Threat Spotlight: Group 72, Opening the ZxShell
This post was authored by Andrea Allievi, Douglas Goddard, Shaun Hurley, and Alain Zidouemba.

Recently, there was a blog post on the takedown of a botnet used by threat actor group known as Group 72 and their
involvement in Operation SMN. This group is sophisticated, well funded, and exclusively targets high profile organizations
with high value intellectual property in the manufacturing, industrial, aerospace, defense, and media sector. The primary

attack vectors are watering-hole, spear phishing, and other web-based attacks.

Frequently, a remote administration tool (RAT) is used to maintain persistence within a victim’s organization. These tools

are used to further compromise the organization by attacking other hosts inside the targets network.

ZxShell (aka Sensocode) is a Remote Administration Tool (RAT) used by Group 72 to conduct cyber-espionage operations.
Once the RAT is installed on the host it will be used to administer the client, exfiltrate data, or leverage the client as a pivot to

attack an organization’s internal infrastructure. Here is a short list of the types of tools included with ZxShell:

Keylogger (used to capture passwords and other interesting data)

Command line shell for remote administration

Remote desktop
e Various network attack tools used to fingerprint and compromise other hosts on the network

e Local user account creation tools
For a complete list of tools please see the MainConnectionlo section.

The following paper is a technical analysis on the functionality of ZxShell. The analysts involved were able to identify
command and control (C2) servers, dropper and installation methods, means of persistence, and identify the attack tools that
are core to the RAT’s purpose. In addition, the researchers used their analysis to provide detection coverage for Snort,
Fireamp, and ClamAV.

Table of Contents

1. Background
2. Distribution and Delivery
3. Analysis of the main ZxShell module
o DIIMain
o Install
o ServiceMain
o ShellMain
o ShellMainThread
o GetIpListAndConnect
o MainConnectionlo
o Uninstall
o ZxFunctionoo1
o ZxFunctionoo2
4. Command and Control server

5. Malware Package

http://blogs.cisco.com/author/AndreaAllievi
http://blogs.cisco.com/author/douglasgastonguaygoddard
http://blogs.cisco.com/author/shaunhurley/
http://blogs.cisco.com/author/AlainZidouemba
http://blogs.cisco.com/talos/threat-spotlight-group-72/

. Version Information
. Extracted URL Analysis

Conclusion

© © 3 o

. Protecting Users From These Threats

10. Appendix A: Snort rules

11. Appendix B: ClamAV signatures

12. Appendix C: List of Memory Offsets for Some ZxShell Functions
13. Appendix D: Other Collateral

Background

ZxShell has been around since 2004. There are a lot of versions available in the underground market. We have analyzed the

most common version of ZxShell, version 3.10. There are newer versions, up to version 3.39 as of October 2014.
Distribution and Delivery

An individual who goes by the name LZX in some online forums is believed to be the original author of ZxShell. Since ZxShell
has been around since at least 2004, numerous people have purchased or obtained the tools necessary to set up ZxShell
command and control servers (C&C) and generate the malware that is placed on the victim’s network. ZxShell has been
observed to be distributed through phishing attacks, dropped by exploits that leverage vulnerabilities such as CVE-2011-
2462, CVE-2013-3163, and CVE-2014-0322.

Analysis of the Main ZxShell Module
To illustrate the functionality of main ZxShell module, Let’s take a look at the following sample:

e MD5: e3878d541d17b156b7cag47eeb49dgba
e SHA256: 1edaye556181e46babe36f1a6bfe18ff5566fodses51c53b41d08f9459342e26¢

It exports the following functions, which are examined in greater detail below:

e DIIMain

e Install

e Unlnstall

e ServiceMain

e ShellMain

e ShellMainThread
e zxFunctionoo1

e zxFunctionoo2
DIlIMain

DIIMain performs the initialization of ZxShell. It allocates a buffer of 0x2800 bytes and copies the code for the
ZxGetLibAndProcAddr function. To copy memory, the memcpy function is invoked. It is not directly used from msvert.dll but
is instead copied to another memory chunk before being called. Finally, the trojan Import Address Table (IAT) is resolved
and the file path of the process that hosts the dll is resolved and saved in a global variable.

http://tools.cisco.com/security/center/viewAlert.x?alertId=24794
http://tools.cisco.com/security/center/viewAlert.x?alertId=29886
http://tools.cisco.com/security/center/viewAlert.x?alertId=32870

Install

ZxShell.dll is injected in a shared SVCHOST process. The Svchost group registry key
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost is opened and the netsvc group value data is queried

to generate a name for the service.

Before the malware can be installed a unique name must to be generated for the service. The malware accomplishes this
through querying the netsve group value data located in the svchost group registry key which is
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost.

At startup, Svchost.exe checks the services part of the registry and constructs a list of services to load. Each Svchost session
can contain multiple shared services that are organized in groups. Therefore, separate services can run, depending on how

and where Svchost.exe is started.

& Registry Editor - o IEN

Type Data

5 MULTLS2
REG_MULTISZ
REG_MULTISZ
REG MULTISZ
REG MULTI S2
REG_MULTLSZ

MG MULTL 2
REG_MULTISZ
REG MULTISZ

\wdNolmgersonston

NetworkRettncted

Computer\ HKEY_LOCAL_MACHINE\SOFTWARE\ Micresoft\ Wisdows NT\Cument'fersion\Svchest
Image 1. Svchost Groups registry key

Svchost.exe groups are identified in the above registry key. Each value under this key represents a separate Svchost group
and appears as a separate instance when you are viewing active processes. Each value is a REG_MULTI_SZ value and
contains the services that run under that Svchost group. Each Svchost group can contain one or more service names that are

extracted from the following registry key, whose Parameters key contains a ServiceDLL value:
HKEY LOCAL_MACHINE\System\CurrentControlSet\Services\Service

On a Windows machine, the netsvc group contains names of both existing and non-existing services. ZxShell exploits this fact
by cycling between each of the names, verifying the existence of the real service. The service’s existence is verified with the
ServiceExists function, which attempts to open the relative registry sub-key in HKLM\SYSTEM\CurrentControlSet\Services.

The first service name that is not installed on the system becomes the ZxShell service name.

A new service is then created using the service parser function ProcessScCommand. ZxShell implemented its own version of
the Windows SC command. There are minor differences between the ZxShell implementation of this command and the

original Windows one, but they are irrelevant for the purpose of the analysis The command used to install the service is:

sc create <service name> <service name> “%SystemRoot%\System32\svchost.exe -k netsvcs”

where <service name> is the chosen infected service name.

http://blogs.cisco.com/wp-content/uploads/image015.jpg

push ebx]

push ebx

push offset netSvcLaunchStr ; “\"%SystemRoot%\\System32\\suchost.exe
push esi

push esi ; ServiceName

lea eax, [ebp+ScCommand]

push offset aScCreateSSSDD ; "sc create %s %s %s %d %d"
push eax

call g_lpsprintf ; Create total service command

lea eax, [ebp-8Ch]

push eax s cndClass

call ProcessScCommand

add esp, 2Ch

test eax, eax

jZ ServiceCreationError

Image 2. “SC” command used to create the target service,and parsed by “ProcessScCommand” routine

The installed service registry key is opened and the 2 values under its Parameter subkey are created. These 2 values,

ServiceDIl and ServiceDIlUnloadOnStop are needed for services that run in a shared process.

Before the service is started ChangeServiceConfig is called to modify the service type to shared and interactive. If the service
fails to start then a random service name formatted as netsvc_xxxxxxxx, where xxxxxxxx represent an 8-digit random hex

value, is added to the netsve group and the entire function is repeated.
ServiceMain

This function is the entry point of the service. It registers the service using the RegisterServiceCtrlHandler Windows API
function. The ZxShell service handler routine is only a stub: it responds to each service request code, doing nothing, and
finally exits. It sets the service status to RUNNING and finally calls the ShellMain function of ZxShell.

ShellMain

The ShellMain function is a stub that relocates the DLL to another buffer and spawns a thread that starts from
ShellMainThreadInt at offset +0xCoCD. The ShellMainThreadInt function gets the HeapDestroy Windows API address and
replaces the first 3 bytes with the RET 4 opcode. Subsequently, it calls the FreeLibrary function to free its own DLL buffer
located at its original address. Because of this, the allocated heaps will not be freed. It re-copies the DLL from the new buffer
to the original one using the memcpy function. Finally, it spawns the main thread that starts at the original location of
ShellMainThread procedure, and terminates. At this point, the ZxShell library is no longer linked in the module list of the

host process. This is important because if any system tool tries to open the host process it will never display the ZxShell DLL.
ShellMainThread

This thread implements the main code, responsible for the entire botnet DLL. First, it checks if the DLL is executed as a
service. If so, it spawns the service watchdog thread. The watchdog thread checks the registry path of the ZxShell service
every 2 seconds, to verify that it hasn’t been modified. If a user or an application modifies the ZxShell service registry key, the

code restores the original infected service key and values.

http://blogs.cisco.com/wp-content/uploads/image042.jpg

(i

ull

; Attributes: bp-based frame
ServiceWatchdogThread proc near

var_104« byte ptr -164h

push ebp
mnov ebp, esp
sub esp, 104h
push offset g_lpServiceName ; "iprip"
lea eax, [ebp+var_1064]
push offset aSystemCurren_S5 ; “SYSTEM\\CurrentControlSet\\Services\\%s"
push eax
call g_lpsprintf
add esp, OCh
jmp short loc_3200AEAE
‘¥

FEE

loc_3200AEAE :

cnp g _bConnect, 8

jnz short loc_3280AESA

4
W= =
xor eax, eax
loc_3200AESBA: leave
push offset g_lpServiceRegKeyFile retn y
lea eax, [ebp+uar_104] ServiceWatchdogThread endp
push eax
push 80000062h
call SxCreateAndRestoreKey
add esp, OCh
push 2008 ; duMilliseconds
call ds:Sleep
L

Image 3. The watchdog thread of ZxShell service

The buffer containing the ZxShell DIl in the new location is freed using the VirtualFree API function. A handle to the DLL file
is taken in order to make its deletion more difficult. The ZxShell mutex is created named @_ZXSHELL_@.

ZxShell plugins are parsed and loaded with the AnalyseAndLoadPlugins function. The plugin registry key
HKLM\SYSTEM \CurrentControlSet\Control\zxplug is opened and each value is queried. The registry value contains the
plugin file name. The target file is loaded using the LoadLibrary API function, and the address of the exported function
zxMain is obtained with GetProcAddress.

If the target filename is incorrect or invalid the plugin file is deleted and the registry value is erased. That is performed by the
function DeleteAndLogPlugin. Otherwise, the plugin is added to an internal list. Here is the data structure used to keep track
of the plugins:

typedef struct _ZX PLUGINS STRUCT {

LPSTR lpStrRegKey; // + 0x00 - ZxShell Plugins registry key string
// (like 'SYSTEM\CurrentControlSet\Control\zxplug')

DWORD dwUnknown2; // + 0x04 - Unknown DWORD value

LPVOID 1pl38hBuff; // + 0x08 - Plugins list

DWORD dwZero; // + 0x0C - Always zero

HANDLE hReg; // + 0x10 - Handle to plugin registry key

http://blogs.cisco.com/wp-content/uploads/image111.png

} ZX_PLUGINS STRUCT, *PZX PLUGINS STRUCT;

The thread KeyloggerThread is spawned and is responsible for doing keylogging on the target workstation. We will take a

look at the keylogger later on. Finally the main network communication function GetIpListAndConnect is called.
GetIpListAndConnect

This function is at the core of the RAT’s network communication. It starts by initializing a random number generator and
reading 100 bytes inside the ZxShell DIl at a hardcoded location. These bytes are XOR encrypted with the byte-key 0x85 and
contains a list of remote hosts where to connect. The data is decrypted, the remote host list is parsed and verified using the
BuildTargetIpListStruct function. There are 3 types of lists recognized by ZxShell: plain ip addresses, HTTP and FTP
addresses.

If the list does not contain any item, or if the verification has failed, the ZxShell sample tries to connect to a hardcoded host

with the goal of retrieving a new updated list.

Otherwise, ZxShell tries to connect to the first item of the list. If ZxShell successfully connects to the remote host, the
function DoHandshake is called. This function implements the initial handshake which consists of exchanging 16 bytes,
0x00001985 and 0x00000425, with the server. The function GetLocalPcDescrStr is used to compose a large string that

contains system information of the target workstation. That information is the following;:

e local hostname

e organization

e owner

e operating system details
e CPU speed

e total physical memory

The string is sent to the remote host and the response is checked to see if the first byte of the response is 0xF4, an arbitrary

byte. If it is, the botnet connection I/O procedure is called through the MainConnectionlo function.

eax, [ebp+curlpStr]

eax ; descStr
GetLocalPchescrStr

eax, eax

ecx

[ebp+bConnectRetVal]
short NoDescStr

A J
push offset aSocketD ; “socket: Zd\rin"
call ZxDbgPrint
push ebx ; char
push 0 ; int
push [ebpe+bConnectRetVal] ; sock
push (] ; int
call DoHandShake
add esp, 18h
test eax, eax
jnz short loc_32011726

v

Image 4. The GetLocalPcDescrStr and DoHandshake functions called beforestarting the command processing

Otherwise, the ZxShell code closes the socket used and sleeps for 30 seconds. It will then retry the connection with the next

http://blogs.cisco.com/wp-content/uploads/image08.jpg

remote host, if there is one.

It is noteworthy that this function includes the code to set the ZxShell node as a server: if one of the hardcoded boolean value
is set to 1, a listening socket is created. The code waits for an incoming connection. When the connection is established a new

thread is spawned that starts with the MainConnectionlo function.
MainConnectionlo

The MainConnectionlo function checks if the Windows Firewall is enabled, sets the Tcp Keep Alive value and Non-blocking
mode connection options and receives data from the remote host through the ReceiveCommandData function. If the

communication fails, ZxShell disables the firewall by modifying the registry key:
HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile

Then the connection is retried. The received command is then processed by the ZxShell function with the ProcessCommand

function.

The command processing function starts by substituting the main module name and path in the hosting process PEB, with
the one of the default internet browser. The path of the main browser of the workstation is obtained by reading the registry

value:

HKLM\ SOFTWARE\Classes\HTTP\shell\open\command

E- § Registry Editor - B “
File Edit View Favortes Help
HimiDigSafeHelper HImIDIGS A | Narme Type Data
htmifile
htmifile_FullWindowEmbed
“ http
Defaulticon

b (Defaut REG_SZ et Explorerexplore.exe” %1)

b DelegateExecute REG_SZ

Extensions
- shel
P open
command
https
HWXInkE-Ink
HWXInkE-Ink.1
HxDS HxRegisterProtocol
HeDS HeRegisterProtocol.l o
< > < >

Computer\MKEY_LOCAL_MACHINE\SOFTWARE\ Classes\http\shell\open\command

Image 5. Our test workstation use Windows Internet Explorer as default browser

This trick renders identification by firewall more cumbersome. A host firewall will recognize the outgoing connection as
originated by the browser instead of the ZxShell service host process. The browser process always performs outgoing

connections and the firewall shouldn’t block them.
The command processing is straightforward. Here is the list of common commands:

COMMAND MEANING

Help /? Get help

Exit / Quit ' Exit and shut down the botnet client

SysInfo l Get target System information

SYNFlood . Perform a SYN attack on a host

Ps Process service Unix command implementation

CleanEvent Clear System Event log

http://blogs.cisco.com/wp-content/uploads/image09.jpg

FindPass

Find login account password

FileTime Get time information about a file

FindDialPass l List all the dial-up accounts and passwords

User . Account Management System

TransFile . Transfer file in or from remote host

Execute 'Runa program in the remote host

SC . Service control command, implemented as the Windows one

CA ' Clone user account

RunAs l Create new process as another User or Process context.

TermSvce . Terminal service configuration (working on Win Xp/2003)

GetCMD . Remote Shell

Shutdown l Logout, shutdown or restart the target system

ZXARPS l Spoofing, redirection, packet capture

ZXNC 'Run ZXNC v1.1 -- a simple telnet client

ZXHttpProxy ' Run a HTTP proxy server on the workstation

ZXSockProxy l Run a Sock 4 & 5 Proxy server

ZXHttpServer | Run a custom HTTP server

PortScan ' Run TCP Port MultiScanner v1.0

KeyLog l 1Eapture or record the remote computer’s keystrokes. The implementation is a userland keylogger that polls the
eymap with each keystroke.

LoadDll l Load a DLL into the specified process

End . Terminate ZxShell DLL

Uninstall . Uninstall and terminate ZxShell bot DLL

ShareShell ' Share a shell to other

CloseFW . Switch off Windows Firewall

FileMG ' File Manager

winvnc l Remote Desktop

rPortMap l Port Forwarding

capsrv | Video Device Spying

zxplug l Add and load a ZxShell custom plugin

This set of functionality allows the operator complete control of a system. Being able to transfer and execute files on the
infected system means the attacker can run any code they please. Further, the keylogging and remote desktop functionality

allows the operator to spy on the infected machine, observing all keystrokes and viewing all user actions.
Uninstall

Unloads ZxShell and deletes all of the active components. This simply deletes the ZxShell service key from the Windows
registry (using SHDeleteKey Api) and all of the subkeys. Finally, it marks ZxShell main DIl for deletion with the MoveFileEx
Windows API.

ZxFunctionoo1

This function is the supporting functionality for WinVNC. To allow the VNC session to connect, the current network socket
WSAProtcol_Info structure is written to a named pipe prior to calling zxFunctionoo1. Once the named pipe has been created,

CreateProcessAsUserA is called with the following as the CommandLine parameter :

<systemroot>\\rundll32.exe <zxshell dll name>,zxFunction00l <name of NamedPipe>

http://msdn.microsoft.com/en-us/library/windows/desktop/ms741675%28v=vs.85%29.aspx

zxFunctionoo1 modifies the current process memory, uses data contained in the named pipe to create a socket, and then

executes the code that sends the remote desktop session to the server controller.
ZxFunctionoo2

This function will either bind the calling process to a port or has the calling process connect to a remote host. The function is

called in the following manner:

<systemroot>\\rundll32.exe <zxshell dll name>,zxFunction002 <name of NamedPipe>

The functionality (connect or bind) depends on the data contained within the named pipe. Unlike zxFunctionoo1, this is not

used by any of the RAT commands in the zxshell.dll.
Kernel Device Driver LoveUSD

Apart from user-mode ZxShell droppers mentioned earlier, there is a file (SHA256:
1e200dod3de360d9gc32e30d4c98fo7e100f6260a86a817943a8fb06995c15335) that installs a kernel device driver called
loveusd.sys. The architecture of this dropper is different from the others: it starts extracting the main driver from itself. It
adds the SeLoadDriver privilege to its access token and proceeds to install the driver as a fake disk filter driver. ZxShell opens

the registry key that describes the disk class drivers:
SYSTEM\CurrentControlSet\Control\Class\{4D36E967-E325-11CE-BFC1-08002BE10318}

It then adds the “Loveusd.sys” extracted driver name to the upper filter list. In our analysed sample the “Loveusd.sys” driver

is installed with the name “USBHPMS?”. Finally the driver is started using the ZwLoadDriver native API.

The ZxShell driver starts by acquiring some kernel information and then hooking “ObReferenceObjectByHandle” API. Finally

it spawns 2 system threads.

The first thread is the “communication” thread. ZxShell employs a strange method for communication: it hooks the

NtWriteFile API and recognizes 5 different special handle values as commands:

e 0x111111111 -- Hide “Loveusd” driver from the system kernel driver list

e 0x22222222 -- Securely delete an in-use or no-access target file-name

® 0x44444444 -- Unhook the ZwWriteFile API and hook KiFastCallEntry

® 0x55555555 -- Remove the ZxShell Image Load Notify routine

o 0x88888888 -- Set a special value called “type” in Windows registry key
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\DriverMain

The second Loveusd system thread does a lot of things. Its principal duties are to create the ZxShell main DLL in
“c:\Windows\System32\commhlp32.dll” and to install the Kernel “Load Image Notify routine”. The code then tries to kill

each process and service that belongs to the following list of AV products:

e Symantec Firewall
e Norton

e ESET

o McAfee

Avast

e Avira
e Sophos
e Malwarebytes

Next, the ZxShell Load-Image Notify function prevents the AV processes from restarting.

The installation procedure continues in the user-mode dropper. The ZxShell service is installed as usual, and the in-execution
dropper is deleted permanently using the special handle value o0x22222222 for the WriteFile API call. This handle value is
invalid: all the windows kernel handle values are by design a multiple of 4. The ZxShell hook code knows that and intercept
it.

ObReferenceObjectByHandle is a Kernel routine designed to validate a target object and return the pointer to its object body
(and even its handle information), starting from the object handle (even the user-mode one). The hook installed by ZxShell
implements one of its filtering routine. It filters each attempt to open the ZxShell protected driver or the main DLL, returning
a reference to the “netstat.exe” file. The protection is enabled to all processes except for ones in the following list:

Svchost.exe, Lsass.exe, Winlogon.exe, Services.exe, Csrss.exe, ctfmon.exe, Rundll32.exe, mpnotify.exe, update.exe.

If the type of the object that the system is trying to validate is a process, the hook code rewrites again the configuration data

of the ZxShell service in the windows registry.

USHHEME xys

Sroperty vale

Operazioni file e cal Fle Name Ci'\Documents and Settrgs \Andrea \Desktop USBMENS sys
Fle Type Portabie Executadie 32

He Info

Fle Se

W) Riromiea fie

@ Soosta fie

D Copla fle

@ Pubbics e s viel

Yrea i e por st
cettronca
K Eimina fle

Altre risorse

L— & UPX Uniley

LagaCopprght

Dettagh
Ongnalffenane

Producthame M3 0peratvo Moot & Windos

Fle o smtems

Data Jtesa mocdfica: Oggi 19 % .Y X N) ®
otcbre 2014, 22.46 v] - -] d] - | -] '1 ']
0 J e L L
X80 ¥ ubd.sys usbend sys | USBPMS. sy Justhubosys usbntelsys ustoortsys LSESTORSYS usbuhdisys “
:\-_w:u'ck:wm Netstat TF}I"I’:U:'.'.-' Mcrosoft Corporation Yersone Sie; 5.1.2600,5512 Data creszone: 19/20/2014 22.4 093 " Risorse del computer

Image 6. Our test Windows XP workstation trying to open the sys file of ZxShell LOVEUSD driver

The last type of Kernel modification that ZxShell rootkit performs is the system call dispatcher (KiFastCallEntry) hook. In
this manner, ZxShell is able to completely hide itself, intercepting the following Kernel API calls: ZwAllocateVirtualMemory,
ZwOpenEvent, ZwQueryDirectoryFile, ZwWriteFile, ZwEnumerateKey, and ZwDeviceloControlFile.

Command and Control Server

Sample (SHA256: 1eda7e556181e46babe36f1a6bfe18ff5566fodse51c53b41d08f9459342e26¢) is configured to act as a server.
The symbol “g_bCreateListenSck” is set to 1. This means that, as seen above, the ZxShell DIl is started in listening mode. It

http://blogs.cisco.com/wp-content/uploads/image026.jpg

connects to the first remote C&C that tries to contact it and succeeds in the handshake. The encrypted IP address is

“127.0.0.2” (used as loopback) and no connection is made on that IP address (due to the listening variable set to 1).

Malware Package

We used the ZxShell package for version 3.10 (SHA256:
1622460afbc8a255141256¢b77af61c670ec21291df8fe0989c¢37852b59422b4).The convenient thing about this is that the CNC

panel worked with any version, 3.10 and above. The buttons are all in Chinese, with the help of Google Translate and keen
detective skills (read: button clicking), we’ve deciphered the functionality.

When you start the controller, you need to set the port you want to listen on and if you've set a password, add it here.

Sk biea

O enes ==
| 22 LTURART
[SET | .8 &

PORT

PASSWORD LISUEES
ENTER| WAER

CONFIRM| WUER i

SAVE SETTINGS finafien vryamal

[#a | =a

Once an infected machine connects, you see its information displayed in a selection box at the top. There are some built in
functions on the side for the more common features. These include remote desktop, webcam spying, remote shell, and file
management. You can also select a host and type help for a full list of commands.

http://blogs.cisco.com/wp-content/uploads/image06.png

@ D5k Cat 330
I VER CONNECT_TINE SYSINFO

E1U L it SHwEs bund yeam
SR W0 1.0 172 18 . 310 R4 10197149999 WirkY Tra 512 OQWO0) CIV ZITE Wr, MR 06T | dre AURECONNECT SREN
sechinad¥ w0 10 1% 18 - s L 101814 99 98 WinSF Tre 512 O QW0 IV 2508 Wy, MR 20CTW | MRS JerINED Saan

FILENGR 2w
WINVNC S8
wa!’ﬁ?’in LaEhe CAPSRY msisn]
PORTFWD Mcsait|
GETSHELL | %6

STARTCNC
STOPCNC | A
SUSPEND [_m@

EXIT [a

ox
TR ey

RS
L
EHAE, tppuases

I have the same machine infected with two different version of ZxShell. Sending the help command for each, you can see the

extra features added between version 3.1 and 3.2.

machine2 halp

==>ﬁgsmga:§ms.

cA)
ClesaEvent OB RS
CloxeFY

Iad =
Execute =
FileTine B
Falp | ?
Leeddll

FartScaa

[t Ame
— T OLLYN A SR

' HRA RS TER

Bunks
ShareShall
owva

Traxafile
Tainatall
Vser %
X80 = m:

ZXHE pProxy =DHTTP

TXH tpSarvar = JHTTP

Flug LG B%)iﬁ‘“
WS eeklrozy Bt e R

s,

ClesaEvent
ClozeFY

Ead

Ixecute
FileTime
7|n0|| alFass

iy
||§§§§
.
B

s aounsee
gusnmaﬁﬁamm

TShell:
1 i) Fik

SO L X R IRSEI TR IR 3

3
E’
BUSBNEENL NN

TransFile o
Tairatall -~
TXAIES u)Z!ARYS
X8

e tpFrozy = wm

TXHE tpSarver

2xArlug >!ﬁ# thﬁ‘“
SeckFrazy =iSecks 4 & s

BEYRNRN

machine2)

Keylogging, ZXARPS (IP and URL spoofing), and SYNFlood are some of the interesting features added to version 3.2.

http://blogs.cisco.com/wp-content/uploads/image00.png
http://blogs.cisco.com/wp-content/uploads/image07.png

Version Information
We wrote a script to extract version info from the binaries we have.

® 3.100:914
® 3.200:152
e 3.210:118
® 3.220:14
® 3.390:3

In versions 3.1 -- 3.21, the configuration info is xor encoded with 0x85. This configuration info can be changed with a tool

included in the ZxShell package.

7| ZXShell BB o @ [

Bl R SR AR EF |
PE4%2: C:\Users\User'Desktop'w3. Ohpubh: B

1#3a: 86.7.53.9
im0 1985

T ERSIEHERISIEED:

FATEMALT R, BERTRM xR
F. a1l

| R EB N

In versions 3.22 and 3.39 the routine changes. The new xor encoding byte is 0x5B. The data is stored in the last 0x100 bytes
of the file. The first 8 bytes of data are static. Then there is the dll install name, the domain, and the port.

Extracted URL Analysis
Knowing the obfuscation routines for this data we wrote a script to extract the URLs / IPs and ports stored.

The most common ports used are, 80, 1985, 1986, and 443. 1985 is the default port for the malware, 1986 is the lazy variation
of that port. Port 80 and 443 are the default ports for HTTP and HTTPS traffic. The next most common is port 53. This is
used in some of the newer 3.22 and 3.39 samples. After that, the count for each port starts declining sharply. The choices are
interesting though, many correspond to what looks like the birth year of the controller (ie. years in the late 1980s and early
1990s), and others seem to match what year the malware was launched in (ie. in the 2000s, relatively close to the current

year).

Since this malware dates back to around 2004, there are many samples containing CNC URLs from the 3322.org page. This
page used to offer no-ip type hosting and was widely used by malware authors. So much so that Microsoft did a takedown in

2012. A similar service, vicp.net, is also seen in many of the domains.

In the malware, if a domain is configured, it will retrieve domain.tld/myip.txt. This file contains a list of IP addresses for the

infected machine to connect back to. Otherwise, if an IP address is configured, it will connect directly to that IP address.

http://blogs.cisco.com/wp-content/uploads/image05.png

Cloning the ZxShell Server

We have written a simple C++ ZxShell Server that implements the communication and the handshake for the version 3.10
and 3.20 of the ZxShell DLL. The implementation is quite simple: After the handshake, 2 threads that deal with data transfer

are spawned. Here we have some screenshots that show the Server and the ZxShell Keylogger in action:

ZxShell 3.x Fake Server 0.1 - o IEN

Version 0.1
TALOS Cisco Svstems Inc

Haiting for an incoming
Accepted an incoming cc 0 C 9 :
I PC information: Win7-DevVm@ 57.131 0S: Pro SP1.0(7601) CPU

-3410 MHz ,RAM: 204 7MB

Hin/-DevVm>

Our server has accepted a connection from a remote host

ZxShell 3.x Fake Server 0.1 ey n

view view the keystroke information online
hide run keyl vackground
S stop the 3
G a tc
anup the 1
11‘14) 1 W
The Most Code By WinEggDrop. :)
; Starting.
To Leave Kevlog View Mode By Tuping Character:"0” At Anv Time.

Hindows lTitle: Gmail Hindows Internet Explorer
mww . gmail . com

http://www.inter.1t/ Hindows Internet Explorer
1.COm
http://www.amazon.com/ - Windows Internet Explorer
segretmai l[CTRL] "vahoo.com[TABltest-p
Hindows Title: C:\Users\ \Desktop\ZxShell

The ZxShell keylogger has captured 2 user passwords(gmail.com and amazon.com)

The last image shows a very interesting feature of the ZxShell keylogger: once installed and activated, the keylogger is able to
catch each password that the user inserts in the login box of each website (like Google, Amazon and so on...). This makes the
keylogger a perfect weapons for the attackers. They will be able to steal and resell in the underground market the sensitive

data of each victim.
Conclusion

Advanced persistent threats will remain a problem for companies and organizations of all sizes, especially those with high
financial or intellectual property value. Group 72’s involvement in Operation SMN is another example of what sort of
damage that can be done if organizations are not diligent in their efforts to secure their networks. ZxShell is one sample

amongst several tools that Group 72 used within their campaign.

ZxShell is a sophisticated tool employed by Group 72 that contains all kinds of functionality. Its detection and removal can

be difficult due to the various techniques used to conceal its presence, such as disabling the host anti-virus, masking its

http://blogs.cisco.com/wp-content/uploads/image031.jpg
http://blogs.cisco.com/wp-content/uploads/image10.jpg

installation on a system with a valid service name, and by masking outbound traffic as originating from a web browser.

While other techniques are also utilized to conceal and inhibit its removal, ZxShell’s primary functionality is to act as a

Remote Administration Tool (RAT), allowing the threat actor to have continuous backdoor access on to the compromised

machine.

As our analysis demonstrates, ZxShell is an effective tool that can be ultimately used to steal user credentials and other highly

valuable information. The threat posed by ZxShell to organizations is one that cannot be ignored. Organizations with high

financial or intellectual property value should take the time to ensure their security requirements are met and that

employee’s are educated about the security threats their organizations face.

For additional information, please see our blog post.

Protecting Users from These Threats

. Advanced Malware Protection (AMP) is ideally suited to detect the sophisticated malware

used by this threat actor.

AMP
CWS CWS or WSA web scanning prevents access to malicious websites, including watering hole
ESA , attacks, and detects malware used in these attacks.

Network

Security The Network Security protection of IPS and NGFW have up-to-date signatures to detect
WSA

malicious network activity by threat actors.

ESA can block spear phishing emails sent by threat actors as part of their campaign.

Appendix A: Snort Rules

Initial connection from the infected computer’s perspective -- after it connects to the controller -

RECV:
SEND:
RECV:
SEND:

85190000250400000000404000000000
86190000040100006666464000000000
4edf9340780100000000000000000000
00000000000000000000000000000000

The rules are on the first 8 bytes of the first two packets. They are hard coded in the binaries. The rest of the bytes are

variable (for example, 66664640 is a floating point version number of ZxShell).

Snort rules:

e sid:32180

e sid:32181

These rules have been released in our community ruleset and can be downloaded and used directly, or via pulledpork from

Snort.org

Appendix B: ClamAV Signatures

e Win.Trojan.ZxShell-11
e Win.Trojan.ZxShell-12

http://blogs.cisco.com/talos/threat-spotlight-group-72/
http://www.cisco.com/c/en/us/support/security/amp-firepower-software-license/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
http://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
http://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
http://www.cisco.com/c/en/us/products/security/asa-next-generation-firewall-services/index.html
http://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
https://www.snort.org/downloads
https://code.google.com/p/pulledpork/

e Win.Trojan.ZxShell-13
e Win.Trojan.ZxShell-14
e Win.Trojan.ZxShell-15
e Win.Trojan.ZxShell-16
e Win.Trojan.ZxShell-17
e Win.Trojan.ZxShell-18
e Win.Trojan.ZxShell-19
e Win.Trojan.ZxShell-20
e Win.Trojan.ZxShell-21
e Win.Trojan.ZxShell-22
e Win.Trojan.ZxShell-23
e Win.Trojan.ZxShell-24
e Win.Trojan.ZxShell-25
e Win.Trojan.ZxShell-26

These signatures are available within the ClamAYV database. Please run freshclam to ensure you stay updated with the latest

coverage.
Appendix C: List of Memory Offsets for Some ZxShell Functions

Here’s a list for some ZxShell functions for sample SHA256:

1edaye556181e46ba6e36f1a6bfe18ff5566fgdse51c53b41d08f9459342e26¢:

FUNCTION NAME BRIEF DESCRIPTION OFFSET
ZxGetLibAndProcAddr ZxShell GetProcAddress implementation " 0x12CDA
CopyMemoryFromNewMsvert ‘ ZxShell memory copy routine l 0x12C4C
ServiceExists - Get if a service is installed in the system or not . 0x0A7C7
ProcessScCommand ' ZxShell “SC” command implementation | 0x0E3EF
AnalyseAndLoadPlugins ‘ Parse the installed plugin list and load each one of them l 0x0127B7
DeleteAndLogPlugin - Delete a corrupted plugin and log the problem . 0x012597
KeyloggerThread - ZxShell keylogger implementation | 0x0D591
GetIpListAndConnect . Analyse the IP list inside the ZxShell PE and tries to connect l 0x011496
BuildTargetIpListStruct - Build remote server Ip list structure . 0x11419
DoHandshake - Perform initial connection handshake . 0xB8ES
GetLocalPcDescrStr . Build a string containing the target workstation data l 0x0B627
MainConnectionlo - ZxShell main connection I/0 routine . 0x1126C
ReceiveCommandData - Receive each byte from the socket until a newline char | 0x016DF
ProcessCommand ' Main ZxShell command processing routine ' 0x10C2B

Appendix D: Other Collateral
Here is a non-exhaustive list of ZxShell samples that were analyzed for this report.
Here is a list of Domains organized by port.

Tags: APT, Group 72, malware, Operation SMN, security, SMN, Talos, threats

http://blogs.cisco.com/wp-content/uploads/zxshell-hash-list.txt
http://blogs.cisco.com/wp-content/uploads/zxshell-domains-by-port.txt
http://blogs.cisco.com/tag/apt/
http://blogs.cisco.com/tag/group-72/
http://blogs.cisco.com/tag/malware/
http://blogs.cisco.com/tag/operation-smn/
http://blogs.cisco.com/tag/security-2/
http://blogs.cisco.com/tag/smn/
http://blogs.cisco.com/tag/talos2/
http://blogs.cisco.com/tag/threats/

