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1	 https://www.fireeye.com/blog/threat-research/2015/04/probable_apt28_useo.html
2	 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1701
3	 Available at https://github.com/hfiref0x/CVE-2015-1701/
4	 https://blog.skullsecurity.org/2010/taking-apart-the-energizer-trojan-part-3-disassembling
5	 https://www.nostarch.com/malware
6	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx

H
erein, we will study the exploit for 
CVE-2015-17012 embedded within the 
un-obfuscated 64-bit RussianDoll 

payload (MD5 hash 54656d7ae9f6b89413d5b2
0704b43b10). If you don’t have a copy of this 
particular binary, you can follow along with an 
open-source proof of concept (varying in its 
details, but having similar functionality)3.

We’ll first walk through the payload and see how 
to loosely identify what it does once it has gained 
kernel privilege. Then, we’ll discuss how to get 
higher-resolution answers from reverse 
engineering by using WinDbg to confirm 
assumptions, manipulate control flow, and 
observe exploit behavior. Building on this and 
other published sources, we’ll assemble a 
technically detailed exploit analysis by examining 
the relevant portions of win32k.sys. Finally, we’ll 
close by discussing how to extract and augment 
this exploit to load encrypted, unsigned drivers 
into the Windows 7 x64 kernel address space.

INTRODUCTION 
This article provides a multi-faceted analysis of the exploit payload referenced in the 
FireEye Operation RussianDoll1 blog post. The information herein is intended for 
malware triage analysts, reverse engineers, and exploit analysts with a full understanding 
of x86 and basic experience with IDA, and provides tools and background information to 
recognize and analyze other, future exploits. This article goes on to discuss how red team 
analysts can apply these principles to carve out exploit functionality or augment exploits 
to produce tools that will enhance operational effectiveness.

Lay of the Land – Static Analysis 
with IDA

We will first survey the lay of the land by static 
analysis with IDA. If you’re new to IDA, check out 
Skull Security’s 2010 blog about using IDA to 
dissect the Energizer Trojan4. For a more in-depth 
treatment, Practical Malware Analysis5 is very 
instructive. Finally, MSDN offers a useful review 
of the x64 processor architecture6.

Our first lead has been given to us: an exploit in 
this sample gains SYSTEM privileges by abusing 
the CreateWindowEx API. So, we drop it into IDA 
and follow the p-type xref for CreateWindowExW 
and see that CreateWindowExW is referenced by 
a call instruction in the StartAddress thread 
routine. Figure 1 shows the relevant call setup for 
CreateWindowEx.

https://www.fireeye.com/blog/threat-research/2015/04/probable_apt28_useo.html
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1701
https://github.com/hfiref0x/CVE-2015-1701/
https://blog.skullsecurity.org/2010/taking-apart-the-energizer-trojan-part-3-disassembling
https://www.nostarch.com/malware
https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx
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Figure 1: 
CreateWindowEx 
call setup for 
lpClassName

Figure 2: 
Window Class name 
and structure

Microsoft’s documentation for CreateWindowEx7 indicates that the function will create an instance of 
the window class whose name is specified in its second argument, lpClassName, which in this case we can 
trace back to the string “TEST” Figure 2 shows the relevant setup for the call to RegisterClass.

From here, we can also see that the window 
procedure is the callback sub_14001230. The 
window procedure is of particular interest 
because it is normally executed after 

CreateWindowEx is called, so we examine it. 
Figure 3 shows the first significant block of code 
in the window procedure, containing a pair of 
unknown local variables, an unknown global 
variable, and an unknown function pointer.

7	 https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx
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Figure 3: 
CreateWindowEx 
call setup for 
lpClassName

Figure 4: 
Initialization of 
global referenced in 
window procedure

We find the initialization of dword_140012AFC by following the lone write xref to it. Figure 4 shows that 
dword_140012AFC receives the return value of GetCurrentProcessId.

Hence, we rename dword_140012AFC to “currentPID” and move on to pursuing qword_140012AD8. 
Figure 5 shows the sole write xref to this function pointer, with its value coming from GetProcAddress.
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Figure 3: 
CreateWindowEx 
call setup for 
lpClassName

We can see that the lpProcName argument to 
GetProcAddress is 
“PsLookupProcessByProcessId”; according to 
MSDN8, PsLookupProcessByProcessId is exported 
by NtosKrnl.exe, making it a kernel routine.

This lookup is preceded by a call to a subroutine 
that uses the undocumented 
NtQuerySystemInformation function to obtain 
module information for ntoskrnl.exe9. The 
malware then calls LoadLibraryExA to load 
ntoskrnl.exe, calls GetProcAddress to find 

PsLookupProcessByProcessId, and calculates the 
kernel address of the routine.

We now know that the window procedure 
supplies the malware’s PID to 
PsLookupProcessByProcessId to obtain a 
pointer to its own executive process (_
EPROCESS) block. Figure 6 shows the window 
procedure code with the 
PsLookupProcessByProcessId procedure 
address and the malware’s _EPROCESS block 
both labeled.

8	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff551920(v=vs.85).aspx
9	 A source code example of this can be seen at http://www.rohitab.com/discuss/topic/40696-list-loaded-drivers-with-ntquerysysteminformation/

https://msdn.microsoft.com/en-us/library/windows/hardware/ff551920(v=vs.85).aspx
http://www.rohitab.com/discuss/topic/40696-list-loaded-
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Figure 6: 
Window procedure 
obtaining malware’s 
_EPROCESS block

Figure 7: 
Window procedure 
obtaining 
_EPROCESS block 
for PID 4

Figure 7 shows the subsequent code block, which also calls PsLookupProcessByProcessId, this time 
providing the hard-coded constant 4 for System.

Seven instructions later, we see that the malware 
steals the process token from the System 
process. Figure 8 shows data being copied from 
the offset within dword_140012AF8 (which 

contains 0x208) in the System process’s  
_EPROCESS block into the malware’s. As we will 
see later, this is the address of the privileged 
token used by the System thread.



8  

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining 

Figure 8: 
Window procedure 
copying data from 
System _EPROCESS 
block

What if there was no helpful lead? What would 
tip off a triage analyst to the presence of a kernel 
escalation of privilege? One sign is an unpacked 
binary containing strings referencing native API 

functions10. Figure 9 shows the strings from the 
Operation RussianDoll payload, which include 
the kernel function we found, 
PsLookupProcessByProcessId.

Figure 9: 
Strings from malware 
sample including 
PsLookupProcess 
ByProcessId

Looking this function up on MSDN showed that it is 
exported by ntoskrnl.exe, making it a kernel function. 
A reference to such a function constitutes a lead that 
should be followed. This same technique has been 
observed in local privilege escalation exploits going 

back a long time, such as MS11-04611. You can 
confirm your suspicions about this function by using 
a kernel debugger to set a process-specific 
breakpoint on nt!PsLookupProcessByProcessId so 
that you can examine the call stack, which is what we 
will do next.

10	 https://en.wikipedia.org/wiki/Native_API
11	 https://www.exploit-db.com/docs/18712.pdf

https://en.wikipedia.org/wiki/Native_API
https://www.exploit-db.com/docs/18712.pdf
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Beneath the Surface – Dynamic 
Analysis with WinDbg

To observe the activity of a kernel privilege 
escalation exploit, our best bet is a kernel debugger 
such as WinDbg. WinDbg can invasively debug 
user-space malware and provides powerful tools to 
observe its activity in kernel space. MSDN provides 
extensive software and setup information regarding 
WinDbg12, 13, 14, 15. You might also consider using 
VirtualKD16 to quickly connect to VMware guests.

WARNING – Do not install or run malware without 
first setting up a safe environment.

Recall from the previous section that the 
malware copies data from offset 208h within the 
System process’s _EPROCESS block to the 
malware’s _EPROCESS block. To confirm our 
suspicion that 208h is the offset of the access 
token within the _EPROCESS block, we can use 
WinDbg’s dt command:

dt nt!_EPROCESS

Figure 10 shows output from WinDbg that 
corroborates our identification of the token 
stealing routine within the malware.

Figure 10: 
Abbreviated listing 
of _EPROCESS type 
in WinDbg

12	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
13	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff538143(v=vs.85).aspx
14	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff556866(v=vs.85).aspx
15	 https://support.microsoft.com/en-us/kb/311503
16	 http://virtualkd.sysprogs.org/

https://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff538143(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff556866(v=vs.85).aspx
https://support.microsoft.com/en-us/kb/311503
http://virtualkd.sysprogs.org/
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There at offset 0x208 is the Token. After the 
malware copies the token from the System process, 
the kernel’s Security Reference Monitor gives the 
malware the royal treatment: SYSTEM-level access.

Observing the escalation of privilege in action, 
however, takes a little more work. Static analysis 
reveals that the malware calls GetSidSubAuthority 

and checks whether it is running at the 
SECURITY_MANDATORY_LOW_RID (1000h) 
integrity level, a procedure that is documented by 
Microsoft17. The malware only executes its exploit 
if it detects that it is running in a low-integrity 
process. Figure 11 shows the call to 
GetSidSubAuthority and the comparison against 
SECURITY_MANDATORY_LOW_RID.

Figure 11: 
Low-integrity 
process check as 
seen in IDA

Figure 12: 
PspInsertProcess 
breakpoint activated 
by malware 
execution

To induce the malware to escalate privilege, we’ll 
halt it before it slips past this check, lie to it about 
its access level, and catch it calling 
PsLookupProcessByProcessId. To catch the 
malware before it gets too far, we use an 
instrumented breakpoint to trigger before the 
Process Manager adds each process to the process 
list. We can also get some additional mileage out of 

the dt command to read the ImageFileName 
member of the _EPROCESS block:

bp nt!PspInsertProcess “dt nt!_EPROCESS @
rcx ImageFileName”

We can then run the malware. Figure 12 shows 
54656d7ae9f6b89413d5b20704b43b10.exe 
activating the PspInsertProcess breakpoint.

To let nt!PspInsertProcess do its job, we continue (with gu: “go up”) until nt!PspInsertProcess returns to 
nt!NtCreateUserProcess, at which point our malware’s process object has been added to the process list. 
Figure 13 shows the abbreviated output of the !process command.

17	 https://msdn.microsoft.com/en-us/library/bb625966.aspx

https://msdn.microsoft.com/en-us/library/bb625966.aspx
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Figure 13: 
Process object for 
54656d7ae9f6b8
9413d5b20704b4
3b10.exe

Figure 14: 
Invasively debugging 
54656d7ae9f6b8
9413d5b20704b4
3b10.exe

We could then copy the address of the process 
object and supply it to the /i (“invasive”) switch of 
the .process command, causing WinDbg to 

invasively debug the malware. Figure 14 shows this 
two-step procedure which requires us to issue the 
g command to allow a process context switch.

We next set a user-space breakpoint on 
advapi32!GetSidSubAuthority, specifying the bp 
command’s /p (“process”) switch to break only 
when the malware calls this function:

bp /p fffffa80`0242cb30 
advapi32!GetSidSubAuthority

Figure 15 shows this breakpoint activating within 
a function whose job it is to jump to the real 
GetSidSubAuthority function.
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Figure 15: 
GetSidSubAuthority 
breakpoint activated 
by malware

We run until GetSidSubAuthority returns into the malware’s code, and disassemble the code at the 
instruction pointer. Figure 16 shows that this lands us in the malware’s low-integrity check.

Figure 16: 
Low-integrity 
process check as 
seen in WinDbg

Figure 17: 
Checking rcx against 
1000h

Stepping through the low-integrity check, we see that we are about to compare the value of the register 
ecx with the hard-coded constant 1000h. But as Figure 17 shows, rcx instead contains 2000h.

To make the malware execute its exploit, we tell it that it is running in a low-integrity process by writing 
the value 1000h to ecx:

r @ecx = 1000h
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We then set a process-specific breakpoint to trigger 
when the malware executes the kernel function 
nt!PsLookupProcessByProcessId. Figure 18 shows 
rcx being manipulated, the process-specific 

breakpoint being set on 
PsLookupProcessByProcessId, and the new 
breakpoint being activated by the malware privilege 
escalation code after execution is resumed.

Figure 18: 
Inducing and 
halting on privilege 
escalation

Figure 19: 
Annotated stack 
trace of kernel 
privilege escalation

To confirm the privilege escalation, we examine the stack trace. Figure 19 shows the stack trace, which 
confirms that we caught the privilege escalation.

As can be seen above, the malware sample’s 
module name, 54656d7ae9f6b89413d5b20704b
43b10, appears in both user space and kernel 
space. This is how the malware manages to copy 

the access token from the System thread’s 
EPROCESS block into its own as we observed by 
reverse engineering. Escalation: achieved.
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What if the malware executed the 
GetSidSubAuthority call before the conclusion of 
the two-step invasive debugging procedure? A 
more reliable (but more time-intensive) approach 
to gain control is to locate the file offset of an 
instruction where you want to break, take note of 

the original byte value in that location, and patch it 
with the single-byte opcode for the icebp18 
instruction, F1h. At runtime, this will get the kernel 
debugger’s attention, at which point you can fix the 
instruction and move on. Figure 20 shows the 
process of rewinding the instruction pointer by one 
byte and restoring the original opcode.

Figure 20: 
Catching and fixing 
an icebp instruction

In the course of analysis, this process may need to 
be repeated many times, as well as the process of 
altering the result of GetSidSubAuthority to 
shepherd the malware into escalating privilege. In 

order to automate this repetitive procedure and 
focus on the analysis, you could use a WinDbg 
script, such as the following.

18	 http://www.rcollins.org/secrets/opcodes/ICEBP.html
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Listing 1: 
WinDbg script to 
halt exploit

$$ Run Operation RussianDoll payload until its wndproc is executed, dumping
$$ @rcx (hWND) as win32k!tagWND. Requires that payload has been interrupted
$$ and WinDbg process context is in payload due to an icebp patch at file
$$ offset 2A57h.

.printf “Fixing icebp\n”
r rip=@rip-1
eb @rip 0x57

.printf “Setting breakpoint on GetSidSubAuthority\n”

.reload /user
bp /p @$proc advapi32!GetSidSubAuthority
.printf “Running...”
g

.printf “Altering GetSidSubAuthority SID to be low integrity (1000h)\n”

.printf “This instigates exploit to run\n”
gu
p
r ecx=1000h
.printf “Setting breakpoint on RegisterClassW\n”
bp /p @$proc user32!RegisterClassW
.printf “Running...”
g

.printf “Setting breakpoint on lpfnWndProc before calling RegisterClassW\n”
bp /p @$proc poi(@rcx+8)
g

.printf “Halted at WndProc\n”
u @rip

After confirming that the reverse engineering analysis was correct, the most interesting question 
becomes: how does the exploit work? In the next section, we explore this in technical detail.
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Digging Deeper – Analysis of a 
win32k.sys Exploit

TrendMicro has published an analysis of CVE-
2015-170119. No doubt this is based on a much 
more technical analysis that touches on the 
intricacies of many Windows internals. Here, we 
observe the exploit’s interaction with win32k.sys 
to synthesize a more technically elaborate 
analysis of the vulnerability. This process will 
allow us to identify the concept of operations of 
this exploit in greater detail, and will build 
experience necessary to independently analyze 
win32k.sys exploits without the aid of any other 
published analysis in future cases.

Exploit analysis hinges on familiarizing oneself not 
only with the malicious sample at hand, but also 
the vulnerable software itself, which is the context 
in which an exploit does its work. In many cases, 
this can entail extensive reverse engineering. 
Fortunately, we will see that win32k.sys 
exploitation is a well-documented topic. In 
addition to the literature, there are sometimes 
publicly available resources disclosing old 
Windows NT source code, although these can be 
subject to takedowns20. In lieu of source code, the 
ReactOS project21 can serve as a useful model of 
many Windows NT kernel internals and 
definitions. Additionally, Alex Ionescu’s Native 
Development Kit (NDK)22 provides some 
definitions that can be useful for stand-alone 
development, such as proof of concept work.

To get started with our analysis, we note that 
TrendMicro’s analysis alludes to a “Server Side 
Window Proc” flag. Literature can be found dating 
back several years23 as well as more recently24 
discussing the role of the server-side window 
procedure flag within the window object. Win32k.
sys defines a structure called tagWND which 
contains information about each window object 
derived from a given window class. Within the 
tagWND object are the bServerSideWindowProc 
flag and the lpfnWndProc function pointer, which 

we will use as anchors for our analysis of CVE-
2015-1701. These and other members can be 
explored within an active kernel debugging or 
crash analysis session of WinDbg with the dt 
command, such as:

dt win32k!tagWND

So, we understand that this exploit works by 
causing win32k.sys to set the 
bServerSideWindowProc flag within a tagWND 
object while a user-specified function address is 
resident in the lpfnWndProc member of the same 
window object; this results in the user-specified 
address being executed with kernel privilege. But 
how exactly does this happen?

Recall that in Figure 19, we saw 
win32k!xxxCreateWindowEx in the call stack at 
the time when the exploit achieved kernel 
execution. We can begin by finding the address of 
the tagWND structure and watching accesses to 
its bServerSideWindowProc flag (byte at offset 
2Ah) and lpfnWndProc (pointer at offset 90h) 
members to identify how the flag and window 
procedure arrive at the values they do. Win32k.
sys uses a special function, 
win32k!HMAllocObject, to create window 
objects, which is how we can identify the new 
window as it is created. Within 
xxxCreateWindowEx, there is a single call to 
HMAllocateObject, hence breaking on this 
address should yield the address of the new 
window object within the register rax after the 
HMAllocObject call returns.

Since bServerSideWindowProc is a member of a 
bitfield, we choose to break on a one-byte write to 
the exact byte that it occupies at PWND+2Ah. 
Figure 21 shows WinDbg breaking on write 
access to the byte location of 
bServerSideWindowProc upon the first access by 
the SetOrClrWF routine. This call stack provides 
useful information later in the analysis.

19	 http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-cve-2015-1701-a-win32k-elevation-of-privilege-vulnerability-used-in-targeted-attacks/
20	 For example, here is a Chinese github user’s WinNT4 repository that was subject to a DMCA takedown: https://github.com/njdragonfly/WinNT4
21	 https://www.reactos.org/
22	 https://code.google.com/p/native-nt-toolkit/
23	 https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
24	 https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2015/08/2015-08-27_-_ncc_group_-_exploiting_ms15_061_uaf_-_release.pdf

http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-cve-2015-1701-a-win32k-elevatio
https://github.com/njdragonfly/WinNT4
https://www.reactos.org/
https://code.google.com/p/native-nt-toolkit/
https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2015/08/2015-08-27_-_ncc_group_-
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Figure 21: 
First bitfield access 
in same byte as 
bServerSideWindowProc

Figure 22: 
Server-side window 
procedure flag set

The SetOrClrWF function generically sets or 
clears window flags. Pausing to analyze 
SetOrClrWF, we find that the third argument 
dictates which flag is set, and 0x204 is the unique 
value for this argument that will induce 

SetOrClrWF set the bServerSideWindowProc 
flag. Knowing this, the second access to 
PWND+0x2Ah is notable because SetOrClrWF is 
provided with the value 0x204. Figure 22 shows 
the specific flags being set with SetOrClrWF.
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From the call stack (see Figure 21), we can see 
that the malware calls SetWindowLongPtr, which 
is responsible for ultimately causing 
bServerSideWindowProc to become set (see 
Figure 22). The argument that the exploit provides 
to SetWindowLongPtr is 0xfffffffc, which is a 
DWORD representation of -4. Microsoft's 
documentation for SetWindowLongPtr25 defines 
the symbol GWLP_WNDPROC as -4, stating that 
it "Sets a new address for the window procedure." 
Further analysis shows that the malware uses this 
to set its window procedure to the default window 
procedure. Because win32k.sys defines the 
default window procedure, 
xxxSetWindowDataLong sets 
bServerSideWindowProc to indicate that it trusts 
this procedure to be executed in the kernel.

It would make sense to repeatedly use the gu 
command in WinDbg to unwind the stack and see 
how the malware’s function is invoked, however 
this can lead to some confusion due to the way 
64-bit user-mode callbacks behave on Windows 
and what information is available to WinDbg to 
interpret system state. At this point, we go back to 
the sample and see that the function that calls 
SetWindowLongPtr was written to a location 
within the process environment block (PEB) 
member named KernelCallbackTable. Figure 23 
shows a location within the kernel callback table 
being calculated and saved in register rbx before 
its value is exchanged with the address of the 
malware’s malicious callback.

Figure 23: 
User callback hooking

25	 https://msdn.microsoft.com/en-us/library/windows/desktop/ms644898(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms644898(v=vs.85).aspx
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26	 Note that if you choose to compare against a 32-bit process on a 64-bit machine, you will see WoW64 equivalents for these callbacks; in this case, disregard the 
“whcb” prefix and focus on the rest of the API name.

We can learn the name of the function whose 
address was overwritten by inspecting the 
callback table and looking for the malicious 
function in the callback table, then comparing this 

with a normal callback table. Figure 24 shows how 
WinDbg can be used to find the offset of the 
callback table from the PEB.

Figure 24: 
Determining PEB 
KernelCallbackTable 
offset

Figure 25: 
Malware kernel 
callback table

Using the offset 58h, we can use the dps (“Display 
words and Symbols”) command in WinDbg to 
examine the relevant callbacks. Judging by the 
presence of NULL pointers and the nomenclature 
of symbol names within the table, we can infer 
that there are 105 (69h) callbacks in the table. To 
dump them, we can issue the following command:

dps poi($peb+58h) L69h

Figure 25 shows an excerpt of the resulting list of 
functions, all of which are within user32.dll except 
for the one located at offset 0x36, which instead is 
in the malware’s address space.

Figure 26 shows a parallel excerpt of the callback table in a normal 64-bit process, revealing that the 
overridden callback in the malware is known as _ClientCopyImage26.
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Figure 26: 
Kernel callback table 
for 64-bit svchost.exe

Figure 27: 
Locating callback site

We can quickly search through win32k.sys for 
symbols named like ClientCopyImage with 
WinDbg, as follows:

x win32k!*clientcopyimage*

Doing so, we find only one symbol with a name 
similar to ClientCopyImage, namely 
xxxClientCopyImage. IDA Pro shows three 
references to this function, any of which could be 
a call site we need to investigate:

•	 xxxCreateWindowSmIcon+B1
•	 xxxCreateClassSmIcon+8D
•	 xxxLoadDesktopWallpaper+1A0

A quick approach to triaging these for 
investigation is to set a breakpoint on each of 
them, along with the malicious callback, to see 
which breakpoint is hit immediately prior to the 
callback. Figure 27 shows that this reveals 
xxxCreateClassSmIcon as the function 
responsible for calling the malware’s 
ClientCopyImage callback.
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Figure 28 shows an excerpt from xxxClientCopyImage, which adds 18h to 1Eh and passes the resulting 
constant, 36h, to the KeUserModeCallback function.

Figure 28: 
xxxClientCopyImage 
setting up call 
to user32!_
ClientCopyImage

Figure 29: 
Assignment of 
lpfnWndProc from 
tagCLS

KeUserModeCallback ultimately uses this 
argument as an index into the callback table in the 
PEB, resulting finally in the call to the hooked 
ClientCopyImage callback located 36h bytes off 
the base of the callback table. Meanwhile, the call 
stack at xxxCreateClassSmIcon+0x8d reveals that 
xxxCreateWindowEx was the caller of 
xxxCreateClassSmIcon.

At this point, we’ve watched 
bServerSideWindowProc and worked backwards 
to assemble three key facts about the exploit’s 
interaction with win32k.sys:

•	 The exploit hooks the _ClientCopyImage 
callback before xxxCreateWindowEx 
begins its work

•	 xxxCreateWindowEx calls 
xxxCreateWindowSmIcon, which in turn 
transitions back to user mode and calls the 
hooked _ClientCopyImage function

•	 Within the malicious _ClientCopyImage hook, 
the exploit calls SetWindowLongPtr, which 
changes the malware’s window procedure to a 
server-side (kernel) default window procedure

The final question is, how does the malicious 
window procedure ever get executed once the 
exploit has told win32k.sys to set point its window 
procedure to one of the kernel's default routines? 
We can learn this by monitoring changes to 
lpfnWndProc within the window object.

Using the same technique as before of breaking 
on HMAllocObject within xxxCreateWindowEx, 
we can locate the window object and break on 
write accesses to its window procedure, 
lpfnWndProc. When we do, we note that the first 
access is the one we already knew about, which is 
caused by the malware’s _ClientCopyImage 
callback. The second write to lpfnWndProc 
answers our question. Figure 29 shows 
xxxCreateWindowEx writing to lpfnWndProc.
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The answer is that prior to this point in the 
window creation process, xxxCreateWindowEx 
has yet to execute the normal code path in which it 
assigns a window procedure to the new window 

object. Figure 30 shows the location of this 
overwrite, which occurs directly after the call to 
xxxCreateClassSmIcon within 
xxxCreateWindowEx. Here, the result of 

Figure 30: 
lpfnWndProc 
overwrite

MapClientNeuterToClientPfn is assigned to 
lpfnWndProc for the new window. 
MapClientNeuterToClientPfn’s job is to compare 
the window procedure that the application 
originally registered in its window class against 
numerous standard window procedures and 
finally return either the appropriate standard 
window procedure, or the unique function 
registered by the user-space application if no 
match is found. xxxCreateWindowEx then copies 
this value into lpfnWndProc. The problem is that 
this is not accompanied by any evaluation of 
whether the bServerSideWindowProc flag should 
be set or cleared. Because there is no such check, 
and because xxxCreateWindowEx indirectly 
called a user-controlled pointer that can be 
hooked by a malicious application, 
xxxCreateWindowEx is vulnerable to a kernel 
escalation of privilege that will execute arbitrary 
user-specified code.

In the absence of any public analysis or 
knowledge of what we are looking at, how do we 
come to these conclusions independently? The 

techniques described in this article provide a 
path toward identification of some classes of 
exploits, particularly those that attack the kernel. 
In this case, we identified kernel symbol names 
within the malware. Following the references to 
these names yielded function pointers that we 
used as breakpoint locations in a kernel debugger 
to confirm that kernel execution was achieved. 
When the breakpoint was not hit, we identified 
conditions (the LOW_INTEGRITY RID value) 
that needed to be manipulated to coerce the 
malware into launching its exploit. In the case of 
a previously unseen and uncategorized malware 
sample, the stack trace at this point can provide a 
starting list of potentially vulnerable functions to 
examine. After tracing the malware and the 
vulnerable software, it should be possible to 
draw a conclusion about which code was 
exploited. As for how it was exploited, this can 
sometimes require deeper insight into the 
vulnerable codebase, which can be gained 
through source code (if available), literature 
review, and reverse engineering.
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Other exploits may not execute arbitrary code. 
Literature and source code may be unavailable. 
Different leads may warrant different analysis 
strategies based on tracing backward from 
observations to identify what code is being 
influenced and how. The specifics of analyzing a 
particular exploit will vary, but it is hoped that the 
techniques employed above can help you build 
hypotheses, confirm them, and move on to the 
subsequent step of your analysis.

Striking Gold – Building Red Team 
Tools

If you are a red team operator, you may be asked 
to safely extract an exploit from a malware sample 
in order to escalate privileges or circumvent 
controls in a particular scenario. There is evidence 
to suggest that the developers of the Operation 
RussianDoll payload have borrowed source code 
from many public references. Several techniques 
and code snippets found in the RussianDoll 
payload can be found on the Internet, including:

•	 Getting information about modules loaded in 
the kernel9

•	 Copying the System access token to one’s own 
process11

•	 Evaluating the integrity level of one’s process17

Red team operators can likewise apply code 
reuse to augment exploits such as this into even 
more powerful capabilities. Depending on the 
sophistication of the controls and processes in 
your client’s organization, this can be a valuable 
way to advance the goals of your operation while 
improving the detection, prevention, and 
response capabilities of that group. For example, 
two-factor authentication in conjunction with 
effective antivirus can increase the difficulty of 
monitoring keystrokes or clipboard activity to 
gain unauthorized access to sensitive resources. 
In such cases, red teams may benefit from a 
kernel-privileged tool that can evade antivirus 
and collect the information necessary to achieve 
the red team goal. Here, we outline the 

challenges of extracting an exploit from malware 
and building a tool that can download, decrypt, 
and load an unsigned kernel driver without ever 
having to write it to disk.

WARNING – Do not test kernel software on a 
machine where you are not willing to lose all your files 
due to a programming error.

The first tasks required to repurpose an exploit 
found in the wild have already been described 
above. Step one is to acquire a sample and observe 
it in operation in a safe environment to verify that 
the exploit was successful (as in the section 
“Beneath the Surface – Dynamic Analysis with 
WinDbg”). The second step is to understand the 
minimum functionality necessary to duplicate the 
exploit. Because the exploit code can be 
intertwined with extraneous malware 
functionality, the process of identifying the vital 
elements is made much easier by finding or 
producing an analysis of the vulnerability itself (as 
in the section “Digging Deeper – Analysis of a 
win32k.sys Exploit”). Once the core code of the 
exploit has been identified, it is possible to 
reproduce its functionality in source code.

In the case of the RussianDoll payload, the functional 
elements of the exploit are roughly as follows:

•	 Registering a window class
•	 Hooking the _ClientCopyImage callback
•	 Creating a window
•	 Copying the System access token

Each functional element may comprise several 
pieces. For example, hooking the _ClientCopyImage 
callback entails at least four steps:

•	 Authoring a malicious callback to set the 
default window procedure

•	 Locating the kernel callback table
•	 Altering memory protection for the kernel 

callback table (to permit write access)
•	 Overwriting the _ClientCopyImage pointer 

with the malicious callback address
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Reproducing each element of the exploit in source 
code may require the hard-coded offsets from the 
malware to be reproduced in the software. 
However, a better way to write an 
understandable, stable, and maintainable proof of 
concept is to understand and define the correct 
structures. Understanding takes experience, such 
as knowing (or researching) what it looks like 
when a process accesses its PEB. As for 
structures, Alex Ionescu’s NDK21 contains a set of 
definitions that may be useful to this end.

Once you have reproduced the exploit 
functionality, you can apply the same testing 
methods from verifying the original exploit to 
validate your proof of concept. Once validation is 
complete, you should test the proof of concept on 
each release of Windows that your team will use it 
against. If the exploit executes or manipulates 
kernel code, then it is wise to also test against 
checked builds of Windows27 and to use Driver 
Verifier28 to ensure that the kernel and vulnerable 
drivers are not left in an unstable state due to 
their exploitation. Nobody wants to be known for 
producing exploits that result in blue screens.

At this point, with a proof of concept in hand that 
is capable of executing privileged code, it is hard 
not to wonder why the RussianDoll authors 
stopped at getting SYSTEM privileges. Why not 
load a kernel rootkit to further avoid detection? 
As it turns out, there are many good reasons not 
to do this. Attackers are economically motivated 
to expend the smallest amount of effort possible 
to accomplish each mission. Thus, effort might be 
wasted crafting anything more sophisticated 
than what is necessary. Additionally, 
implementing increased kernel functionality 
increases the risk of crashing a system during an 
operation, which in turn increases the expense of 
testing and mission assurance.

The risk and cost associated with kernel-based 
capabilities can be worthwhile for scenarios 
where kernel privilege offers a unique capability 

that cannot be duplicated by user-space code, 
or where stealth parameters entail a low-level 
capability. Examples that arise from time to time 
in the course of red team operations are hiding 
processes or logging keystrokes without 
interference from antivirus. For this reason, we 
explore what is necessary to develop an 
unsigned driver loader capable of loading 
encrypted, unsigned driver images over the 
wire. Beyond its powerful offensive potential, 
this sort of tool also has interesting implications 
in computer security research.

Building an unsigned driver loader requires only a 
few features on top of the exploit code:

•	 Parsing PE-COFF driver images
•	 Dynamic linking
•	 Writing kernel code to be executed from a 

user address space
•	 Optionally downloading and/or decrypting 

the payload

This process is made significantly easier by 
obtaining a copy of the Windows Driver Kit29. A 
Windows kernel programming tutorial is outside 
the scope of this article, but one can find a very 
pragmatic introduction in chapter 2 of “Rootkits: 
Subverting the Windows Kernel”30.

For this project, we lay out four milestones:

•	 Write a stand-alone driver that can  
load other drivers

•	 Integrate kernel code with the  
user-space exploit

•	 Add network code
•	 Add encryption

Assuming you already have a test driver, the 
first milestone is to write a driver that can load 
other drivers. You could certainly start 
augmenting the user-space exploit directly, but 
writing a stand-alone driver makes it easier to 
use tools like WinDbg and Driver Verifier to 
validate the initial capability.

27	 https://msdn.microsoft.com/en-us/library/windows/hardware/Ff543457(v=VS.85).aspx
28	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff545448(v=vs.85).aspx
29	 https://msdn.microsoft.com/en-us/windows/hardware/gg454513.aspx
30	 http://www.amazon.com/Rootkits-Subverting-Windows-Greg-Hoglund/dp/0321294319

https://msdn.microsoft.com/en-us/library/windows/hardware/Ff543457(v=VS.85).aspx 
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545448(v=vs.85).aspx
https://msdn.microsoft.com/en-us/windows/hardware/gg454513.aspx
http://www.amazon.com/Rootkits-Subverting-Windows-Greg-Hoglund/dp/0321294319
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In writing a driver loader, you have the option of 
writing code using ZwCreateFile and 
ZwReadFile31 to read the driver from disk, or 
simply encoding a buffer in your test driver for 
the time being. Since we’re ultimately planning to 
pull the payload down from the network, there’s 
not much point in writing code to read it from 
disk. So, I suggest using xxd32 with the -include 
flag to translate your hello.sys into a C-style 
buffer declaration (Vim for Windows33 
conveniently includes a port of xxd).

To parse the resulting buffer, you can opt to include 
WinNT.h and navigate the PE headers yourself, 
however it is more productive to examine and reuse 
existing code. There are multiple user-space loader 
implementations34 ,35 available that can provide a 
start. These will require you to hammer the PE 
header definitions from WinNT.h into compatibility 
with kernel data types, but this is well worth the 
work to avoid reinventing the wheel altogether36.

Next, you’ll need to identify and import kernel 
functions. Figure 31 shows CFF Explorer37 displaying 
imports for hello.sys: DbgPrint and KeBugCheckEx.

31	 See the Windows Driver Kit help files for API details.
32	 http://linux.die.net/man/1/xxd
33	 http://www.vim.org/download.php#pc
34	 https://github.com/fancycode/MemoryModule
35	 https://github.com/stephenfewer/ReflectiveDLLInjection
36	 Conveniently, if you find yourself writing a kernel driver loader for Linux, you can find your “example code” for ELF parsing  
	 within the Linux kernel source code.
37	 http://www.ntcore.com/exsuite.php

Figure 31: 
CFF Explorer 
displaying hello.sys 
imports

http://linux.die.net/man/1/xxd
http://www.vim.org/download.php#pc
https://github.com/fancycode/MemoryModule
https://github.com/stephenfewer/ReflectiveDLLInjection
http://www.ntcore.com/exsuite.php
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As long as your payload only references ntoskrnl.exe, 
your loader can use the kernel’s 
MmGetSystemRoutineAddress routine38 to resolve 
symbols exported by the kernel or Hardware 
Abstraction Layer (HAL). This does not significantly 
constrain the utility of the resulting loader since 
many rootkits can be written using only functions 

from ntoskrnl.exe. If your payload references other 
modules, you will need to write code to locate each 
module base address and parse the driver to locate 
its exported functions. Figure 32 shows import 
resolution for a simple keystroke logger as an 
example of a module that only requires functions 
exported by ntoskrnl.exe.

38	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff554563(v=vs.85).aspx
39	 http://www.rohitab.com/discuss/topic/40696-list-loaded-drivers-with-ntquerysysteminformation/

Figure 31: 
CFF Explorer 
displaying hello.sys 
imports

After you’ve parsed the headers and populated 
the import table, you’re ready to call the entry 
point. To rapidly test and develop without 
rebooting, you’ll want to implement an unload 
routine to call ChildPDO->OnUnload if one has 
been registered by the payload. Before 
integrating your loader with an exploit, test with 
Driver Verifier and a checked build of Windows, 
to detect any subtle errors.

Once you have tested the stand-alone loader 
driver, you can migrate it to user space. In the 
case of CVE-2015-1701, there is proof of 
concept code available on the Internet3. Since 
your loader is likely to import more than one or 
two functions, you’ll want to refactor the 
NtQuerySystemInformation wrapper39 so you 
can conveniently look up arbitrary kernel 
functions from user-space. Then, initialize a 

https://msdn.microsoft.com/en-us/library/windows/hardware/ff554563(v=vs.85).aspx
http://www.rohitab.com/discuss/topic/40696-list-loaded-drivers-with-ntquerysysteminformation/
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function pointer for each function imported by 
your stand-alone loader driver, and port the 
driver to user space. Consider whether you plan 
to leak the memory you allocated and leave the 
payload permanently resident in memory, or 
create some way for a user-space control 
application to call OnUnload and cause the 
memory to be cleared and reclaimed.

With the heavy lifting done, you can add 
networking code. Depending on the egress rules 
and security controls in place at the 
organizations you are assessing, you might 
choose to directly use WinSock40 and an 
arbitrary port, or you might choose WinHTTP41 
or WinInet42 and use the HTTPS protocol.

If you are not using an encrypted protocol to 
transmit your driver, you may wish to add 
encryption. Depending upon your development 
schedule, size constraints, and other factors, you 
might choose to either directly integrate 
something like the Rijndael AES algorithm43 
(taking care to implement your own cipher mode), 
or build against a full-featured library44 ,45. Note 
that if you opt to build against a full-featured 
library, it is easier to do so at this stage with the 
driver loader already ported to user space, than 
porting the library to the kernel to integrate it 
with the stand-alone driver.

This describes the engineering effort required to 
build an unsigned driver loader on top of a kernel 
escalation of privilege exploit. The resulting code 
can be reused by integrating it with any exploit 
that provides execution of arbitrary code in the 
kernel. There are limitations, however. For 
instance, this code cannot load filesystem 

mini-filters46 because the FltRegisterFilter47 
routine requires configuration data from the 
registry. Even so, this loader can work with many 
different kernel rootkits.

The existence of publicly available code that can 
produce a powerful rootkit loader underscores 
the importance of prompt patching, the 
ineffectiveness of user-space endpoint security 
solutions in some cases, and the potential for 
simulating advanced red team scenarios. The code 
we’ve seen used by the RussianDoll developers 
(and by myself) is widely available17, easily reused9, 
and often many years old11.

For defenders, this should hit home how feasible it 
is for a moderately sophisticated attacker to 
cobble together a powerful and stealthy capability 
and launch it the same day that an exploit 
becomes available to them. This underscores the 
urgency of closing the loop on patch cycles.

For security researchers, this kind of tool 
exemplifies that observing user-space behaviors 
and features is insufficient to evaluate threats. It 
also demonstrates why virtualization and 
whole-system analysis will be key for 
instrumenting and detecting the most advanced 
threats: you can’t trust kernel-based security 
software because you can’t trust the kernel.

Finally, as a red teamer, this provides avenues for 
advanced attacks. Our hypothetical example was 
collecting a two-factor token from a user in a case 
where endpoint security solutions have interfered 
with commonly used tools, but your imagination is 
the only limit on how this can be applied.

40	 https://msdn.microsoft.com/en-us/library/windows/desktop/ms740632(v=vs.85).aspx
41	 https://msdn.microsoft.com/en-us/library/windows/desktop/aa384081(v=vs.85).aspx
42	 https://msdn.microsoft.com/en-us/library/windows/desktop/aa385331(v=vs.85).aspx
43	 http://www.efgh.com/software/rijndael.htm
44	 http://openssl.org/
45	 https://tls.mbed.org/
46	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff540402(v=vs.85).aspx
47	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff544305(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms740632(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384081(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385331(v=vs.85).aspx
http://www.efgh.com/software/rijndael.htm
http://openssl.org/
https://tls.mbed.org/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff540402(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff544305(v=vs.85).aspx
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FireEye protects the most valuable assets in the world from those who have them in their sights. Our combination of 
technology, intelligence, and expertise—reinforced with the most aggressive incident response team—helps eliminate 
the impact of security breaches. We find and stop attackers at every stage of an incursion. With FireEye, you’ll detect 
attacks as they happen. You’ll understand the risk these attacks pose to your most valued assets. And you’ll have the 
resources to quickly respond and resolve security incidents. The FireEye Global Defense Community includes more 
than 2,700 customers across 67 countries, including over 157 of the Fortune 500.

In this analysis, we shared tools and techniques that 
defensive security professionals can use to conduct 
enhanced analysis of malware, and discussed the 
steps necessary for red team analysts to synthesize 
powerful offensive tools based on malware used by 
advanced persistent threat actors. As defensive 
security controls raise the bar to attack, attackers 
will employ increasingly sophisticated techniques to 

complete their mission. Understanding the 
mechanics and impact of these threats, then, is the 
next step in systematically discovering and 
deflecting the coming wave of advanced attacks.

We would like to thank Yu Wang of the FireEye 
exploit analysis team for his notes on CVE-2015-
1701, which accelerated the timeline for 
assembling a coherent analysis approach.
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