
OrcaRAT - A whale of a tale
By Dan Kelly and Tom Lancaster

It’s every malware analyst’s dream to be handed a sample which is, so far, unnamed by the AV community
- especially when the malware in question may have links to a well-known APT group.

In my line of work I analyse several ‘unknown’ malware samples a week, but often it turns out that they
are simply new variants of existing malware families. Recently I was fortunate enough to be handed
something that not only had a low detection rate but, aside from heuristics, seemed to be relatively
unknown to the top 40 anti-virus companies.

In this post I will walk you through the malware family we’ve dubbed “OrcaRAT”.

First of all, it is worth pointing out that most of the malware I see on a day-to-day basis is espionage
orientated, and very rarely do the programmers and operators make much effort to cover their tracks. The
use of forged HTTP headers is a common occurrence and simple mistakes within these headers are
frequent.

The malware in question was handed to me by one of our threat intelligence analysts who was hunting
through infrastructure associated with some samples of Comfoo[1] malware and happened across a
malware sample (253a704acd7952677c70e0c2d787791b8359efe2c92a5e77acea028393a85613) he didn’t
recognise. He immediately took the malware and passed it through first stage analysis, which involves
running the file in a sandbox environment. After this, he handed it over for more in-depth capability
analysis.

The structure

I began by looking over the sandbox report. The first thing that drew my attention was the URI structure.

(A screenshot showing the HTTP headers and URI structure that OrcaRAT produces)

http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a440d970d-pi

To those of us who are familiar with decoding data, you will notice that the URI string formatting appears
to be a modified version of the Base64 algorithm.

To understand this structure more, we must reverse engineer the functions that generate and then encode
the data. Firstly we begin by analysing the routines that produce the data which is later encoded and sent
in the HTTP URI field.

The very first thing that jumped out when disassembling the malware is the simplicity and cleanliness of
the code. There are also a significant number of Windows Crypto API[2] functions imported by the
malware, so we can assume this indicates that it uses encryption.

(A screenshot showing the functions that are imported by OrcaRAT)

Delving deeper in to the disassembly, we come across the preamble to the URI generation function:

http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a4423970d-pi

(A screenshot showing the decoding and generation of a string value)

The function above uses Windows crypto API to generate a random number of 6 bytes, then dynamically
builds and appends the word “OrcaKiller” on to the end of this number. In one such example the final
product was "\x61\xBA\xF4\x44\x52\xF1OrcaKiller" (where \x denotes hexadecimal values).

Once this value has been produced, the malware begins constructing the URI. With many pieces of
malware the initial communications that it sends out to its command and control server (known as
beaconing or phoning home) usually include pieces of information about the victim system. OrcaRAT is no
exception. The randomly generated values noted above are actually used to encrypt several pieces of
information that are extracted from the system, and even the key itself is included.

http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a4438970d-pi

(A screenshot showing an encryption function used by OrcaRAT)

All of the values extracted from the system are encrypted using the RC4[3] algorithm and then base64
encoded. The RC4 encryption key is derived from an MD5 hash[4] of the randomly generated bytes
concatenated with the ‘OrcaKiller’ string. Once the data has been encrypted it is base64 encoded. Any
forward slashes in the base64 string are replaced with a tilde - pseudo code is shown below.

Once all of the values have been encrypted and formatted the URI has the following structure:

(A screenshot showing the URI structure of OrcaRAT command and control activity)

http://pwc.blogs.com/.a/6a00d83451623c69e201b8d07f229e970c-pi
http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a4466970d-pi
http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a4497970d-pi

The campaign ID value is constructed using a method similar to that for the encryption key.

(A screenshot showing the generation of the first hidden string value)

It would appear that the authors did not want anybody to be able to easily see this value.

This now gives us OrcaKiller and wHaLe. It would appear that our adversary has a salty sense of humour.

Command and control

As with all malware, the command and control functions reveal the true nature and intent of the
operators. Up until now we have only determined how the malware communicates with the server. We will
now investigate the mechanisms that the server uses to communicate and interact with the victim.

The command and control routine in OrcaRAT appears to serve two purposes. Interestingly these routines
are split in to two branches. Each branch of command and control activity is determined by the unique
response from the remote server. Command and control takes form of a webpage. Unlike malware
designed by the well-known Comment Crew[5], this group does not hide these commands in HTML
comments, but instead places them in plain view. The first set of commands force the malware to behave
as a simple downloader.

http://pwc.blogs.com/.a/6a00d83451623c69e201b8d07f230d970c-pi

(A screenshot showing OrcaRAT parsing the HTML code behind a webpage)

Upon downloading the webpage from the server the malware looks for specific sets of HTML tags. The
first set are <P> and the terminating tag </P>. Once the malware has found these tags it drops in to the
first command and control function. The malware then extracts the payload text between the HTML tags
and runs it through a decryption routine. The same encryption key that is sent in the URI string is used to
decrypt the text. Once the payload text has been decrypted the malware treats this as a binary executable
file, which is then written to the disk and executed.

The second set of HTML tags allows the operator to drop the malware in to a set of remote control
functions. This time the malware searches for the <H1> tag that is terminated by </H1>. Once the payload
text between these tags has been extracted it is then decrypted using the encryption key found in the URI
string. The payload text from this page is much smaller and ultimately points to the command function
that the operator has executed.

http://pwc.blogs.com/.a/6a00d83451623c69e201bb079a44cf970d-pi

(A screenshot showing the structure of the command and control routines within OrcaRAT)

The command and control structure is fairly simplistic but provides the operator with access to the victim
machine’s filesystem and command line, and as such allows the attacker to perform various tasks such as
executing arbitrary commands or uploading and downloading files from the compromised system.

After a command and control message is received, OrcaRAT sends an HTTP POST message back to the
command and control server. Each time that the URI is built it generates a new encryption key, showing
that the command and control server is at least serving dynamic content. Given the command structure
above, it is logical to assume that the command and control server requires an operator to manually issue
specific commands to the victim workstation, with the default command likely being ‘sleep’.

Given the information above we can reasonably assume that this malware was most likely designed as a
first stage implant. History has shown that malware designed in this way is usually done so to allow the
operator an initial level of access to the compromised system, usually for surveying the victim and then
deciding whether to deploy a more capable and valuable second stage malware implant.

Detection

Once OrcaRAT has been delivered to a victim system there are a number of ways to detect it.

Firstly we will cover disk detection using Yara. The rule below will detect an OrcaRAT binary executable
that has been written to a compromised machine’s disk.

rule OrcaRAT
 {
 meta:
 author = “PwC Cyber Threat Operations :: @tlansec"
 distribution = "TLP WHITE"
 sha1 = "253a704acd7952677c70e0c2d787791b8359efe2c92a5e77acea028393a85613"

http://pwc.blogs.com/.a/6a00d83451623c69e201b7c6f524de970b-pi

 strings:

 $MZ="MZ"

 $apptype1="application/x-ms-application"

 $apptype2="application/x-ms-xbap"

 $apptype3="application/vnd.ms-xpsdocument"

 $apptype4="application/xaml+xml"

 $apptype5="application/x-shockwave-flash"

 $apptype6="image/pjpeg"

 $err1="Set return time error = %d!"

 $err2="Set return time success!"

 $err3="Quit success!"

condition:

 $MZ at 0 and filesize < 500KB and (all of ($apptype*) and 1 of ($err*))
 }

OrcaRAT can also be detected in two separate ways at the network level using a Snort or Suricata IDS rule.
Detecting malware at different stages of connectivity can be important. By creating signatures with a
nexus to the kill chain[6] we can determine which stage the intrusion has reached. The two signatures
below will indicate whether the intrusion has reached the command and control or action-on phases.

Snort:

alert tcp any any -> any any (msg:"::[PwC CTD]:: - OrcaRAT implant check-in";
flow:established,from_client; urilen: 67<>170; content:"User-Agent: Mozilla/4.0 (compatible\;
MSIE 8.0\; Windows NT 5.1\; Trident/4.0\; .NET CLR 2.0.50727\; .NET CLR 3.0.04506.30\;
.NET4.0C\; .NET4.0E)"; http_header; content:"GET"; http_method; pcre:"/^\/[A-Za-z0-9+~=]
{14,18}\/[A-Za-z0-9+~=]{33,38}\/[A-Za-z0-9+~=]{6,9}\/[A-Za-z0-9+~=]{5,50}\/[A-Za-z0-
9+~=]{5,50}$/U"; sid:YOUR_SID; rev:1;)

alert tcp any any -> any any (msg:"::[PwC CTD]:: - OrcaRAT implant C2 confirmation response";
flow:established,from_client; urilen: 67<>170; content:"User-Agent: Mozilla/4.0 (compatible\;
MSIE 8.0\; Windows NT 5.1\; Trident/4.0\; .NET CLR 2.0.50727\; .NET CLR 3.0.04506.30\;
.NET4.0C\; .NET4.0E)"; http_header; content:"POST"; http_method; pcre:"/^\/[A-Za-z0-9+~=]
{14,18}\/[A-Za-z0-9+~=]{33,38}\/[A-Za-z0-9+~=]{6,9}\/[A-Za-z0-9+~=]{5,50}\/[A-Za-z0-
9+~=]{5,50}$/U"; sid:YOUR_SID; rev:1;)

Suricata:

alert http any any -> any any (msg:"::[PwC CTD]:: - OrcaRAT implant check-in";
flow:established,from_client; urilen: 67<>170; content:" Mozilla/4.0 (compatible\; MSIE 8.0\;
Windows NT 5.1\; Trident/4.0\; .NET CLR 2.0.50727\; .NET CLR 3.0.04506.30\; .NET4.0C\;
.NET4.0E)"; http_user_agent; content:"GET"; http_method; pcre:"/^\/[A-Za-z0-9+~=]
{14,18}\/[A-Za-z0-9+~=]{33,38}\/[A-Za-z0-9+~=]{6,9}\/[A-Za-z0-9+~=]{5,50}\/[A-Za-z0-
9+~=]{5,50}$/U"; sid:YOUR_SID; rev:1;)

alert http any any -> any any (msg:"::[PwC CTD]:: - OrcaRAT implant C2 confirmation response";
flow:established,from_client; urilen: 67<>170; content:" Mozilla/4.0 (compatible\; MSIE 8.0\;
Windows NT 5.1\; Trident/4.0\; .NET CLR 2.0.50727\; .NET CLR 3.0.04506.30\; .NET4.0C\;
.NET4.0E)"; http_user_agent; content:"POST"; http_method; pcre:"/^\/[A-Za-z0-9+~=]
{14,18}\/[A-Za-z0-9+~=]{33,38}\/[A-Za-z0-9+~=]{6,9}\/[A-Za-z0-9+~=]{5,50}\/[A-Za-z0-
9+~=]{5,50}$/U"; sid:YOUR_SID; rev:1;)

Appendix A: Samples of Orca RAT:

Hash C2
07b40312047f204a2c1fbd94fba6f53b adda.lengendport.com
f6456b115e325b612e0d144c8090720f tsl.gettrials.com
139b8e1b665bb9237ec51ec4bef22f58 auty.organiccrap.com

Appendix B: Related indicators

Indicator Type
11.38.64.251 IP Address
123.120.115.77 IP Address
123.120.99.228 IP Address
142.0.134.20 IP Address
147.96.68.184 IP Address
176.31.24.182 IP Address
176.31.24.184 IP Address
190.114.241.170 IP Address
200.78.201.24 IP Address
202.124.151.94 IP Address
202.2.108.142 IP Address
203.146.251.11 IP Address
204.152.209.74 IP Address
213.147.54.170 IP Address
23.19.39.19 IP Address
58.71.158.21 IP Address
62.73.174.134 IP Address
71.183.67.163 IP Address
74.116.128.15 IP Address

81.218.149.207 IP Address
84c68f2d2dd569c4620dabcecd477e69 Hash
8fbc8c7d62a41b6513603c4051a3ee7b Hash
91.198.50.31 IP Address
adda.lengendport.com Domain
affisensors.com Domain
analysis.ittecbbs.com Domain
at.acmetoy.com Domain
aucy.affisensors.com Domain
auty.organiccrap.com Domain
bbs.dynssl.com Domain
bbs.serveuser.com Domain
bbslab.acmetoy.com Domain
bbslab.lflink.com Domain
cdna.acmetoy.com Domain
cune.lengendport.com Domain
cure.yourtrap.com Domain
dasheng.lonidc.com Domain
dns.affisensors.com Domain
edu.authorizeddns.org Domain
edu.onmypc.org Domain
fee0e6b8157099ad09380a94b7cbbea4 Hash
ftp.bbs.dynssl.com Domain
ftp.bbs.serveuser.com Domain
ftp.bbslab.acmetoy.com Domain
ftp.edu.authorizeddns.org Domain
ftp.edu.onmypc.org Domain
ftp.lucy.justdied.com Domain
ftp.nuac.jkub.com Domain
ftp.osk.lflink.com Domain
ftp.reg.dsmtp.com Domain
ftp.tt0320.portrelay.com Domain
home.affisensors.com Domain
hot.mrface.com Domain
info.affisensors.com Domain
jucy.wikaba.com Domain
jutty.organiccrap.com Domain
lengendport.com Domain
lucy.justdied.com Domain
newtect.ddns.us Domain

nuac.jkub.com Domain
nunok.ninth.biz Domain
osk.lflink.com Domain
philipine.gnway.net Domain
pure.mypop3.org Domain
reg.dsmtp.com Domain
tt0320.portrelay.com Domain
venus.gr8domain.biz Domain
www.bbs.dynssl.com Domain
www.bbs.serveuser.com Domain
www.bbslab.acmetoy.com Domain
www.edu.authorizeddns.org Domain
www.edu.onmypc.org Domain
www.fgtr.info Domain
www.hot.mrface.com Domain
www.ktry.info Domain
www.lucy.justdied.com Domain
www.osk.lflink.com Domain
www.reg.dsmtp.com Domain
www.tt0320.portrelay.com Domain

[1] http://www.secureworks.com/cyber-threat-intelligence/threats/secrets-of-the-comfoo-masters/

[2] http://msdn.microsoft.com/en-gb/library/windows/desktop/aa380255(v=vs.85).aspx

[3] http://en.wikipedia.org/wiki/RC4

[4] http://en.wikipedia.org/wiki/MD5

[5] http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf

[6] http://www.lockheedmartin.com/content/dam/lockheed/data/corporate/documents/LM-White-
Paper-Intel-Driven-Defense.pdf

