
Cobalt: tactics and tools update
ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/cobalt_upd_ttps

The PT Expert Security Center (PT ESC) has been monitoring the Cobalt group since 2016. Currently the group targets financial organizations
around the world. Two years ago, for example, their attacks caused over $14 million in damage. Over the last four years, we have released several
reports on attacks linked to the group.

Over the last year, the group has not only modified its flagship tools CobInt and COM-DLL-Dropper in conjunction with the more_eggs JavaScript
backdoor, but also started using new methods to deliver malware and bypass security in the initial stages of the kill chain. As a group whose
activities have long been of interest to security researchers all over the world, the attackers are highly motivated to stay one step ahead.

Figure 1. Number of Cobalt attacks detected by PT ESC

In 2019, the group conducted an average of three attacks per month. Although we do not know whether the attacks were successful, such frequency
may indicate that the criminals possess substantial financial resources allowing them to maintain their infrastructure, update malware, and adopt
new techniques.

The following histogram shows that in late 2019 the group started favoring CobInt over COM-DLL-Dropper.

Figure 2. Number of attacks using COM-DLL-Dropper and CobInt in 2019

The more_eggs JavaScript backdoor is detected by the ETPro ruleset, including in public sandboxes, whereas CobInt traffic does not trigger
security mechanisms. In addition, CobInt downloads the main library from the command and control (C2) server directly to memory, while COM-
DLL-Dropper saves to disk the obfuscated more_eggs, which is then executed in memory. Therefore, COM-DLL-Dropper leaves more artifacts on
the infected machine.

1. European Central Bank phishing website

In late August 2019, we detected a CobInt attack that presumably targeted European financial institutions. We do not know whether the attack was
successful. CobInt was dropped by a custom NSIS installer. We detected three versions of the dropper: for Chrome, Firefox, and Opera. Each
dropper contained the same CobInt version and a browser-specific installer. Once launched, the dropper saved CobInt to the %TEMP% folder and
then ran CobInt and the installer. Malware analysis proved that the droppers were distributed from the phishing website ecb-european[.]eu.

Figure 3. Phishing website main page

The site was a copy of the European Central Bank website, except for a pop-up window that asked visitors to update the browser.

Figure 4. Pop-up window on the fake ECB website

Visitors who fell for the ruse downloaded the dropper to their computer. The page source code contained a link to the script that displayed the pop-
up window.

Figure 5. Link to malicious script

The configuration strings in the script contain links for four droppers (we could not obtain the first one) and allow creating links for Safari, Edge,
and Internet Explorer. The strings also show the window start time after loading the page, how many times the window will be shown to a user,
type of device on which the window will be displayed, and which banner will be shown to the user. In addition, the script detects bots, crawlers,
and spiders.

Figure 6. Malicious script parameters

Here are alternative windows contained in the script:

Figure 7. Alternative window specified in the script parameters

Figure 8. Alternative window specified in the script parameters

We do not know how the user landed on this website. Most likely, the user would be a victim of a phishing attack like many of those performed by
Cobalt.

The framework in question is not unique. We believe that Cobalt purchased it on a darkweb forum. In an article from November 2019, Zscaler
described a similar scenario for spreading NetSupport RAT. The framework was placed on compromised sites, which showed visitors a
corresponding pop-up window.

In yet another case, the malicious file Login_Details.img was also distributed from the site ecb-european[.]eu. Our colleagues from Group-IB have
provided a detailed analysis of the malware.

2. Malicious VHD
In late December 2019, we detected another CobInt loader used by Cobalt. The loader container was unusual. It was a virtual hard disk (VHD),
presumably distributed by email.

The VHD format was originally developed by Connectix for their Virtual PC product. Microsoft acquired the product in 2003 and renamed it
Microsoft Virtual PC. In 2005, the format became available to the public. Microsoft started using the VHD format in Hyper-V, the hypervisor-
based virtualization technology. A VHD file may contain anything found on a physical hard drive, such as disk partitions and a file system with
folders and files.

Figure 10. Certificates appended to a CobInt file

Windows 7 and newer systems include the ability to manually mount VHD files, such as via the MMC console. Starting with Windows 8, a user can
mount a VHD by simply double-clicking the file. A mounted VHD disk image appears to Windows just like a normal hard disk.

In September 2019, the CERT/CC Blog published an article about the danger of VHD files and their possible use as an attack vector. The
researcher Will Dorman showed that neither antivirus software nor the Mark of the Web alerts users about the potential harm of the contents of a
VHD file downloaded from the Internet. Dorman created a malicious VHD container with EICAR inside and uploaded the result to VirusTotal. The
malware was not detected by any antivirus engines. A VHD file is critical for operation of Hyper-V virtual machines. If this file is damaged or
blocked, the virtual machine will not run. This may explain the rarity, or even absence, of antivirus detection. In documentation, Microsoft
recommends excluding VHD files from antivirus scanning (as automatically is the case in Windows Defender). Otherwise, Hyper-V is susceptible
to issues.

It is possible that Cobalt used the findings of this research for their own purposes. Their VHD file was also not detected by any antivirus software
when it first appeared on VirusTotal. Half a year later, the file was detected by just one antivirus engine, which is still very low.

Figure 9. Cobalt VHD detection level at the moment of attack

The VHD contains two CobInt files. One file has two invalid Google certificates appended to it in order to reduce the odds of detection.

Since VHD is in essence a container with a file system, one can search for artifacts inside
VHD files. For example, we found an image with text of a fake HSBC antifraud message in
the unallocated space of a VHD file.

Figure 11. Image in unallocated space of a VHD file

The attackers may have inadvertently left the artifact when reallocating space in the container: the same image was used as the CobInt icon and
stored in the group's resources.

2.1. CobInt analysis

Once the VHD is mounted, a user must manually run one of the files. The two files are identical in terms of functions. When run, either of the
CobInt files downloads the main library from the C2 server as an HTML file.

There are a few changes in comparison to the algorithm described by ProofPoint in 2018:

Figure 12. Example of obfuscation of the main library

First, all tags are removed and their contents are ignored.

Figure 13. Tag removal

Next, periods, commas, and spaces are processed. All characters after these symbols are uppercased (the value 0x20 is subtracted).

Figure 15. First XOR level

Figure 14. Removing unnecessary characters and switching letters to uppercase

Next, data is decoded from Base64 and decrypted by XOR with a 4-byte key that is initialized with the preceding value of the decrypted data at
each iteration. At each iteration, the current round's 4 bytes are subtracted from those of the previous round, after which the key is the 4-byte value
of the input buffer of the previous round.

Once decryption finishes, the second-stage decryptor takes over. In essence, it consists of an XOR
decryption cycle using a 4-byte key that is the same for the entire stage. The output of this stage will
be a .dll library, which is the payload.

Data decoded from Base64 is shown in Figure 16. A 4-byte preset for the first decryptor is
highlighted in red and will remain the same during the second stage. The rest of the data is
highlighted in yellow.

Figure 16. Data decoded from Base64

The picture changes after decryption (Figure 17). The encryption key is clearly visible due to a long series of zeros in the executable file that, after
encryption, contain the keystream in pure form.

Figure 17. Data after removal of the first XOR level

The second decryption gives us a valid PE file (Figure 18). We could not figure out the purpose of the first eight bytes: they are not used anywhere
in the loader.

Figure 18. Deobfuscated library

2.2. Main library analysis

Once an event is created and the necessary parameters are initialized, the domain is decrypted. Then the function for generating the remaining
part of the address is called.

Figure 19. Algorithm for generating remaining part of the address

After the full C2 server address is generated, the library decrypts the necessary parameters to create HTTP fields, adds them to a request, and
sends the request to the server. The server response contains plugins that the library loads into its address space using ReflectiveLoader.

2.3. Decryption of plugins

Like the main library, the plugins are sent by the server as HTML pages. The first stage of input transformation is similar to what happens during
the library download. The difference is that all periods, commas, and spaces are ignored, and all characters are lowercased.

After the initial transformation, the obtained data is decoded from a–z to 0x00—0xff. For this, a previously unseen decoding procedure is used. It
is based on transforming input values depending on the current value, previous value (in some cases), and values of the global counter.

Figure 20. Plugin decoding algorithm

The decoding is followed by two decryption cycles.

Figure 21. First decryption cycle

The first decryption key is in the application code, hard-coded at an offset that takes only two values.

To carry out the second decryption cycle, the last byte of data is read. This byte is the length of the encryption key for the second cycle. The file is
read at this number of bytes (plus one) from the end. After the key is read, the data is decrypted, except for the key itself. In Figure 22, the key
length is highlighted in red and the key itself is highlighted in yellow.

Figure 22. XOR key example

The last stage is decryption with a 4-byte key, which is also easily obtained by analyzing the series of zeros in the PE header.

Figure 23. XOR key in encrypted data

Our analysis detected two types of downloaded plugins: one that steals the names of running processes plus a screen capture module. Both plugins
use standard WinAPIs to obtain data, as well as the same function as the main library in the export for reflective process loading.

2.4. Traffic decryption

The library sends the data collected by the plugins to the server.

Here is an example of traffic:

Figure 24. Encoded data collected by plugin

First, the traffic is encrypted by a randomly generated key of arbitrary length. The key is inserted into the packet with indication of its length.

Next, the data is encrypted with a hard-coded 64-byte key, the same one that was used to decrypt the library. After that, the same encoding
algorithm is applied. An equals sign (=) and the generated sequence of 8 to 16 a–z characters are added to the beginning.

Example of decoded and decrypted traffic from the previous packet:

Figure 25. Decoded data

Packet creation and transformation function:

Figure 26. Algorithm for creating packet with data

3. BIFF macro

In March 2020, we detected an XLS document from Cobalt that downloaded and ran the COM-DLL-Dropper. The document contained the rather
old Excel 4.0 macro format and was almost invisible to antivirus software (1 positive verdict out of 60 on VirusTotal).

Figure 27. Number of antivirus verdicts on VirusTotal during first upload of the file with Excel 4.0 macro

This macro standard is 20 years old. The standard is peculiar in that the macro is stored in worksheet cells (not stored in a VBA project), and the
worksheet itself can be hidden in Excel. The macro therefore will not be in a VBA stream, but in a BIFF (Binary Interchange File Format) record.

If we open the document in Excel, we see one worksheet and no VBA project macros. However, Excel all the same detects the macro and blocks it
from running.

The olevba3.py utility from oletools can be used to detect this macro.

Figure 28. Result of olevba3.py execution

By running the utility, we see that one of the document worksheets has the status "very hidden" and is of the Excel 4.0 macro type. Because of this
status, the worksheet will be invisible in the Excel interface and, what's more, it cannot be made visible from the interface either. It can only be
made visible by Visual Basic or by manually modifying the document's bytes.
The BiffView utility provides a more workable view of the BIFF structure. After parsing the initial document, we see that a page named
sygfdfdfdesie has the attribute "very hidden." We change this parameter to 1 or 0 in a hex editor.

Figure 29. Structure of malicious document worksheets

When the initial document is opened in the Name Manager, one of the formulas runs automatically:

Figure 30. Macro formula that runs when the document is opened

The initial formula launches a long chain of commands, such as CONCATENATE, RUN, CHAR, and CALL, which will lead to the loading and
launch of COM-DLL-Dropper. The commands are scattered across the Excel cells, complicating analysis.

Figure 31. Macro formulas leading to loading and launch of COM-DLL-Dropper

4. COM-DLL-Dropper analysis
In early April 2020, we detected a new version of COM-DLL-Dropper. Its functions are different from everything we had seen before. However, the
more_eggs JavaScript backdoor payload remained the same.

Cobalt first started using COM-DLL-Dropper in the summer of 2017 and is still using it to deliver more_eggs, which is contained in the dropper in
encrypted and archived form.

A few facts about the dropper:

It is written completely in PureBasic.
It uses numerous anti-analysis techniques.
It contains an encrypted and archived JavaScript loader, JavaScript backdoor, and a legitimate utility for modifying the command line to
launch more_eggs.
It has a built-in obfuscator for the hard-coded JavaScript backdoor and JavaScript loader

4.1. PE file external structure

All the studied items are PE-DLL files to be registered by regsvr32. In addition to exports called by regsvr32, each sample has different sets of
exports typical of legitimate DLL files. Cobalt attempted to mask COM-DLL-Dropper by using third-party exports. Figure 32 shows the most
popular exports used in the malware files (total of 249 unique exports).

Figure 32. Most popular COM-DLL dropper exports

These exports contain stubs that generally do not actually do anything. Judging by the names of the exports, the droppers were masked to
resemble media application libraries. In 2019, the malware was updated with the DllInstall export, which is also called by regsvr32, and the main
dropper code was moved to the export.

Before describing the malware code, we should touch on the PureBasic code. The information we provide here is the result of analyzing malware
samples. We did not study the compiler itself and therefore are forced to make certain assumptions. However, the described entities helped us in
our analysis, which is why we are sharing them here. All the names in screenshots were made up for the purposes of interpreting the malware code.

Our analysis requires two entities: strings and object arrays. PureBasic strings are stored in a special buffer. They are allocated and released
without using a system API. Figure 33 shows the process of string allocation. During program initialization, a separate heap is created for strings
by calling HeapCreate().

Figure 33. String workings

A common pattern for working with this entity is as follows:

1. Allocate a string to storage from a constant.
2. Operate on the string.
3. Update the global string which is usually allocated on the heap. After the update is completed, move back the node index. This operation is

somewhat similar to pop().

The string storage structures do not allow storing the size of the added string. Instead, before starting any operation with the string, the program
saves the previous index of the node and then passes it to the update operation. The difference between the indices is the string size.

We will not describe object arrays here in detail; suffice it to say that a special header before each array stores information about the size, type, and
number of elements. The header occupies 18h bytes. Therefore, the space allocated for the array of objects can be calculated as size of element ×
number of elements + 18h.

To get a clearer picture, refer to this description of functions that are presented in the screenshots a bit later.

Table 1 Function Description

Function Description

ObjectManager::AllocateObjectArray Object array is allocated

ObjectArray::ReleaseObjectArray

ObjectManager::FreeObject

Object array is released

ObjectManager::GetStringObject

ObjectManager::ConcatenationWithStringObject

Create a string in storage

ObjectManager::PopStringObject Update global string

4.2. Anti-analysis

To find the needed API functions, non-standard hash sums obtained from the functions' names are used. Each hash sum is obtained by taking the
CRC32 value and then performing XOR with a constant. The samples have different constants. This is why Table 3 also includes CRC32 values
without the constant-value XOR.

The new version of COM-DLL-Dropper has strings encrypted with the RC4 algorithm, whereas the older version used XOR.

Table 2. Techniques used by the malware to complicate analysis

Technique Description

Key bruteforce to decrypt strings Starting in April 2020, RC4 has been used instead of XOR. This technique uses a non-standard implemen-
tation of the Sleep function, which may postpone launch of the main malware functions in a sandbox.

Checking for the /s /i string
process in CommandLine

The check verifies that the process was launched via regsvr32.

Verifying the process name and
the .ocx extension

The extension and the process name are also checked with a non-standard hash function.

Verifying the list of modules
loaded into the process

The check is performed using a custom hash function.

Loading of additional NTDLL im-
age into the process

This likely creates a trusted NTDLL image without NT API interception.

Checking the values of registers
Dr0–Dr3

Non-zero values in these registers indicate hardware breakpoints, and therefore the debugger. The register
values are accessed via NtGetContext().

ProcessDebugPort check NtQueryInformationProcess with relevant value is called.

ProcessDebugObjectHandle check NtQueryInformationProcess with relevant value is called.

ProcessDebugFlags check NtQueryInformationProcess with relevant value is called.

Checking the parent process name The check is performed using a non-standard hash function.

Checking the year set on the
system

The current date is obtained by calling NtQuerySystemTime and RtlTimeToTimeFields.

Checking the value of the environ-
ment variable COMPUTERNAME

The computer name is checked for the hard-coded string "FLAREVM".

Table 3. Strings and corresponding hash sums used in techniques

Hash sum CRC32 String

0x322CD34E 0x322C4A66 .ocx

Hash sum CRC32 String

0xF43AEA50 0xF43A7378 regsvr32.exe

0x6FECDEE9 0x6FEC47C1 sbiedll.dll

0x16430EDF 0x164397F7 cmdvrt64.dll

0x2B256AC8 0x2B25F3E0 cmd.exe

0xA82757CC 0xA827CEE4 cmstp.exe

0xB3C6B186 0xB3C628AE msxsl.exe

Key bruteforcing for string decryption is not "complete." In fact, most of the key consists of a hard-coded prefix found in the code. The end of the
key is a decimal number. Therefore, key = prefix + number.

Figure 34. RC4 key bruteforce

4.3. JavaScript generators

The dropper creates two files. The first is a JavaScript loader, and the second is a scriptlet containing the encrypted more_eggs backdoor. Both
scripts are generated.

The generation template is saved among malware samples. The inserted data varies. The template contains tokens and JavaScript parts that are
concatenated in series. Figure 35 shows part of generation of the JavaScript loader and examples of the used JavaScript parts.

Figure 35. Generation of a part of the loader

Several obfuscation templates are built into the generator:

Compensatory disguising of constants
Generation of random variable names
Insertion of encrypted strings

Each generator contains a pool of names that are generated prior to starting creation of the script. These names are then used in JavaScript. Figure
35 shows a local variable named lpbobj_arraywcs__JSObjectPool. Figure 36 shows the pool initialization cycle.

Figure 36. Example of filling the pool of names used in the script>

Each name available to be used in the script contains two parts: a random prefix (which is created once for the entire script) and a random decimal
number (limited to a set number of characters). Figure 37 shows the name generation scheme and the result obtained in the script.

Figure 37. Generation of names available to be used in the script

Numeric constants are obfuscated with a function that applies a random arithmetic operation from a set hard-coded in the program and then
inserts the opposite operation in the script. Thus, the inserted expression balances out the obfuscated constant. The second arithmetic operation
argument is also generated randomly from a hard-coded range of values.

Figure 38. Generation of obfuscated constants

The payload is encoded using RC4 and Base91 and inserted in the script. The implementations of RC4 and the Base91 decoder are also inserted in
the scripts.

4.4. Persistence

Depending on its rights in the system, the dropper entrenches itself on the infected machine using the following methods:

By using Task Scheduler
By using the registry key Environment\UserInitMprLogonScript
By using the registry key Software\Microsoft\Windows\CurrentVersion\Run

For all three methods, the value written by the dropper is the same, containing the command for launching the JavaScript loader.

Figure 39. Example of persistence via UserInitMprLogonScript

To configure a task created by the dropper, a special XML file is generated. Part of it is stored in the dropper in encrypted form, and another part is
generated while running.

Figure 40. Decrypted part of XML

Figure 41. Creating end for the XML file

The resulting XML file is saved with a random name consisting of hexadecimal characters. Subsequently, this XML file is passed to schtasks.exe as
the /XML parameter value.

4.5. Running the payload

COM-DLL-Dropper saves three files to disk:

Obfuscated JavaScript loader
Obfuscated JavaScript backdoor
Legitimate utility for modifying the command line in order to launch the more_eggs JavaScript backdoor

The main backdoor is launched with the help of a known AppLocker bypass technique using the msxsl utility. The commands look as follows:

“C:\Users\\AppData\Roaming\Microsoft\msxsl.exe”
“C:\Users\\AppData\Roaming\Microsoft\[javascript_downloader_name].txt”
“C:\Users\\AppData\Roaming\Microsoft\[javascript_backdoor_name].txt”

4.6. JavaScript backdoor functionality

The JavaScript backdoor saved to disk by the new COM-DLL-Dropper has version 6.6.

Figure 42. Backdoor header

This backdoor has been used by Cobalt since 2017. It is executed in memory and always has a low number of antivirus verdicts.

The main capabilities of the backdoor are as follows:

1. Traffic encryption with RC4 and Base91
2. Execution of operator commands (in this version, the more_eggs command that gave the backdoor its name was absent):

exec: download and run file (.exe or .dll)
gtfo: uninstall
more_onion: run script
via_c: execute command using "cmd.exe /C"
more_time: execute command using "cmd.exe /C", with the result being saved to a temporary file. After that, the file is read and
deleted, and its contents are encoded with Base64 and sent to the server.

3. Check of the process list for antivirus protection and researcher software by comparing CRC32 values (derived from the name of each
process, without extension and in lower case) against hard-coded values.

4. Reconnaissance:
Date of system installation
Infected machine's IP address
System type (server or desktop)
Windows version (from XP to 10)

Conclusion
Cobalt keeps attacking financial organizations around the world, refining its TTPs, and inventing ever-more sophisticated ways to bypass defenses.
Due to quarantine-related measures, many employees of financial companies are now working remotely, outside the protection offered by
corporate security solutions. Moreover, many threat actors are using COVID-19 as a lure in their attacks, as the Higaisa group has done. It is
possible that Cobalt, too, will try to weaponize such concern.

Authors: Denis Kuvshinov, Sergey Tarasov, Daniil Koloskov, PT ESC

Indicators of compromise

ECB phishing

Type MD5 SHA1 SHA256

Browser
drop-
pers

152cd7014811ae8980981a825e5843b0 90f7d0b0f90aeadaeff1adf45d-
b5dcc598dec8c4

2d02bbae38f4dba5485fbc2e38640898907ecd-
d6b9ee43501d1ee951653ab36f

f2712de0c8575ff32828c83cfbf75d4b e80ef396462fe651c3cde-
b91651ac27799d2dab5

33ba8cd251512f90b7249930aee22d3f47255420a8d41e132616
9e0f948cc7d0

a3391d1d3482553545d7c0111984abb6 1a371353c6a46d-
dea19d520d8ce3b5599a8ee9f1

9e8a99ad401ef5d2b-
b3aea3a463d85220f0e6724f91a3c2ffd195d0b8628bf9d

CobInt f924c690f7bbaf60d56a446b7a66a43b 8ada87f00ed3afdd4dbd-
b07879ba6ebe4a2a9ffa

b83d2c4f5c2b-
b562981a104d4e49cf25291096d37a4161c32a76e369d1a931e8

C&C

ecb-european[.]eu

timeswindows[.]com

VHD

Type MD5 SHA1 SHA256

VHD-
file

fce9fcd5fa337d020b-
d6758008221b81

e288b0410fb95060ce8c5527673978cb2ceffe05 3382a75bd959d2194c4b1a8885df93e8770f4ebaeaf-
f441a5180ceadf1656cd9

Cob-
Int

600154fcb03e775f007e-
f7b1547b169c

384a13abe42d249e354cd415c4bcbf01086deafb 0c85c1045899291cba47c7171599446642b87015a76
d5b22f8cc51f4a6e45a90

6ec0edd1889897f-
f9b4673600f40f92f

4d50f1cae2acc8c92ff1f678fc1fdfdd1e770f24 64d16900fce924da101744ed-
ce28b9ee648192486d9062c427c17589b5f204fb

C&C

telekom-support[.]info

45.80.69[.]34

BIFF

Type MD5 SHA1 SHA256

XLS-
File

36399ebf94f66529d-
c72d8b2844f43dd

b912f222e79feadbce-
fe2d6ead5fab74b15b1f40

0aee265a022ee84e9c8b653e960559c9761a7362e1c345019a552188114b7e80

COM-
DLL

862c19b2b4b6a7c97f-
b8627303b8f5d7

d3fc5f848d630ca2d-
c8e99b0d4dfe704b8ec1832

7122cf59f8a59f9a44f20fd4c83451c5c4313e0021d3f1ba9c2b1a4f39801db1

C&C

download.sabaloo[.]com

origin.cdn77[.]kz

New COM-DLL dropper

Type MD5 SHA1 SHA256

COM-
DLL

47e7212b097b5cf-
fa60903055e3c4d5a

dfcd5692729e859f074b95720505f711ba7d14ac c1a633a940fc4c595ebbe36823fee1b02bfd755615c51799c9f4e4320b597af1

С&C

maps.doaglas[.]com

MITRE TTPs

Tactic ID Name

Initial Access T1193 Spearphishing Attachment

T1192 Spearphishing Link

Execution T1059 Command-Line Interface

T1117 Regsvr32

T1204 User Execution

T1064 Scripting

Persistence T1037 Logon Scripts

T1050 New Service

Tactic ID Name

T1053 Scheduled Task

T1060 Registry Run Keys / Startup Folder

Defense Evasion T1027 Obfuscated Files or Information

T1220 XSL Script Processing

Discovery T1063 Security Software Discovery

Command And Control T1105 Remote File Copy

