000003F0 74 00 73 00 65 00 72 00 76 00 69 00 1*\$ *\$	000003B0	63	00	72	00	6F	00	73	00	6F	00	66	00	74	00	20	00	190 2 Rand Ante
000003D0 35 00 00 00 01,88 24 00 00 00 43 00 6F 00 6D 00 5\$\$ 000003E0 70 00 61 00 74 00 69 00 62 00 69 00 6C 00 69 00 60 00 90 00 00 90 00 00 000003F0 74 00 79 00 20 00 46 00 69 00 78 00 00 00 00 00 00 9 00000400 1A 00 00 00 73 00 65 00 72 00 76 00 69 00 63 00 9 00000410 65 00 73 00 2E 00 65 00 78 00 65 00 00 00 01 88 00000420 26 00 00 00 4D 00 69 00 63 00 72 00 6F 00 73 00 6	000003C0	4B	00	42	00	32	00	37	00	32	00	30	00	31	00	35	00	K.B.2.7.2.0.1.5.
000003E0 70 00 61 00 74 00 69 00 62 00 69 00 6C 00 69 00 p.a.t.i.b.i.l.i. 000003F0 74 00 79 00 20 00 46 00 69 00 78 00 00 00 01 88 t.yF.i.x^ 00000400 1A 00 00 00 73 00 65 00 72 00 76 00 69 00 63 00 s.e.r.v.i.c. 00000410 65 00 73 00 2E 00 65 00 78 00 65 00 72 00 66 00 01 88 s.e.r.v.i.c. 00000420 26 00 00 00 4D 00 69 00 63 00 72 00 6F 00 73 00 6M.i.c.r.o.s.	000003D0	35	00	00	00	01	88	24	00	00	00	43	00	6F	00	6D	00	5^\$C.o.m.
000003F0 74 00 79 00 20 00 46 00 69 00 78 00 00 00 01 88 t.yF.i.x^ 00000400 1A 00 00 00 73 00 65 00 72 00 76 00 69 00 63 00 s.e.r.v.i.c. 00000410 65 00 73 00 2E 00 65 00 78 00 65 00 00 00 01 88 e.se.x.e^ 00000420 26 00 00 00 4D 00 69 00 63 00 72 00 6F 00 73 00 65 00 73 00 2E 00 65 00 73 00 6F 00 73 00	000003E0	70	00	61	00	74	00	69	00	62	00	69	00	6C	00	69	00	p.a.t.i.b.i.l.i.
00000400 1A 00 00 00 73 00 65 00 72 00 76 00 69 00 63 00 s.e.r.v.i.c. 00000410 65 00 73 00 2E 00 65 00 78 00 65 00 01 88 e.se.x.e^* 00000420 26 00 00 4D 00 69 00 65 00 72 00 6F 00 73 00 \$M.i.c.r.o.s.	000003F0	74	00	79	00	20	00	46	00	69	00	78	00	00	00	01	88	t.yF.i.x^
00000410 65 00 73 00 2E 00 65 00 78 00 65 00 00 00 01 88 e.se.x.e^ 00000420 26 00 00 00 4D 00 69 00 63 00 72 00 6F 00 73 00 &M.i.c.r.o.s.	00000400	1A	00	00	00	73	00	65	00	72	00	76	00	69	00	63	00	s.e.r.v.i.c.
00000420 26 00 00 4D 00 69 00 63 00 72 00 6F 00 73 00 &M.i.c.r.o.s.	00000410	65	00	73	00	2E	00	65	00	78	00	65	00	00	00	01	88	e.se.x.e^
	00000420	26	00	00	00	4D	00	69	00	63	00	72	00	6F	00	73	00	&M.i.c.r.o.s.
00000430 6F 00 66 00 74 00 20 00 53 00 65 00 72 00 76 00 o.f.tS.e.r.v.	00000430	6F	00	66	00	74	00	20	00	53	00	65	00	72	00	76	00	o.f.tS.e.r.v.

Figure 2-12 | Data within the TAG_DATABASE section

As was explained earlier in [Fig 2-11], we figured out that '0x5E' indicated information about the target process name, and [Fig 2-12] indicates that the target process name, 'service exe,' will be located at a spot that is '0x5E' away from the start of the string table. Now, we understand that a patch on the 'services.exe' process is made using this structure, and that the patched data will be the shellcode within the TAG-PATCH section.

This way, SDB file data is identified and operated based on the tags. After figuring out the structure of such SDB files, ASEC made a generic detection available for the malicious SDB files to prevent infection before an SDB file operates in the 'sdbinst.exe' process.

The AhnLab's V3 product aliases related to the Ammyy hack tool and the malicious SDB files are as follows.

<V3 Product Aliases>

- FlawedAmmyy RAT: Backdoor/Win32.Flawedammyy
- SDB file installation code: Trojan/Win32.Injector
- Malicious SDB file: BinImage/Sdb.Gen, BinImage/Malsdb.S1, BimImage/Malsdb.S2
- Backdoor code: Backdoor/Win32.Agent

ASEC always keeps its eyes on the distribution processes for various malware, including Clop ransomware. ASEC endlessly analyzes newly found or rare malware to develop preventive measures and have it reflected on AhnLab products.

ContributorsASEC ResearchersEditorContent Creatives TeamDesignDesign Team

PublisherAhnLab, Inc.Websitewww.ahnlab.comEmailglobal.info@ahnlab.com

Disclosure to or reproduction for others without the specific written authorization of AhnLab is prohibited.

©AhnLab, Inc. All rights reserved.