(ExaTrack

ExaTrack - Stéfan Le Berre (stefan.le-berre [at] exatrack.com)

From tweet to rootkit

This paper will talk about our analysis based on a twitter post by Florian Roth to identify (and
analyze) a signed rootkit, with unrevoked certificate and unknown from VirusTotal. In this public
version we will describe a part of our analysis on one of those two dumps. Have a good reading :-)

Introduction

The 24 of July 2019 a post on twitter by Florian Roth caught our attention. The tweet is about a
Winnti rootkit that was just sent on VirusTotal.

Florian Roth .
o \ Suivre ) v
@cyb3rops

Winnti driver Rootkit process dumps popping
up on Virustotal

virustotal.com/qgui/file/bcO4c ...

virustotal.com/qui/file/92c37 ...

At Exatrack, we are fond of rootkit analysis and detection. After more than a month without any
analysis based on this dump, we decided to have a look at it.

Our Analysis is based on the following sample:
https://www.virustotal.com/gui/file/92c37c829dac8f6d277ae4b72b926e82f54ed8fc1b61885d7d7d9
2fd8417b99f/analysis

This analysis aims to identify the major functionalities of the rootkit as well as a part of the userland’s
capabilities.

Sample reconstruction

The file seems to be an executable dump partially corrupted, some PE headers are deleted. We
rebuilt the MZ and PE headers and were able to load the binary and analyze it.

@ExaTrack http://www.exatrack.com Page 1



http://twitter.com/ExaTrack
http://www.exatrack.com/
https://www.virustotal.com/gui/file/92c37c829dac8f6d277ae4b72b926e82f54ed8fc1b61885d7d7d92fd8417b99f/analysis
https://www.virustotal.com/gui/file/92c37c829dac8f6d277ae4b72b926e82f54ed8fc1b61885d7d7d92fd8417b99f/analysis

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 || ......ocunnaan.. 0000h: 4D SA S0 00 03 00 00 00 04 00 00 00 FF EF 00 00
00 00 00 00 00 00 00 0O 00 00 00 OO 00 00 0O 0010h: B8 00 00 00 00 OO OO 00 40 00 00 00 0O 00 0O 0O
00 00 00 00 00 00 00 0O 00 00 00 OO 00 00 0O 0020h: 00 00 00 00 0O 0O 0O 00 00 00 OO0 00 0O 00 0O 00

0030h: 00 00 00 00 OO0 00 OO0 00 00 00 00 00 EB 00 00 00
0040h: 00 00 00 00 0O 0O 0O 00 00 00 OO0 00 0O 00 0O 00
0050h: 00 00 00 00 OO0 00 OO0 00 00 00 00 00 0O 00 00 00

00 00 00 00 00 00 00 0O 0O 00 00 OO 00 00 0O 0060h: 00 00 00 OO OO 0O 0O 00 00 00 OO 00 0O 0O 00 00

00 00 00 00 00 00 00 0O 0O 0O 00 OO 00 00 0O 0070h: 00 00 00 0O OO 0O OO 00 00 00 OO OO0 0O 0O 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .......cinnaan.. 0080h: 00 00 00 0O OO 00 0O 00 00 00 OO 00 0O 0O 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | .....i.iiiininnan.. 00%0h: 00 00 00 0O OO 00 OO 00 00 00 OO OO 0O 0O 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ................ 00AOh: 00 00 00 OO 00 00 00 00 00 00 OO 00 0O 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ........i.i...... 00BOh: 00 00 00 OO 00 0O 0O 00 00 00 OO 00 0O 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ................ 00COh: 00 00 00 OO 00 00 00 00 00 00 OO 00 0O 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ..........i...... 00DOh: 00 00 00 0O 00 00 00 00 00 00 OO 00 0O 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 06 00 | ................ 00EOh: 00 00 00 00 00 00 00 00 50 45 00 00 €4 86 06 00

00 00 00 00 00 00 00 00 00 00 00 FO 00 00 00 @ ............ 8.2 00FOh: 00 00 00 0O 00 00 0O 00 00 00 OO 00 FO 00 02 20

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ................ 0100h: OB 02 00 00 00 F6 05 00 00 00 OO 00 0O 00 00 0O

F4 01 00 00 00 00 00 0O 00 00 80 01 00 00 00 B €.... 0110h: 00 F4 01 OO 00 0O 0O 00 00 00 OO0 80 01 00 00 0O

10 00 00 00 02 00 00 00 00 00 00 00 00 00 00 | ................ 0120h: 00 10 00 00 00 02 00 00 00 00 OO 00 0O 00 00 0O

00 00 00 00 00 00 00 00 FO OA 00 00 04 00 00 ......... G...... 0130h: 00 00 00 OO 00 0O 00 00 00 FO OR 00 0O 04 00 0O

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ................ 0140h: 00 00 00 OO 01 00 0O 00 0O 00 OO 00 0O 00 00 0O

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ........i.i...... 0150h: 00 00 00 OO 00 00 0O 00 00 00 OO 00 0O 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | ................ 0160h: 00 00 00 OO 00 00 0O 00 00 00 OO 00 10 00 00 00 | ........
ES 06 00 44 00 00 00 14 DB 06 00 78 00 00 00 ®D&..D....@8..X... 0170h: DO ES 06 00 44 00 00 00 14 DB 06 00 78 00 00 00 ©P&..D....
DO 0a 00 B4 01 00 00 00 70 OR 00 74 55 00 00 g ) = 1y g 0180h: 00 DO Oa 00 B4 01 00 00 00 70 OA 00 74 55 00 00  .B.."....p..

Surprisingly this file is not a driver, as the tweet mentioned, but a 64b DLL file. We'll see later in the
paper the existence of an embedded signed driver.

DLL file analyze

Context information
Some interesting information can be collected on the DLL before any kind of deep technical analysis.

Firstly, the original DLL’s name seems be workd1164.d11, as declared in the Export Address Table.
This name is probably an internal name.

By searching specifics strings on internet we identified a link with a file available on Hybrid Analysis:
http://ww.hybrid-
analysis.com/sample/a5d6139921576c3aedfc64e2b37aela64f3160bd1bb70d4fc7fce956029e7d55

The file’s name is rasppp_decrypt.dat fixed by rOcu3, we can guess that the original filename
was rasppp.dll classed by the framework as ambiguous. The associated PDB filename is
I:\DrvDev\Works\NdisReroute\X64\NdisRerouteD.pdb, it probably indicates a possible link with
NDIS, this link will be confirmed later in this article. Our file was uploaded for the first time on
VirusTotal the 2015-08-13, so the code is active for at least 4 years.

@ExaTrack http://www.exatrack.com Page 2



http://twitter.com/ExaTrack
http://www.exatrack.com/
http://ww.hybrid-analysis.com/sample/a5d6139921576c3aedfc64e2b37ae1a64f3160bd1bb70d4fc7fce956029e7d55
http://ww.hybrid-analysis.com/sample/a5d6139921576c3aedfc64e2b37ae1a64f3160bd1bb70d4fc7fce956029e7d55

(ExaTrack

Entrypoint with specifics arguments

The first uncommon characteristic is the initialization of the malware. When a binary is loaded, its
D11Main function is executed. Microsoft define this:

BOOL WINAPI Dl1lMain (
~In HINSTANCE hinstDLL,
~In DWORD fdwReason,
_In_ LPVOID lpvReserved
)7

The 1pvReserved argument is not clearly defined. Normally, its value should be 0, but in some

special cases, as highlighted by jOOru (https://j00ru.vexillium.org/2009/07/dllmain-and-its-
uncovered-possibilites/) it can point to a CONTEXT structure.

In our case, D11Main starts by checking this argument against O:
undefined8 DllMain (undefined8 hinstDLL, int fdwReason, CONTEXT *lpvReserved)

{
int iVarl;
registers dump local 58;

if (((fdwReason == 1) && ( DAT 1800845e0 != 1)) &&
(_ DAT 1800845e0 = fdwReason, lpvReserved != (CONTEXT *)0x0)) {

If this module is loaded by an analysis framework the value will be set at 0 and the malware will do

nothing. As explained in jOOru’s article: « If fdwReason is DLL_ PROCESS_ATTACH, IpvReserved is NULL
for dynamic loads and non-NULL for static loads. »

Process validation
Afterwards the code checks if it is executed in a process named svchost.exe.
GetModuleFileNameA ( (HMODULE) 0x0, &local 128,0x104) ;

_strlwr (&local 128);
strstr(&local 128, "svchost.exe");

Between the argument’s check (done in another part of the code) and the name check of the
executable, the module’s detection probability by a sandbox is relatively low.

@ExaTrack http://www.exatrack.com Page 3



http://twitter.com/ExaTrack
http://www.exatrack.com/
https://j00ru.vexillium.org/2009/07/dllmain-and-its-uncovered-possibilites/
https://j00ru.vexillium.org/2009/07/dllmain-and-its-uncovered-possibilites/

(ExaTrack

Network devices request
The malware try to find the network ethernet device's AdapterName using the functions

GetAdaptersInfo and GetIfTable. Once found, the DLL checks the registry key
HKLM\SYSTEM\CurrentControlSet\Control\Class\{4D36E972-E325-11CE-BFC1-08002BE10318}

to identify the subkey Linkage with the associated RootDevice.

if (AdaptaterName '= (char *)0x0) {
/* (Network adapters) {4D36ES72-E325-11CE-BFC1-08002BE10318} */
result = RegOpenKeyExA ((HKEY)Oxffffff£f£80000002,

"SYSTEMA\M\CurrentControlSet\\Control\\Class\\{4D36ES572-E325-11CE-BFC1-0800
2BE10318}"™
,0,0x2001%, (PHKEY) &1Hkey) ;

=ys, (LPDWORD) 0x0,
(LPDWORD) 0x0, (LPDWORD) Ox0, (LPDWORD) 0x0, (LEDWORD) 0x0, (LEDWORD) 0x0,
(PFILETIME) 0x0) ;

37,0,0x103);

if (15 = 0y {
do {
iv 0x104;
RegEnumKeyExA(1lHkey,dwindex, (LPSTR) &null ptr,&lValue, (LPDWORD) 0x0, (LPSTR)0x0,

(LPDWCORD) 0x0, (PFILETIME) 0x0);

The goal here is to validate the network configuration associated with the ethernet device.

Signed driver extraction
During the module initialization steps, it loads a driver based on the current Windows version.

if (win wversion < 4) {

driver size = 0x8%400;
rer datas = &DrvDatas;

}
else |

river size = 0x5c50;

river datas = &DrvZDatas;
}
uvarZz = write to disk(driver datas,driver size,&filename});

The value « 4 » represent Windows kernel 6.0 (Windows Vista). We were interested by the driver
loaded on OS version 6.0 and upper.

To load the driver, the required registry keys are created by the malware and loading is triggered by a
call to NtLoadbriver (dynamically loaded).

@ExaTrack http://www.exatrack.com Page 4



http://twitter.com/ExaTrack
http://www.exatrack.com/

aTrack

Driver

Signature
The driver is signed by what is probably a stolen certificate used to load the rootkit on 64b Windows.

Verified: A required certificate 1s not within its wvalidity period when
verifying against the current system clock or the timestamp in the signed file.
Link date: 06:10 11/04/2016
Signing date: n/a
Catalog: C:\rootkit.sys
Signers:
* Kk ok kK
Cert Status: This certificate or one of the certificates in the

certificate chain is not time wvalid.

Valid Usage: Code Signing

Cert Issuer: VeriSign Class 3 Code Signing 2010 CA

Serial Number: FO 87 74 64 EC F2 AA 94 EO 4B 84 25 4D ED BS5 4E
Thumbprint: 117F5C5B276C2805D69A48F8B23C25883FCF5BE6
Algorithm: shalRSA

Valid from: 02:00 28/03/2012

Valid to: 01:59 14/04/2015

Hook of driver NULL.SYS

During the rootkit’s initialization it sets up a hook on the device \Device\Null. To do so, it must
firstly get the DEVICE OBJECT and its associated DRIVER OBJECT. With this it can directly modify the
IRP table. The o0xe entry of the MajorFunction array contains the handler for
IRP_MJ DEVICE CONTROL.

This action is a little risky for the rootkit, as it is common to see rootkits modifying the \Device\Null
DRIVER_OBIJECT .

RtlInitUnicodeString ((PUNICODE STRING) &dev null,L"\\Device\\Null");

arl = IoGetDeviceObjectPointer
((PUNICODE_STRING)&i%?_:;ll,l,&FF:LE_CEJECT_K?LL,&P?EVICE_OBJECT_NULL):

NullDrvObj = PDEVICE OBJECT NULL->DriverObject;

if (NullDrvObj == (_DRIVER OBJECT *)0x0) {
ZwClose (EventHandle) ;
EventHandle = (HANDLE) 0x0;
ObeereferenceObject(PFZLE_CEJECT_NZLL];
PFILE OBJECT NULL = (PFILE OBJECT)0x0;
PDEVICE OBJECT NULL = (PDEVICE_OBJECT)CXC:
return 0Oxc0000034;

) _deviceIoCtl nullDrv = NullDrvObj->MajorFunction[0xe];
bi->MajorFunction[0Oxe] = (PDRIVER DISPATCH) 0x140003d30;

Once its hook is setup, we can open a handle on \\ . \NUL to communicate with the rootkit by loCtl.

@ExaTrack http://www.exatrack.com Page 5



http://twitter.com/ExaTrack
http://www.exatrack.com/
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control

aTrack

IoCtl Communication
As almost all rootkits, a communication channel is established with the userland DLL using loCtl:

ioctl code != 0x156003 && (ioctl code != 0x15e007)

The driver expects commands to be passed through the loCtl buffer in the following format:

struct ioclt buffer struct {

i

uint CodeId;
uint DataSize;
char Datas|[];

We'll describe some commands that can be called from the userland.

getMagicNumber (0x200)
The simplest function.

* (undefinedd4 *)out buffer = 0x41126;

*out buffer len = 4;
It is probably a tag to check the version number.

hideDriver (0x100)
This command takes one more argument to identify the sub-action to perform:

e 1:Hide the driver
e 2:Know state of the driver (hidden or visible)

The driver is hidden with multiple methods; its headers are overwritten with null bytes to avoid
detection by simple search of the MZ and PE headers.

Afterward, the driver will enumerate the \briver directory entries to find its own DRIVER OBJECT.
Once found, it will remove it from the list by replacing the previous object’s FLINK pointer (next
object) by the next driver.

@ExaTrack http://www.exatrack.com Page 6



http://twitter.com/ExaTrack
http://www.exatrack.com/

If
B o0 N

LAE 140002355
— i

...2285 CHF REY,gword ptr [RAE + 0x8]
228% JE2  LRE_1400023af

A

[ o - 5]

LaB_1l400022a8
S
“|a22a8 CHMF RAM,ES

we2dab MOV BAEE, gword per [ERN]
-:23ae JHZ LAB_1400022b6

Do Loop

E-0| .

}- «e23b0 MOV gword ptr [RTHK + RO :'Dxﬁ]x.

---23b4 JHP LAB_14000223b%

. o

=l LAE_1400023L€
If

w23b€ MOV  gword per [RDN],BEX

Y If/ Ese
e 5 - O M

LABE_1400022k5
e23b% MOV  3IL,0m1

-0 W

239k MOV ERDX,RAX
.23Fe MOV RAX,gword ptr [RAX]

w232l TEST RARN,REX
--.2324 JHZ LAE_140002355

The same operation is performed in \Device with the driver’s associated DEVICE OBJECT (but our
driver has no associated DEVICE OBJECT in this version).

Although the driver is deleted from the « Directory Object »’s list it also destroys some information
that may revealed it by memory forensic analysis.

driver base = (short *)ownDrvObject->DriverStart;
BVvarl = MmIsAddressvValid(driver base);
SizeOfHeaders = 0;
if (((BVarl != '\0') && (SizeOfHeaders = 0, *driver base == 0x5a4d)) &&
(size0fHeaders = 0,
*(int *) ((longlong) * (int *) (driver base + Oxle) + (longlong)driver bases) == 0x4550)) {

SizeOfHeaders =

(ulonglong) * (uint *) ((longlong) * (int *) (driver base + 0Oxle) + 0x54 + (longlong)driver base)

}
wipe datas with mdl (ownDrvObject->DriverStart,SizeOfHeaders);

ownDrvObject->Type = 0;

wnDrvObject->DriverStart = (PVOID)Ox0;
ownDrvObject->DriversSize = 0;

This action is also done with the DEVICE 0BJECT, whereas no « device » was affected to the driver.

@ExaTrack http://www.exatrack.com Page 7



http://twitter.com/ExaTrack
http://www.exatrack.com/

aTrack

ownDeviceObject ownDrvobiject->Device0bject;

if (ownDeviceObject != (PDEVICE OBJECT)O0x0) {
ownDeviceObject->Type = 0;
ownDrvobject->Devicedbject->8ize = 0;
ownDeviceObject = ownDrvObject->DeviceObject;
ownDeviceObject->DeviceType = 0;

}

is wiped = 1;

SetIpAndPort (0x600)

This command setup the server remote server to validate usage of network injections by NDIS. We
will go back to its usage later in the paper.

send_packet (0x400)

Under some conditions the driver may allow to send Ethernet packets directly on the network
interface. Sent datas are located in the buffer transferred to the kernel. Conditions of this delivery
are described in the next part.

NDIS hooks and network injections
The rootkit have some interesting network capabilities, it position itself at the NDIS level to
communicate directly with the network card. Globally, the references to NDIS functions and hooks
from the driver’s EntryPoint are the following:

eht’y

registerNHisProfo;olD...

‘9\_

houk_send_and_\fe\ceiv... MdisBindAdapterHandlerE...

%

huok ProtSe nd rLtstsCo-m

....

MmMaplLockedPagesSpecifyC...  MdisFree.. NdisFreeMetBuffe... MdisFreeMe...

@ExaTrack http://www.exatrack.com Page 8



http://twitter.com/ExaTrack
http://www.exatrack.com/

(ExaTrack

The registerNdisProtocolDriver function will firstly search the Tcepip instance in the NDIS
protocols. This process is done with a simple linked list.

VarZ = NdisRegisterProtocolDriver(0, &ProtocolCharacteristics, &ndis registration);
if (-1 < (int)uvar2) {
if ( struc ion < 0x6001le) {
ndis s = (NDIS_PROTOCOL BLOCK *)ndis registration->NextProtocol;
while( true ) {

(_NDIS_OPEN_BLOCK *)0x0;

n "otocol = (NDIS_PROTOCOL_BLOCK *)0x0;

if (ndisProtocols == (NDIS_PROTOCOL_BLOCK *)0x0) break;

Bvarl = RtlEqualUnicodeString((UNICODE_STRING *)&ndisProtocols->Name,&tcp ip ustr, '\x01');

if (Bvarl !'= '"\0') {

‘0ls->NextProtocol;

This code walks the registered protocols, once Tcp1p (here tcp ip ustr) is found, two functions will
be hooked, ReceiveNetBufferLists and ProtSendNetBufferListsComplete. Those functions are
used to receive and send packets of the associated protocol.

The hook ReceiveNetBufferLists function receives packets from the network adapter. Each
packet’s content will be analyzed and verified against the configuration of the driver, if a precise
format is respected some of the rootkit abilities will be enabled.

It's interesting to note that the rootkit have his own network packet parser.

Firstly it checks if packet’s size is greater than 0x35 bytes: all TCP packets are larger this size. Next,
the protocol type must be 0x800, this value represent the IP protocol. Then, the rootkit checks if the
IP version is 4 (for IPv4) and that the next protocol is TCP.

if ((0x35 < data_ length) &&
( (ushort) ( (ushort)packet buffer->*EthernetNextTyps »> 0x& |
acket buffer->EthernetNextType << 0x8) == 0x800)) {
ocol | fer = (byte *)&packst buffer->ip VersionHlen;
ffer->»ip VersionHlen & O0xf0U) == 0x40) &&
uffer—->ip next protocol == "'x06")) |

Then, the IP source address (so the remote server) is compared with a gobal variable. This variable
can be setup with the loCtl command setIpaAndpPort. It is mandatory to announce the C&C’s IP
address to trigger the whole parsing of the packet.

@ExaTrack http://www.exatrack.com Page 9



http://twitter.com/ExaTrack
http://www.exatrack.com/

aTrack

Registering the IP address through an loCtl command is operated like this:

eode from buffer — in buffer->field Ox8;

if (code from buffer == 0x0) {

return O0x0;

trusted tcp dest port =

(ushort) * (byte *)&in buffer->field 0Oxd + *(short *)&in buffer->field Oxc * 0x100;
trusted ip 2 = code from buffer;

And checks of the source’s IP address:

if ((_trusted ip 2 = packet buffer->ip src) &&

(_trusted tcp_dest port = start_tcp protocol buffer—>tcp dst port)) |

Lastly, a checksum is operated on the packet’s data:

((uvar7 = start_datas _bu
(uvar7 << 0xl1l0 | uVar7 »> 0xl0) == start datas_buffer[0x3] &&
(uVar8 = check sthernet addr (packst | P= "{O0" ) |
_trusted tcp src port = start tcp protoco 1ffer—->tcp src port;
trusted ip src = packet_buffer->»ip src;

This « checksum » is a simple XOR operation between the first DWORD and the third DWORD of the
data, followed by a rotation of 0x10 and the result is stored in the fourth DWORD.

| vV

If this check is validated, the rootkit will reference the current handle (opengueue) in a global
variable. This variable will be used to send raw packets on the network.

We think those checks aims to probe if the remote server can be contacted and to identify which
interface need to be used to send raw packets on the network.

Once all the conditions are met we can send raw packets directly on the identified network interface.
This can be achieve by using the loCtl command send packet (0x400) containing the data to send. As
you can see, we were able to use the driver to send an arbitrary packet on the network.

@ExaTrack http://www.exatrack.com Page 10



http://twitter.com/ExaTrack
http://www.exatrack.com/

(ExaTrack

23 15.853324 30:31:32:33:34:35 A1:42:43:44:45:46 @x8666 1408 Ethernet II

> Frame 23: 1408 bytes on wire (11264 bits), 1408 bytes captured (11264 bits) on interface @
> Ethernet II, Src: 30:31:32:33:34:35 (30:31:32:33:34:35), Dst: 41:42:43:44:45:46 (41:42:43:44:45:46)
v Data (1394 bytes)

Data: PPBRA57861547261636b2073656e64206120726177207061. ..

[Length: 1394]

0000 30 31 32 33 34 35 86 GO ABCDEF@1 2345. {1
0010 45 78 61 54 72 61 63 6b 20 73 65 6e 64 20 61 20 ExaTrack send a
oo20 72 61 77 20 70 61 63 6b 65 74 00 60 00 00 00 00 raw pack et......
Q020 00 90 90 00 00 00 00 00 0O 00 00 00 00 00 00 B0 ........ ........

To summarize, if we want to send raw packets on the network we need:

To load the driver

To communicate with \Device\Null

Send an IOCTL to configure the IP address/port of C&C

Exchange with the C&C to grab a checksum who validate the network interface to use
Send an IOCTL to emit raw packets

vk wnN e

The steps to send this raw packet can be summed up by the following schema:

svchost.exe

sample.dll

I
1

NDIS structs /
!" C&Cexchange

\Device\Null

TCPIP hook

Driverload
Communication

tmp1234.sys ndis.sys

g 41424344 ...

Networkinjections

Conclusion

The attacker behind this driver is a skilled one, the signed driver prove that it has the time and
resources to implement complex attacks. Furthermore, the inner working of the driver demonstrates
a good technical level as NDIS injection are not an easy thing. The rootkit also has stealth capacities
that may not be used anymore because of PatchGuard.

@ExaTrack http://www.exatrack.com Page 11



http://twitter.com/ExaTrack
http://www.exatrack.com/

(ExaTrack

References

[1] Tweet of Florian Roth:
https://twitter.com/cyb3rops/status/1153983440871669761

[2] Takahiro Haruyama slide with evocation of the rootkit:
https://hitcon.org/2016/pacific/0composition/pdf/1201/1201%20R2%201610%20winnti%20polymor

phism.pdf

@ExaTrack http://www.exatrack.com Page 12



http://twitter.com/ExaTrack
http://www.exatrack.com/
https://twitter.com/cyb3rops/status/1153983440871669761
https://hitcon.org/2016/pacific/0composition/pdf/1201/1201%20R2%201610%20winnti%20polymorphism.pdf
https://hitcon.org/2016/pacific/0composition/pdf/1201/1201%20R2%201610%20winnti%20polymorphism.pdf

