5/16/2019 Winnti: More than just Windows and Gates — Chronicle Blog — Medium

Winnti: More than just Windows and Gates

medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a

Chronicle

May 15

The Winnti malware family was first reported in 2013 by Kaspersky Lab'. Since then,
threat actors leveraging Winnti malware have victimized a diverse set of targets for
varied motivations. While the name ‘Winnti’ in public reporting was previously used to
signify a single actor, pronounced divergence in targeting and tradecraft between
campaigns has led industry consensus to break up the tracking of the continued use of
the Winnti malware under different actor clusters. The underlying hypothesis? is that the
malware itself may be shared (or sold) across a small group of actors.

May 15, 2019

In April 2019, reports® emerged of an intrusion involving Winnti* malware at a German
Pharmaceutical company. Following these reports, Chronicle researchers doubled down
on efforts to try to unravel the various campaigns where Winnti was leveraged. Analysis
of these larger convoluted clusters is ongoing. While reviewing a 2015 report® of a Winnti
intrusion at a Vietnamese gaming company, we identified a small cluster of Winnti®
samples designed specifically for Linux’. The following is a technical analysis of this
variant.

Technical Analysis

The Linux version of Winnti is comprised of two files: a main backdoor (libxselinux) and a
library (libxselinux.so) used to hide it’s activity on an infected system.

As with other versions of Winnti, the core component of the malware doesn’t natively
provide the operators with distinct functionality®. This component is primarily designed to
handle communications and the deployment of modules directly from the command-and-
control servers. During our analysis, we were unable to recover any active plugins.
However, prior reporting® suggests that the operators commonly deploy plugins for
remote command execution, file exfiltration, and socks5 proxying on the infected host.
We expect similar functionality to be leveraged via additional modules for Linux.

‘libxselinux.so’ — the userland rootkit

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f0343603 1a 1/8

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a
https://medium.com/@chroniclesec?source=post_header_lockup
https://medium.com/@chroniclesec

5/16/2019

Winnti: More than just Windows and Gates — Chronicle Blog — Medium

MD5

11a9f798227be8a53bB6d7e89438d68

SHA1

986dcB6cb466c1a22cfB847dda27a434db4ad 65

SHA256

4741c2884d1ca3ad40dadd3f3f61cb95a59b11f99a08f980dbadc663b85eb77a2a

Size

23.94 KB (24512 bytes)

Filetype

ELF 64-bit LSB shared object, x86-64, wversion 1 (SYSV), dynamically
linked, stripped

Filename

libxselinux.so.old

Config

Control Servers ip.1ds.me:53
ip.1ds.me:86

The library used to hide Winnti’'s system activity is a copy of the open-source userland
rootkit Azazel', with minor changes. When executed, it will register symbols for multiple
commonly used functions, including: open(), rmdir(), and unlink(), and modify their
returns to hide the malware’s operations. Below is a side-by-side comparison of the
Azazel source code and the relevant function decompilation from ‘libxselinux.so’.

FILE *fopen64 (const char *filename, const char *mode) {
DEBUG("fopen hooked %s.wn", filename);
if (is_owner())
eturn syscall 1list[SYS_FOPENG64].syscall func(filename, mode);

if (is_procnet(Tilename))
eturn hide_ports(filename);

if (is_invisible(Tilename)) {

errno = ENOENT;
return NULL:

return syscall_list[SYS_FOPENG4].syscall_func(filename, mode);

FILE * fastcall fopen64(const char *filename, int64 mode)
{
if (is_owner())
return (syscall list.SYS FOPEN64)(filename, mode);

if (is_procnet(filename))

return hide_ports(filename);
if ('is_invisible(filename))

return (syscall list.SYS FOPEN64)(filename, npde);
* _errno_location() = ENOENT;
return OLL;

Figure 1: identidical fopen64() functions, Azazel shown first, libselinux.so shown second

Distinct changes to Azazel by the Winnti developers include the addition of a function
named ‘Decrypt2’, which is used to decode an embedded configuration similar to the
core implant. Unlike standard Azazel which is configured to hide network activity based

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f0343603 1a

2/8

5/16/2019

Winnti: More than just Windows and Gates — Chronicle Blog — Medium

on port ranges, the Winnti-modified version keeps a list of process identifiers and
network connections associated with the malware’s activity. This modification likely
serves to simplify the operator’s sample configuration process by not having to denote
specific ports to hide.

Strings within this sample associated with the malware’s operations are encoded using a
single-byte XOR encoding. The following is an example Python function to decode these

strings.

def ConfigDecode(indata)
for index, byte in enumerate(instr):

decstr += chr(ord(byte) * OxFE)

return decstr

Figure 2: IDA Script to decode single-byte XOR strings

libxselinux

MD5

7f4764c6ebdabd262341fd23a9b185a3

SHA1

dc96dBf82151e702ef764bbc234d1e73d2811416

SHA256

ae9d6848133644795a0cc3928a76eal194b99dal3c10f802db22634d9f695a8¢23

Size

407.12 KB (416888 bytes)

Filetype

ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 2.6.32, from '8@%rdi

8@%rsi', stripped

Filename

libxselinjx.old

Config

Control Servers

ip.1ds.me:53
ip.1ds.me:88
ip.1ds.me:8443

Tags

idea, 28161207

Winnti Linux variant’s core functionality is within ‘libxselinux’. Upon execution, an
embedded configuration is decoded from the data section using a simple XOR cipher.
An example Python function to decode this configuration is shown below:

key =

def ConfigDecode(indata)
instr[39]
for index, byte in enumerate(instr):

decstr += chr(ord(byte) * (ord(key) + index) & ©xFF)
return decstr

Figure 3: Example python ¢

The decoded configuration is similar in structure to the version Kaspersky classifies as

Winnti 2.0, as well as samples in the 2015 Novetta report’2. Embedded in this sample’s

configuration three command-and-control server addresses and two additional strings

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f0343603 1a

5/16/2019

we believe to be campaign designators. Winnti ver. 1, these values were designated as

Winnti: More than just Windows and Gates — Chronicle Blog — Medium

‘tag’ and ‘group’. A sample decoded configuration is shown below:

jolofolefolofelol
00000010:
00OERO20:
0oOERO30:
0OOEOB40:
OBOEBB5O:
OBOEOO6D :
OOOEBOTO:
00000080:
0000E0%0:
0ooEOLan:
000000bO:
OBOEBOCO:
olofolololols [ON
ololofelolof=10M
oeoeeeTo:
00000100:
00000110:
00000120:
00000130:
0BOEO140:
OBOEO150:
0OOEO160:
OOOEO1TO:
00000180:
00000150:
000001a0:
000001bo:
0BOEO1co:
000001dO:
00ORO1ed:
ooeee1fe:
000B0200:
00000210:
00000220:

6970 2e3l
0000 0000
0000 0000
0000 0000
0000 0RO
0000 00O
0000 006
0000 006
6970 2e3l
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 006
0000 006
6970 2e3l
0000 0000
0000 0000
0000 0000
0000 OO0
0000 OO0
0000 006
0000 0RO
0000 0000
0000 0000
0000 0000
0000 0000
0000 00O
ololelopelolole]
0000 0ROO
0000 0ROO
3230 3136
0000 0000
6964 6561

6473
0000
0000
0000
0000
0000
0000
0000
6473
0000
0000
0000
0000
0000
0000
0000
6473
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
o101 0]
0000
0000
3132
0000
0000

2e6d
oRe0
feee
feee
feee
peee
e]elolo]
e]elolo]
2e6d
oee0
feee
feee
feee
feee
e]elolo]
e]elolo]
2e6d
foee
oee0
oee0
feee
feee
e]elolo]
feee
foee
foee
00e0
00e0
peee
feee
feee
feee
3037
00600
00ee0

653a 3830 0000 0OOO
0000 0000 0000 C00O
0000 0000 OPOO ODEO
0000 0000 OPOO ODEO
0000 COO0 OBEO LOBBDO
0000 0000 OLLO OBED
0000 0000 OBEO BB
0000 0000 OBEO BB
653a 3533 0000 0000
0000 0000 0000 C00O
0000 0000 O0OD ODEO
0000 0000 OPOO ODOO
0000 QOO0 OLLO OBED
0000 QOO0 OLLO OBED
0000 0000 OBEO BB
0000 0000 OBEO BB
653a 3834 3433 0000
0000 0000 OBOO DOBO
0000 0COO 00LO 00O
0000 0COO 00LO 00O
0000 0000 OLLO OBED
0000 0000 OLLO OBED
0000 COOO OBEO BB
0000 COOO OBEO OB
0000 0000 OBLO DOBO
0000 0000 OBLO DOBO
0000 0000 00LO 00O
0000 0000 00LO 00O
0000 0000 OLEO DBED
0000 QOO0 OPED OBEO
0000 OO0 OBEO BB
0000 OO0 OBEO BB
0000 0000 OOGO OOOO
0000 0000 OOGO OOOO

ip.lds.me:80....

Figure 4: Decoded configuration

Winnti Linux samples identified so far fall under three distinct campaign designators:

For context, embedded Winnti campaign designators have ranged from target names,

20161207
idea
bos

Figure 5: Campaign designators Winnti Linux

geographic areas, industry, and profanity.

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f0343603 1 a

4/8

5/16/2019 Winnti: More than just Windows and Gates — Chronicle Blog — Medium

0414 40329 c&c media IDCA OMG

0419 717 Default jp Test

0511w 722_64 DF Kog Tibet
0523_wh apphelp_0707 | eyaap80 1p80wi TRIONWORLD
0713WM apphelp_x86 Frogster lpwibﬂ vn80

1 ARCHITEW32 Fucker myth VTC

2 ARCHITEW64 GameNet mywi80 wasabii

3 asiasoft Group32 nd Wix64ap

Figure 6: Subset of designators from all Winnti versions

Interactions with control servers

Winnti malware handles outbound communications using multiple protocols including:
ICMP, HTTP, as well as custom TCP and UDP protocols. Use of these protocols is
thoroughly documented in the Novetta and Kaspersky reports. While the outbound
communication mechanisms are well documented, less attention has been paid to a
feature of recent versions of Winnti we came across in the Linux variant (as well as
Windows) that allows the operators to initiate a connection directly to an infected host,
without requiring a connection to a control server.

This secondary communication channel may be used by operators when access to the
hard-coded control servers is disrupted. Additionally, the operators could leverage this
feature when infecting internet-facing devices in a targeted organization to allow them to
reenter a network if evicted from internal hosts. This passive implant approach to
network persistence has been previously observed with threat actors like Project Sauron
and the Lamberts.

Initial technical information about this feature was shared by the Thyssenkrupp CERT in
the form of an Nmap?? script'* that could be used to identify Winnti infections through
network scanning. This script identifies infected hosts by first sending a custom hello
packet, immediately followed by an encoded request for host information, and then
parsing the response. The workflow of the script is diagrammed below:

€ |nitial Hello Request

Infected Host Scanner
“#—— System Details Request

System Details —
Response

Figure 7: Network traffic breakdown

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f0343603 1a 5/8

5/16/2019 Winnti: More than just Windows and Gates — Chronicle Blog — Medium

The initial request, referred to as the helo/hello request in the Nmap script, is comprised
of four DWORDs. The first three are generated by rand() and the fourth is computed
based on the first and third. When received by a Winnti-infected host, it will validate the
received packet and listen for a second inbound request containing tasking. A
breakdown of this traffic is shown below.

Initial Hello packet
00eEEEEe: fOGa affl 2c@a bc8d 9833 S5desd f219 6839,....3]...h9

Encoded Get System Information Request

000E0E10: bOlc 03d4 9038 41d4 2ab4 807f 9c6l 32dd 8A.*....a2.
000E0O20: 913c 03d4 9038 42dc d8db 9e36 f30e cca4 .<...8B....6....
0OOROE30: 3a38 41d4 9038 eaff 9038 41d4 b838 41d4 :8A..8j..8A..8A.
000E0E40: 9038 41d4 9038 41d4 9038 41d4 9139 41d4 .8A..8A..8A..9A.
00eEOE50: 9038 57d4 9038 41d4 9038 41d4 9038 41d4 .8W..B8A..8A..8A.
0OEEEE60: 9038 41d4 9038 45d4 9038 41d4 9038 41d4 .8A..8E..8A..8A.
00EEOOTO: 0400

Decoded Get System Information Request

0e0000E0: 2024 4200 0000 ©BEOO ba8c clab ©c59 7309 L] Ys.
00POEO1O: 0104 4200 OOOO 0308 48e3 dfe2 6336 8d70 ..B..... H...c6.p
0e00E020: a2abl 00OO GORO 2b2b OOOG GO 2800 BB S S (R

000OOE30: 0O0GO 0000 0000 COGO CEEO EEOO 011 0BG ceevenan
000O0E40: 0OGO 1600 OOOO COGE COGO COOO OOBE OBBE iciiiaaaan
000EEE50: 000D CODO OOOO 0400 COOOD COOO QOOE OBOE ivvvnnnan
00000060: 0400 .8

Figure 8: Network traffic breakdown

This second request (Encoded Get System Information Request) is encoded using the
same method as the custom TCP protocol used for communication with command-and-
control servers, which uses a two-byte XOR encoding. Before acting on the request,
Winnti will validate the third DWORD contains the magic value 0OXABC18CBA before
executing tasking.

While it may be possible to conduct broad scanning to identify infected systems, the
results would likely only be the subset that are directly Internet accessible.

Conclusion

Clusters of Winnti-related activity have become a complex topic in threat intelligence
circles, with activity vaguely attributed to different codenamed threat actors. The threat
actors utilizing this toolset have repeatedly demonstrated their expertise in compromising
Windows-based environments. An expansion into Linux tooling indicates iteration
outside of their traditional comfort zone. This may indicate the OS requirements of their
intended targets but it may also be an attempt to take advantage of a security telemitry
blindspot in many enterprises, as is with Penquin Turla and APT28’s Linux XAgent
variant. Utilizing a passive listener as a communications channel is characteristic of the
Winnti developers’ foresight in needing a failsafe secondary command-and-control
mechanisms. Chronicle researchers maintain an active interest in clusters of Winnti
activity and our research is ongoing.

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f0343603 1a 6/8

5/16/2019

Winnti: More than just Windows and Gates — Chronicle Blog — Medium

Additional Indicators

MDS5 b45f5a1548e213699a2802f8b99daBv8b

SHA1 Bee2e1ef7bb5092d9f28e4abea2fa8fa9b7d39bc

SHA256 dabad48a2b680d6c37641450380693d69cdc303025339c857b58cT1edfd4dc548

Size 497.18 KB (416952 bytes)

Filetype ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 2.6.32, from '8@%rdi
8@%rsi', stripped

Filename libxselinux

Config

Control Servers 103.224.81.48:9747
Tags bo8

MD5 2a9f5d3fb47838937d282¢552865863fF

SHA1 b19¢557986850e840961eb2d6d984ed64c9a60d4

SHA256 b80d57acd405d2ff58b1637b4e5dead12414297bfb4cde4bB50413a77ffd6901

Size 407 .12 KB (416888 bytes)

Filetype ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 2.6.32, from '8@%rdi
8@%rsi', stripped

Filename libxselinux

Config

Control Servers bbcnews.deepseaengine.com:53
bbcnews.deepseaengine.com:8040
Tags b8

(Click here for source rule text and additional 10Cs)

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f0343603 1a

7/8

https://gist.github.com/Blevene/10fe9c7a88ffd9863118db90e0a55a62

5/16/2019

Winnti: More than just Windows and Gates — Chronicle Blog — Medium

rule Winntilinux_Dropper : azazel_fork

{
meta:
desc = "Detection of Linux variant of Winnti"
author = "Silas Cutler (havex [@] chromicle.security), Chronicle
Security"
version = "1.@"
date = "2019-05-15"
TLP = "White"
sha256 =
"4741c2884d1lcalad0daddififelcb95a59b11f99a07980dbadc663b85ebTT7a2a"
strings:

Sconfig_decr = { 48 89 45 FO C7 45 EC 08 01 00 08 C7 45 FC 28 08

oo

00 EB 31 8B 45 FC 48 63 DO 48 BB 45 FO 48 01 C2 BB 45 FC 48 63 C8 48 8B 45
F& 48 ©1 C8 OF B6 00 89 C1 8B 45 F8 89 C6 8B 45 FC 01 F@ 31 C8 B8 02 83 45

FC 81 }
Sexportl = "our_sockets"
Sexport2 = "get_our_pids"
condition:
uintle(0) == 0x457f and all of them
}
rule WinntiLinux_Main
{
meta:
desc = "Detection of Linux variant of Winnti"
author = "Silas Cutler (havex [@] chronicle.security), Chronicle
Security"
version = "1.@"
date = "2019-05-15"
TLP = "White"
shal56 =
"ae9d6848133644T95a0cc3828a76eal194b99da3c10f802db22034d9f695a0c23"
strings:

Suuid_lookup = "fusr/sbin/dmidecode | grep -i "UUID' |cut -d' '
2> fdev/null"

$dbg_msg = "[advNetSrv] can not create a PF_INET socket"
Srtti_namel = "CNetBase"
Srtti_name2 = "CMyEngineNetEvent"
Srtti_name3 = "CBufferCache"
Srtti_named = "CSocks5Base"
$rtti_name5 = "CDataEngine"
Srtti_names = "CSocksSMgr"
Srtti_name7 = "CRemoteMsg"
condition:

wintle (@) == Ox457f and (($dbg_msg and 1 of (Srttix)) or (5 of
(Srtti=)) or (Suuid_lookup and 2 of (Srttix)))

}

-f2

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f0343603 1a

8/8

