
5/16/2019 Winnti: More than just Windows and Gates – Chronicle Blog – Medium

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a 1/8

May 15, 2019

Winnti: More than just Windows and Gates
medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a

Chronicle
May 15
The Winnti malware family was first reported in 2013 by Kaspersky Lab¹. Since then,
threat actors leveraging Winnti malware have victimized a diverse set of targets for
varied motivations. While the name ‘Winnti’ in public reporting was previously used to
signify a single actor, pronounced divergence in targeting and tradecraft between
campaigns has led industry consensus to break up the tracking of the continued use of
the Winnti malware under different actor clusters. The underlying hypothesis² is that the
malware itself may be shared (or sold) across a small group of actors.

In April 2019, reports³ emerged of an intrusion involving Winnti⁴ malware at a German
Pharmaceutical company. Following these reports, Chronicle researchers doubled down
on efforts to try to unravel the various campaigns where Winnti was leveraged. Analysis
of these larger convoluted clusters is ongoing. While reviewing a 2015 report⁵ of a Winnti
intrusion at a Vietnamese gaming company, we identified a small cluster of Winnti⁶
samples designed specifically for Linux⁷. The following is a technical analysis of this
variant.

Technical Analysis

The Linux version of Winnti is comprised of two files: a main backdoor (libxselinux) and a
library (libxselinux.so) used to hide it’s activity on an infected system.

As with other versions of Winnti, the core component of the malware doesn’t natively
provide the operators with distinct functionality⁸. This component is primarily designed to
handle communications and the deployment of modules directly from the command-and-
control servers. During our analysis, we were unable to recover any active plugins.
However, prior reporting⁹ suggests that the operators commonly deploy plugins for
remote command execution, file exfiltration, and socks5 proxying on the infected host.
We expect similar functionality to be leveraged via additional modules for Linux.

‘libxselinux.so’ — the userland rootkit

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a
https://medium.com/@chroniclesec?source=post_header_lockup
https://medium.com/@chroniclesec


5/16/2019 Winnti: More than just Windows and Gates – Chronicle Blog – Medium

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a 2/8

The library used to hide Winnti’s system activity is a copy of the open-source userland
rootkit Azazel¹⁰, with minor changes. When executed, it will register symbols for multiple
commonly used functions, including: open(), rmdir(), and unlink(), and modify their
returns to hide the malware’s operations. Below is a side-by-side comparison of the
Azazel source code and the relevant function decompilation from ‘libxselinux.so’.

Distinct changes to Azazel by the Winnti developers include the addition of a function
named ‘Decrypt2’, which is used to decode an embedded configuration similar to the
core implant. Unlike standard Azazel which is configured to hide network activity based



5/16/2019 Winnti: More than just Windows and Gates – Chronicle Blog – Medium

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a 3/8

on port ranges, the Winnti-modified version keeps a list of process identifiers and
network connections associated with the malware’s activity. This modification likely
serves to simplify the operator’s sample configuration process by not having to denote
specific ports to hide.

Strings within this sample associated with the malware’s operations are encoded using a
single-byte XOR encoding. The following is an example Python function to decode these
strings.

libxselinux

Winnti Linux variant’s core functionality is within ‘libxselinux’. Upon execution, an
embedded configuration is decoded from the data section using a simple XOR cipher.
An example Python function to decode this configuration is shown below:

The decoded configuration is similar in structure to the version Kaspersky classifies as
Winnti 2.0¹¹, as well as samples in the 2015 Novetta report¹². Embedded in this sample’s
configuration three command-and-control server addresses and two additional strings



5/16/2019 Winnti: More than just Windows and Gates – Chronicle Blog – Medium

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a 4/8

we believe to be campaign designators. Winnti ver. 1, these values were designated as
‘tag’ and ‘group’. A sample decoded configuration is shown below:

Winnti Linux samples identified so far fall under three distinct campaign designators:

For context, embedded Winnti campaign designators have ranged from target names,
geographic areas, industry, and profanity.



5/16/2019 Winnti: More than just Windows and Gates – Chronicle Blog – Medium

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a 5/8

Interactions with control servers

Winnti malware handles outbound communications using multiple protocols including:
ICMP, HTTP, as well as custom TCP and UDP protocols. Use of these protocols is
thoroughly documented in the Novetta and Kaspersky reports. While the outbound
communication mechanisms are well documented, less attention has been paid to a
feature of recent versions of Winnti we came across in the Linux variant (as well as
Windows) that allows the operators to initiate a connection directly to an infected host,
without requiring a connection to a control server.

This secondary communication channel may be used by operators when access to the
hard-coded control servers is disrupted. Additionally, the operators could leverage this
feature when infecting internet-facing devices in a targeted organization to allow them to
reenter a network if evicted from internal hosts. This passive implant approach to
network persistence has been previously observed with threat actors like Project Sauron
and the Lamberts.

Initial technical information about this feature was shared by the Thyssenkrupp CERT in
the form of an Nmap¹³ script¹⁴ that could be used to identify Winnti infections through
network scanning. This script identifies infected hosts by first sending a custom hello
packet, immediately followed by an encoded request for host information, and then
parsing the response. The workflow of the script is diagrammed below:



5/16/2019 Winnti: More than just Windows and Gates – Chronicle Blog – Medium

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a 6/8

The initial request, referred to as the helo/hello request in the Nmap script, is comprised
of four DWORDs. The first three are generated by rand() and the fourth is computed
based on the first and third. When received by a Winnti-infected host, it will validate the
received packet and listen for a second inbound request containing tasking. A
breakdown of this traffic is shown below.

This second request (Encoded Get System Information Request) is encoded using the
same method as the custom TCP protocol used for communication with command-and-
control servers, which uses a two-byte XOR encoding. Before acting on the request,
Winnti will validate the third DWORD contains the magic value 0xABC18CBA before
executing tasking.

While it may be possible to conduct broad scanning to identify infected systems, the
results would likely only be the subset that are directly Internet accessible.

Conclusion

Clusters of Winnti-related activity have become a complex topic in threat intelligence
circles, with activity vaguely attributed to different codenamed threat actors. The threat
actors utilizing this toolset have repeatedly demonstrated their expertise in compromising
Windows-based environments. An expansion into Linux tooling indicates iteration
outside of their traditional comfort zone. This may indicate the OS requirements of their
intended targets but it may also be an attempt to take advantage of a security telemitry
blindspot in many enterprises, as is with Penquin Turla and APT28’s Linux XAgent
variant. Utilizing a passive listener as a communications channel is characteristic of the
Winnti developers’ foresight in needing a failsafe secondary command-and-control
mechanisms. Chronicle researchers maintain an active interest in clusters of Winnti
activity and our research is ongoing.



5/16/2019 Winnti: More than just Windows and Gates – Chronicle Blog – Medium

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a 7/8

Additional Indicators

YARA

(Click here for source rule text and additional IoCs)

https://gist.github.com/Blevene/10fe9c7a88ffd9863118db90e0a55a62


5/16/2019 Winnti: More than just Windows and Gates – Chronicle Blog – Medium

https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a 8/8

 
 


