
A FireEye® Company

SECURITY
CONSULTING

W H I T E P A P E R

Lessons from Operation
RussianDoll, January 2016

By Michael Bailey

MATRYOSHKA MINING

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Introduction. . 3

Lay of the Land – Static Analysis with IDA. 3

Beneath the Surface – Dynamic Analysis with WinDbg. . 9

Digging Deeper – Analysis of a win32k.sys Exploit . . 16

Striking Gold – Building Red Team Tools. . 23

Conclusion. . 28

CONTENTS

About This Paper

Consultants at Mandiant, a FireEye Company, have helped evaluate and enhance the cyber security programs of
customers of all sizes across a range of industries around the world. This paper draws on the combined experience of
our consultants over the course of hundreds of these service engagements. While we have withheld some identifying
details for the privacy of our clients, the stories are real. The insights, advice, and examples presented here represent
more than a decade of work helping clients reduce risk and improve their security posture.

3

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

1	 https://www.fireeye.com/blog/threat-research/2015/04/probable_apt28_useo.html
2	 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1701
3	 Available at https://github.com/hfiref0x/CVE-2015-1701/
4	 https://blog.skullsecurity.org/2010/taking-apart-the-energizer-trojan-part-3-disassembling
5	 https://www.nostarch.com/malware
6	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx

H
erein, we will study the exploit for
CVE-2015-17012 embedded within the
un-obfuscated 64-bit RussianDoll

payload (MD5 hash 54656d7ae9f6b89413d5b2
0704b43b10). If you don’t have a copy of this
particular binary, you can follow along with an
open-source proof of concept (varying in its
details, but having similar functionality)3.

We’ll first walk through the payload and see how
to loosely identify what it does once it has gained
kernel privilege. Then, we’ll discuss how to get
higher-resolution answers from reverse
engineering by using WinDbg to confirm
assumptions, manipulate control flow, and
observe exploit behavior. Building on this and
other published sources, we’ll assemble a
technically detailed exploit analysis by examining
the relevant portions of win32k.sys. Finally, we’ll
close by discussing how to extract and augment
this exploit to load encrypted, unsigned drivers
into the Windows 7 x64 kernel address space.

INTRODUCTION
This article provides a multi-faceted analysis of the exploit payload referenced in the
FireEye Operation RussianDoll1 blog post. The information herein is intended for
malware triage analysts, reverse engineers, and exploit analysts with a full understanding
of x86 and basic experience with IDA, and provides tools and background information to
recognize and analyze other, future exploits. This article goes on to discuss how red team
analysts can apply these principles to carve out exploit functionality or augment exploits
to produce tools that will enhance operational effectiveness.

Lay of the Land – Static Analysis
with IDA

We will first survey the lay of the land by static
analysis with IDA. If you’re new to IDA, check out
Skull Security’s 2010 blog about using IDA to
dissect the Energizer Trojan4. For a more in-depth
treatment, Practical Malware Analysis5 is very
instructive. Finally, MSDN offers a useful review
of the x64 processor architecture6.

Our first lead has been given to us: an exploit in
this sample gains SYSTEM privileges by abusing
the CreateWindowEx API. So, we drop it into IDA
and follow the p-type xref for CreateWindowExW
and see that CreateWindowExW is referenced by
a call instruction in the StartAddress thread
routine. Figure 1 shows the relevant call setup for
CreateWindowEx.

https://www.fireeye.com/blog/threat-research/2015/04/probable_apt28_useo.html
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1701
https://github.com/hfiref0x/CVE-2015-1701/
https://blog.skullsecurity.org/2010/taking-apart-the-energizer-trojan-part-3-disassembling
https://www.nostarch.com/malware
https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx

4

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Figure 1:
CreateWindowEx
call setup for
lpClassName

Figure 2:
Window Class name
and structure

Microsoft’s documentation for CreateWindowEx7 indicates that the function will create an instance of
the window class whose name is specified in its second argument, lpClassName, which in this case we can
trace back to the string “TEST” Figure 2 shows the relevant setup for the call to RegisterClass.

From here, we can also see that the window
procedure is the callback sub_14001230. The
window procedure is of particular interest
because it is normally executed after

CreateWindowEx is called, so we examine it.
Figure 3 shows the first significant block of code
in the window procedure, containing a pair of
unknown local variables, an unknown global
variable, and an unknown function pointer.

7	 https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx

5

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Figure 3:
CreateWindowEx
call setup for
lpClassName

Figure 4:
Initialization of
global referenced in
window procedure

We find the initialization of dword_140012AFC by following the lone write xref to it. Figure 4 shows that
dword_140012AFC receives the return value of GetCurrentProcessId.

Hence, we rename dword_140012AFC to “currentPID” and move on to pursuing qword_140012AD8.
Figure 5 shows the sole write xref to this function pointer, with its value coming from GetProcAddress.

6

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Figure 3:
CreateWindowEx
call setup for
lpClassName

We can see that the lpProcName argument to
GetProcAddress is
“PsLookupProcessByProcessId”; according to
MSDN8, PsLookupProcessByProcessId is exported
by NtosKrnl.exe, making it a kernel routine.

This lookup is preceded by a call to a subroutine
that uses the undocumented
NtQuerySystemInformation function to obtain
module information for ntoskrnl.exe9. The
malware then calls LoadLibraryExA to load
ntoskrnl.exe, calls GetProcAddress to find

PsLookupProcessByProcessId, and calculates the
kernel address of the routine.

We now know that the window procedure
supplies the malware’s PID to
PsLookupProcessByProcessId to obtain a
pointer to its own executive process (_
EPROCESS) block. Figure 6 shows the window
procedure code with the
PsLookupProcessByProcessId procedure
address and the malware’s _EPROCESS block
both labeled.

8	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff551920(v=vs.85).aspx
9	 A source code example of this can be seen at http://www.rohitab.com/discuss/topic/40696-list-loaded-drivers-with-ntquerysysteminformation/

https://msdn.microsoft.com/en-us/library/windows/hardware/ff551920(v=vs.85).aspx
http://www.rohitab.com/discuss/topic/40696-list-loaded-

7

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Figure 6:
Window procedure
obtaining malware’s
_EPROCESS block

Figure 7:
Window procedure
obtaining
_EPROCESS block
for PID 4

Figure 7 shows the subsequent code block, which also calls PsLookupProcessByProcessId, this time
providing the hard-coded constant 4 for System.

Seven instructions later, we see that the malware
steals the process token from the System
process. Figure 8 shows data being copied from
the offset within dword_140012AF8 (which

contains 0x208) in the System process’s
_EPROCESS block into the malware’s. As we will
see later, this is the address of the privileged
token used by the System thread.

8

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Figure 8:
Window procedure
copying data from
System _EPROCESS
block

What if there was no helpful lead? What would
tip off a triage analyst to the presence of a kernel
escalation of privilege? One sign is an unpacked
binary containing strings referencing native API

functions10. Figure 9 shows the strings from the
Operation RussianDoll payload, which include
the kernel function we found,
PsLookupProcessByProcessId.

Figure 9:
Strings from malware
sample including
PsLookupProcess
ByProcessId

Looking this function up on MSDN showed that it is
exported by ntoskrnl.exe, making it a kernel function.
A reference to such a function constitutes a lead that
should be followed. This same technique has been
observed in local privilege escalation exploits going

back a long time, such as MS11-04611. You can
confirm your suspicions about this function by using
a kernel debugger to set a process-specific
breakpoint on nt!PsLookupProcessByProcessId so
that you can examine the call stack, which is what we
will do next.

10	 https://en.wikipedia.org/wiki/Native_API
11	 https://www.exploit-db.com/docs/18712.pdf

https://en.wikipedia.org/wiki/Native_API
https://www.exploit-db.com/docs/18712.pdf

9

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Beneath the Surface – Dynamic
Analysis with WinDbg

To observe the activity of a kernel privilege
escalation exploit, our best bet is a kernel debugger
such as WinDbg. WinDbg can invasively debug
user-space malware and provides powerful tools to
observe its activity in kernel space. MSDN provides
extensive software and setup information regarding
WinDbg12, 13, 14, 15. You might also consider using
VirtualKD16 to quickly connect to VMware guests.

WARNING – Do not install or run malware without
first setting up a safe environment.

Recall from the previous section that the
malware copies data from offset 208h within the
System process’s _EPROCESS block to the
malware’s _EPROCESS block. To confirm our
suspicion that 208h is the offset of the access
token within the _EPROCESS block, we can use
WinDbg’s dt command:

dt nt!_EPROCESS

Figure 10 shows output from WinDbg that
corroborates our identification of the token
stealing routine within the malware.

Figure 10:
Abbreviated listing
of _EPROCESS type
in WinDbg

12	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
13	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff538143(v=vs.85).aspx
14	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff556866(v=vs.85).aspx
15	 https://support.microsoft.com/en-us/kb/311503
16	 http://virtualkd.sysprogs.org/

https://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff538143(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff556866(v=vs.85).aspx
https://support.microsoft.com/en-us/kb/311503
http://virtualkd.sysprogs.org/

10

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

There at offset 0x208 is the Token. After the
malware copies the token from the System process,
the kernel’s Security Reference Monitor gives the
malware the royal treatment: SYSTEM-level access.

Observing the escalation of privilege in action,
however, takes a little more work. Static analysis
reveals that the malware calls GetSidSubAuthority

and checks whether it is running at the
SECURITY_MANDATORY_LOW_RID (1000h)
integrity level, a procedure that is documented by
Microsoft17. The malware only executes its exploit
if it detects that it is running in a low-integrity
process. Figure 11 shows the call to
GetSidSubAuthority and the comparison against
SECURITY_MANDATORY_LOW_RID.

Figure 11:
Low-integrity
process check as
seen in IDA

Figure 12:
PspInsertProcess
breakpoint activated
by malware
execution

To induce the malware to escalate privilege, we’ll
halt it before it slips past this check, lie to it about
its access level, and catch it calling
PsLookupProcessByProcessId. To catch the
malware before it gets too far, we use an
instrumented breakpoint to trigger before the
Process Manager adds each process to the process
list. We can also get some additional mileage out of

the dt command to read the ImageFileName
member of the _EPROCESS block:

bp nt!PspInsertProcess “dt nt!_EPROCESS @
rcx ImageFileName”

We can then run the malware. Figure 12 shows
54656d7ae9f6b89413d5b20704b43b10.exe
activating the PspInsertProcess breakpoint.

To let nt!PspInsertProcess do its job, we continue (with gu: “go up”) until nt!PspInsertProcess returns to
nt!NtCreateUserProcess, at which point our malware’s process object has been added to the process list.
Figure 13 shows the abbreviated output of the !process command.

17	 https://msdn.microsoft.com/en-us/library/bb625966.aspx

https://msdn.microsoft.com/en-us/library/bb625966.aspx

11

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Figure 13:
Process object for
54656d7ae9f6b8
9413d5b20704b4
3b10.exe

Figure 14:
Invasively debugging
54656d7ae9f6b8
9413d5b20704b4
3b10.exe

We could then copy the address of the process
object and supply it to the /i (“invasive”) switch of
the .process command, causing WinDbg to

invasively debug the malware. Figure 14 shows this
two-step procedure which requires us to issue the
g command to allow a process context switch.

We next set a user-space breakpoint on
advapi32!GetSidSubAuthority, specifying the bp
command’s /p (“process”) switch to break only
when the malware calls this function:

bp /p fffffa80`0242cb30
advapi32!GetSidSubAuthority

Figure 15 shows this breakpoint activating within
a function whose job it is to jump to the real
GetSidSubAuthority function.

12

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Figure 15:
GetSidSubAuthority
breakpoint activated
by malware

We run until GetSidSubAuthority returns into the malware’s code, and disassemble the code at the
instruction pointer. Figure 16 shows that this lands us in the malware’s low-integrity check.

Figure 16:
Low-integrity
process check as
seen in WinDbg

Figure 17:
Checking rcx against
1000h

Stepping through the low-integrity check, we see that we are about to compare the value of the register
ecx with the hard-coded constant 1000h. But as Figure 17 shows, rcx instead contains 2000h.

To make the malware execute its exploit, we tell it that it is running in a low-integrity process by writing
the value 1000h to ecx:

r @ecx = 1000h

13

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

We then set a process-specific breakpoint to trigger
when the malware executes the kernel function
nt!PsLookupProcessByProcessId. Figure 18 shows
rcx being manipulated, the process-specific

breakpoint being set on
PsLookupProcessByProcessId, and the new
breakpoint being activated by the malware privilege
escalation code after execution is resumed.

Figure 18:
Inducing and
halting on privilege
escalation

Figure 19:
Annotated stack
trace of kernel
privilege escalation

To confirm the privilege escalation, we examine the stack trace. Figure 19 shows the stack trace, which
confirms that we caught the privilege escalation.

As can be seen above, the malware sample’s
module name, 54656d7ae9f6b89413d5b20704b
43b10, appears in both user space and kernel
space. This is how the malware manages to copy

the access token from the System thread’s
EPROCESS block into its own as we observed by
reverse engineering. Escalation: achieved.

14

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

What if the malware executed the
GetSidSubAuthority call before the conclusion of
the two-step invasive debugging procedure? A
more reliable (but more time-intensive) approach
to gain control is to locate the file offset of an
instruction where you want to break, take note of

the original byte value in that location, and patch it
with the single-byte opcode for the icebp18
instruction, F1h. At runtime, this will get the kernel
debugger’s attention, at which point you can fix the
instruction and move on. Figure 20 shows the
process of rewinding the instruction pointer by one
byte and restoring the original opcode.

Figure 20:
Catching and fixing
an icebp instruction

In the course of analysis, this process may need to
be repeated many times, as well as the process of
altering the result of GetSidSubAuthority to
shepherd the malware into escalating privilege. In

order to automate this repetitive procedure and
focus on the analysis, you could use a WinDbg
script, such as the following.

18	 http://www.rcollins.org/secrets/opcodes/ICEBP.html

15

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Listing 1:
WinDbg script to
halt exploit

$$ Run Operation RussianDoll payload until its wndproc is executed, dumping
$$ @rcx (hWND) as win32k!tagWND. Requires that payload has been interrupted
$$ and WinDbg process context is in payload due to an icebp patch at file
$$ offset 2A57h.

.printf “Fixing icebp\n”
r rip=@rip-1
eb @rip 0x57

.printf “Setting breakpoint on GetSidSubAuthority\n”

.reload /user
bp /p @$proc advapi32!GetSidSubAuthority
.printf “Running...”
g

.printf “Altering GetSidSubAuthority SID to be low integrity (1000h)\n”

.printf “This instigates exploit to run\n”
gu
p
r ecx=1000h
.printf “Setting breakpoint on RegisterClassW\n”
bp /p @$proc user32!RegisterClassW
.printf “Running...”
g

.printf “Setting breakpoint on lpfnWndProc before calling RegisterClassW\n”
bp /p @$proc poi(@rcx+8)
g

.printf “Halted at WndProc\n”
u @rip

After confirming that the reverse engineering analysis was correct, the most interesting question
becomes: how does the exploit work? In the next section, we explore this in technical detail.

16

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Digging Deeper – Analysis of a
win32k.sys Exploit

TrendMicro has published an analysis of CVE-
2015-170119. No doubt this is based on a much
more technical analysis that touches on the
intricacies of many Windows internals. Here, we
observe the exploit’s interaction with win32k.sys
to synthesize a more technically elaborate
analysis of the vulnerability. This process will
allow us to identify the concept of operations of
this exploit in greater detail, and will build
experience necessary to independently analyze
win32k.sys exploits without the aid of any other
published analysis in future cases.

Exploit analysis hinges on familiarizing oneself not
only with the malicious sample at hand, but also
the vulnerable software itself, which is the context
in which an exploit does its work. In many cases,
this can entail extensive reverse engineering.
Fortunately, we will see that win32k.sys
exploitation is a well-documented topic. In
addition to the literature, there are sometimes
publicly available resources disclosing old
Windows NT source code, although these can be
subject to takedowns20. In lieu of source code, the
ReactOS project21 can serve as a useful model of
many Windows NT kernel internals and
definitions. Additionally, Alex Ionescu’s Native
Development Kit (NDK)22 provides some
definitions that can be useful for stand-alone
development, such as proof of concept work.

To get started with our analysis, we note that
TrendMicro’s analysis alludes to a “Server Side
Window Proc” flag. Literature can be found dating
back several years23 as well as more recently24
discussing the role of the server-side window
procedure flag within the window object. Win32k.
sys defines a structure called tagWND which
contains information about each window object
derived from a given window class. Within the
tagWND object are the bServerSideWindowProc
flag and the lpfnWndProc function pointer, which

we will use as anchors for our analysis of CVE-
2015-1701. These and other members can be
explored within an active kernel debugging or
crash analysis session of WinDbg with the dt
command, such as:

dt win32k!tagWND

So, we understand that this exploit works by
causing win32k.sys to set the
bServerSideWindowProc flag within a tagWND
object while a user-specified function address is
resident in the lpfnWndProc member of the same
window object; this results in the user-specified
address being executed with kernel privilege. But
how exactly does this happen?

Recall that in Figure 19, we saw
win32k!xxxCreateWindowEx in the call stack at
the time when the exploit achieved kernel
execution. We can begin by finding the address of
the tagWND structure and watching accesses to
its bServerSideWindowProc flag (byte at offset
2Ah) and lpfnWndProc (pointer at offset 90h)
members to identify how the flag and window
procedure arrive at the values they do. Win32k.
sys uses a special function,
win32k!HMAllocObject, to create window
objects, which is how we can identify the new
window as it is created. Within
xxxCreateWindowEx, there is a single call to
HMAllocateObject, hence breaking on this
address should yield the address of the new
window object within the register rax after the
HMAllocObject call returns.

Since bServerSideWindowProc is a member of a
bitfield, we choose to break on a one-byte write to
the exact byte that it occupies at PWND+2Ah.
Figure 21 shows WinDbg breaking on write
access to the byte location of
bServerSideWindowProc upon the first access by
the SetOrClrWF routine. This call stack provides
useful information later in the analysis.

19	 http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-cve-2015-1701-a-win32k-elevation-of-privilege-vulnerability-used-in-targeted-attacks/
20	 For example, here is a Chinese github user’s WinNT4 repository that was subject to a DMCA takedown: https://github.com/njdragonfly/WinNT4
21	 https://www.reactos.org/
22	 https://code.google.com/p/native-nt-toolkit/
23	 https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
24	 https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2015/08/2015-08-27_-_ncc_group_-_exploiting_ms15_061_uaf_-_release.pdf

http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-cve-2015-1701-a-win32k-elevatio
https://github.com/njdragonfly/WinNT4
https://www.reactos.org/
https://code.google.com/p/native-nt-toolkit/
https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2015/08/2015-08-27_-_ncc_group_-

17

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Figure 21:
First bitfield access
in same byte as
bServerSideWindowProc

Figure 22:
Server-side window
procedure flag set

The SetOrClrWF function generically sets or
clears window flags. Pausing to analyze
SetOrClrWF, we find that the third argument
dictates which flag is set, and 0x204 is the unique
value for this argument that will induce

SetOrClrWF set the bServerSideWindowProc
flag. Knowing this, the second access to
PWND+0x2Ah is notable because SetOrClrWF is
provided with the value 0x204. Figure 22 shows
the specific flags being set with SetOrClrWF.

18

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

From the call stack (see Figure 21), we can see
that the malware calls SetWindowLongPtr, which
is responsible for ultimately causing
bServerSideWindowProc to become set (see
Figure 22). The argument that the exploit provides
to SetWindowLongPtr is 0xfffffffc, which is a
DWORD representation of -4. Microsoft's
documentation for SetWindowLongPtr25 defines
the symbol GWLP_WNDPROC as -4, stating that
it "Sets a new address for the window procedure."
Further analysis shows that the malware uses this
to set its window procedure to the default window
procedure. Because win32k.sys defines the
default window procedure,
xxxSetWindowDataLong sets
bServerSideWindowProc to indicate that it trusts
this procedure to be executed in the kernel.

It would make sense to repeatedly use the gu
command in WinDbg to unwind the stack and see
how the malware’s function is invoked, however
this can lead to some confusion due to the way
64-bit user-mode callbacks behave on Windows
and what information is available to WinDbg to
interpret system state. At this point, we go back to
the sample and see that the function that calls
SetWindowLongPtr was written to a location
within the process environment block (PEB)
member named KernelCallbackTable. Figure 23
shows a location within the kernel callback table
being calculated and saved in register rbx before
its value is exchanged with the address of the
malware’s malicious callback.

Figure 23:
User callback hooking

25	 https://msdn.microsoft.com/en-us/library/windows/desktop/ms644898(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms644898(v=vs.85).aspx

19

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

26	 Note that if you choose to compare against a 32-bit process on a 64-bit machine, you will see WoW64 equivalents for these callbacks; in this case, disregard the
“whcb” prefix and focus on the rest of the API name.

We can learn the name of the function whose
address was overwritten by inspecting the
callback table and looking for the malicious
function in the callback table, then comparing this

with a normal callback table. Figure 24 shows how
WinDbg can be used to find the offset of the
callback table from the PEB.

Figure 24:
Determining PEB
KernelCallbackTable
offset

Figure 25:
Malware kernel
callback table

Using the offset 58h, we can use the dps (“Display
words and Symbols”) command in WinDbg to
examine the relevant callbacks. Judging by the
presence of NULL pointers and the nomenclature
of symbol names within the table, we can infer
that there are 105 (69h) callbacks in the table. To
dump them, we can issue the following command:

dps poi($peb+58h) L69h

Figure 25 shows an excerpt of the resulting list of
functions, all of which are within user32.dll except
for the one located at offset 0x36, which instead is
in the malware’s address space.

Figure 26 shows a parallel excerpt of the callback table in a normal 64-bit process, revealing that the
overridden callback in the malware is known as _ClientCopyImage26.

20

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Figure 26:
Kernel callback table
for 64-bit svchost.exe

Figure 27:
Locating callback site

We can quickly search through win32k.sys for
symbols named like ClientCopyImage with
WinDbg, as follows:

x win32k!*clientcopyimage*

Doing so, we find only one symbol with a name
similar to ClientCopyImage, namely
xxxClientCopyImage. IDA Pro shows three
references to this function, any of which could be
a call site we need to investigate:

•	 xxxCreateWindowSmIcon+B1
•	 xxxCreateClassSmIcon+8D
•	 xxxLoadDesktopWallpaper+1A0

A quick approach to triaging these for
investigation is to set a breakpoint on each of
them, along with the malicious callback, to see
which breakpoint is hit immediately prior to the
callback. Figure 27 shows that this reveals
xxxCreateClassSmIcon as the function
responsible for calling the malware’s
ClientCopyImage callback.

21

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Figure 28 shows an excerpt from xxxClientCopyImage, which adds 18h to 1Eh and passes the resulting
constant, 36h, to the KeUserModeCallback function.

Figure 28:
xxxClientCopyImage
setting up call
to user32!_
ClientCopyImage

Figure 29:
Assignment of
lpfnWndProc from
tagCLS

KeUserModeCallback ultimately uses this
argument as an index into the callback table in the
PEB, resulting finally in the call to the hooked
ClientCopyImage callback located 36h bytes off
the base of the callback table. Meanwhile, the call
stack at xxxCreateClassSmIcon+0x8d reveals that
xxxCreateWindowEx was the caller of
xxxCreateClassSmIcon.

At this point, we’ve watched
bServerSideWindowProc and worked backwards
to assemble three key facts about the exploit’s
interaction with win32k.sys:

•	 The exploit hooks the _ClientCopyImage
callback before xxxCreateWindowEx
begins its work

•	 xxxCreateWindowEx calls
xxxCreateWindowSmIcon, which in turn
transitions back to user mode and calls the
hooked _ClientCopyImage function

•	 Within the malicious _ClientCopyImage hook,
the exploit calls SetWindowLongPtr, which
changes the malware’s window procedure to a
server-side (kernel) default window procedure

The final question is, how does the malicious
window procedure ever get executed once the
exploit has told win32k.sys to set point its window
procedure to one of the kernel's default routines?
We can learn this by monitoring changes to
lpfnWndProc within the window object.

Using the same technique as before of breaking
on HMAllocObject within xxxCreateWindowEx,
we can locate the window object and break on
write accesses to its window procedure,
lpfnWndProc. When we do, we note that the first
access is the one we already knew about, which is
caused by the malware’s _ClientCopyImage
callback. The second write to lpfnWndProc
answers our question. Figure 29 shows
xxxCreateWindowEx writing to lpfnWndProc.

22

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

The answer is that prior to this point in the
window creation process, xxxCreateWindowEx
has yet to execute the normal code path in which it
assigns a window procedure to the new window

object. Figure 30 shows the location of this
overwrite, which occurs directly after the call to
xxxCreateClassSmIcon within
xxxCreateWindowEx. Here, the result of

Figure 30:
lpfnWndProc
overwrite

MapClientNeuterToClientPfn is assigned to
lpfnWndProc for the new window.
MapClientNeuterToClientPfn’s job is to compare
the window procedure that the application
originally registered in its window class against
numerous standard window procedures and
finally return either the appropriate standard
window procedure, or the unique function
registered by the user-space application if no
match is found. xxxCreateWindowEx then copies
this value into lpfnWndProc. The problem is that
this is not accompanied by any evaluation of
whether the bServerSideWindowProc flag should
be set or cleared. Because there is no such check,
and because xxxCreateWindowEx indirectly
called a user-controlled pointer that can be
hooked by a malicious application,
xxxCreateWindowEx is vulnerable to a kernel
escalation of privilege that will execute arbitrary
user-specified code.

In the absence of any public analysis or
knowledge of what we are looking at, how do we
come to these conclusions independently? The

techniques described in this article provide a
path toward identification of some classes of
exploits, particularly those that attack the kernel.
In this case, we identified kernel symbol names
within the malware. Following the references to
these names yielded function pointers that we
used as breakpoint locations in a kernel debugger
to confirm that kernel execution was achieved.
When the breakpoint was not hit, we identified
conditions (the LOW_INTEGRITY RID value)
that needed to be manipulated to coerce the
malware into launching its exploit. In the case of
a previously unseen and uncategorized malware
sample, the stack trace at this point can provide a
starting list of potentially vulnerable functions to
examine. After tracing the malware and the
vulnerable software, it should be possible to
draw a conclusion about which code was
exploited. As for how it was exploited, this can
sometimes require deeper insight into the
vulnerable codebase, which can be gained
through source code (if available), literature
review, and reverse engineering.

23

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Other exploits may not execute arbitrary code.
Literature and source code may be unavailable.
Different leads may warrant different analysis
strategies based on tracing backward from
observations to identify what code is being
influenced and how. The specifics of analyzing a
particular exploit will vary, but it is hoped that the
techniques employed above can help you build
hypotheses, confirm them, and move on to the
subsequent step of your analysis.

Striking Gold – Building Red Team
Tools

If you are a red team operator, you may be asked
to safely extract an exploit from a malware sample
in order to escalate privileges or circumvent
controls in a particular scenario. There is evidence
to suggest that the developers of the Operation
RussianDoll payload have borrowed source code
from many public references. Several techniques
and code snippets found in the RussianDoll
payload can be found on the Internet, including:

•	 Getting information about modules loaded in
the kernel9

•	 Copying the System access token to one’s own
process11

•	 Evaluating the integrity level of one’s process17

Red team operators can likewise apply code
reuse to augment exploits such as this into even
more powerful capabilities. Depending on the
sophistication of the controls and processes in
your client’s organization, this can be a valuable
way to advance the goals of your operation while
improving the detection, prevention, and
response capabilities of that group. For example,
two-factor authentication in conjunction with
effective antivirus can increase the difficulty of
monitoring keystrokes or clipboard activity to
gain unauthorized access to sensitive resources.
In such cases, red teams may benefit from a
kernel-privileged tool that can evade antivirus
and collect the information necessary to achieve
the red team goal. Here, we outline the

challenges of extracting an exploit from malware
and building a tool that can download, decrypt,
and load an unsigned kernel driver without ever
having to write it to disk.

WARNING – Do not test kernel software on a
machine where you are not willing to lose all your files
due to a programming error.

The first tasks required to repurpose an exploit
found in the wild have already been described
above. Step one is to acquire a sample and observe
it in operation in a safe environment to verify that
the exploit was successful (as in the section
“Beneath the Surface – Dynamic Analysis with
WinDbg”). The second step is to understand the
minimum functionality necessary to duplicate the
exploit. Because the exploit code can be
intertwined with extraneous malware
functionality, the process of identifying the vital
elements is made much easier by finding or
producing an analysis of the vulnerability itself (as
in the section “Digging Deeper – Analysis of a
win32k.sys Exploit”). Once the core code of the
exploit has been identified, it is possible to
reproduce its functionality in source code.

In the case of the RussianDoll payload, the functional
elements of the exploit are roughly as follows:

•	 Registering a window class
•	 Hooking the _ClientCopyImage callback
•	 Creating a window
•	 Copying the System access token

Each functional element may comprise several
pieces. For example, hooking the _ClientCopyImage
callback entails at least four steps:

•	 Authoring a malicious callback to set the
default window procedure

•	 Locating the kernel callback table
•	 Altering memory protection for the kernel

callback table (to permit write access)
•	 Overwriting the _ClientCopyImage pointer

with the malicious callback address

24

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

Reproducing each element of the exploit in source
code may require the hard-coded offsets from the
malware to be reproduced in the software.
However, a better way to write an
understandable, stable, and maintainable proof of
concept is to understand and define the correct
structures. Understanding takes experience, such
as knowing (or researching) what it looks like
when a process accesses its PEB. As for
structures, Alex Ionescu’s NDK21 contains a set of
definitions that may be useful to this end.

Once you have reproduced the exploit
functionality, you can apply the same testing
methods from verifying the original exploit to
validate your proof of concept. Once validation is
complete, you should test the proof of concept on
each release of Windows that your team will use it
against. If the exploit executes or manipulates
kernel code, then it is wise to also test against
checked builds of Windows27 and to use Driver
Verifier28 to ensure that the kernel and vulnerable
drivers are not left in an unstable state due to
their exploitation. Nobody wants to be known for
producing exploits that result in blue screens.

At this point, with a proof of concept in hand that
is capable of executing privileged code, it is hard
not to wonder why the RussianDoll authors
stopped at getting SYSTEM privileges. Why not
load a kernel rootkit to further avoid detection?
As it turns out, there are many good reasons not
to do this. Attackers are economically motivated
to expend the smallest amount of effort possible
to accomplish each mission. Thus, effort might be
wasted crafting anything more sophisticated
than what is necessary. Additionally,
implementing increased kernel functionality
increases the risk of crashing a system during an
operation, which in turn increases the expense of
testing and mission assurance.

The risk and cost associated with kernel-based
capabilities can be worthwhile for scenarios
where kernel privilege offers a unique capability

that cannot be duplicated by user-space code,
or where stealth parameters entail a low-level
capability. Examples that arise from time to time
in the course of red team operations are hiding
processes or logging keystrokes without
interference from antivirus. For this reason, we
explore what is necessary to develop an
unsigned driver loader capable of loading
encrypted, unsigned driver images over the
wire. Beyond its powerful offensive potential,
this sort of tool also has interesting implications
in computer security research.

Building an unsigned driver loader requires only a
few features on top of the exploit code:

•	 Parsing PE-COFF driver images
•	 Dynamic linking
•	 Writing kernel code to be executed from a

user address space
•	 Optionally downloading and/or decrypting

the payload

This process is made significantly easier by
obtaining a copy of the Windows Driver Kit29. A
Windows kernel programming tutorial is outside
the scope of this article, but one can find a very
pragmatic introduction in chapter 2 of “Rootkits:
Subverting the Windows Kernel”30.

For this project, we lay out four milestones:

•	 Write a stand-alone driver that can
load other drivers

•	 Integrate kernel code with the
user-space exploit

•	 Add network code
•	 Add encryption

Assuming you already have a test driver, the
first milestone is to write a driver that can load
other drivers. You could certainly start
augmenting the user-space exploit directly, but
writing a stand-alone driver makes it easier to
use tools like WinDbg and Driver Verifier to
validate the initial capability.

27	 https://msdn.microsoft.com/en-us/library/windows/hardware/Ff543457(v=VS.85).aspx
28	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff545448(v=vs.85).aspx
29	 https://msdn.microsoft.com/en-us/windows/hardware/gg454513.aspx
30	 http://www.amazon.com/Rootkits-Subverting-Windows-Greg-Hoglund/dp/0321294319

https://msdn.microsoft.com/en-us/library/windows/hardware/Ff543457(v=VS.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545448(v=vs.85).aspx
https://msdn.microsoft.com/en-us/windows/hardware/gg454513.aspx
http://www.amazon.com/Rootkits-Subverting-Windows-Greg-Hoglund/dp/0321294319

25

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

In writing a driver loader, you have the option of
writing code using ZwCreateFile and
ZwReadFile31 to read the driver from disk, or
simply encoding a buffer in your test driver for
the time being. Since we’re ultimately planning to
pull the payload down from the network, there’s
not much point in writing code to read it from
disk. So, I suggest using xxd32 with the -include
flag to translate your hello.sys into a C-style
buffer declaration (Vim for Windows33
conveniently includes a port of xxd).

To parse the resulting buffer, you can opt to include
WinNT.h and navigate the PE headers yourself,
however it is more productive to examine and reuse
existing code. There are multiple user-space loader
implementations34 ,35 available that can provide a
start. These will require you to hammer the PE
header definitions from WinNT.h into compatibility
with kernel data types, but this is well worth the
work to avoid reinventing the wheel altogether36.

Next, you’ll need to identify and import kernel
functions. Figure 31 shows CFF Explorer37 displaying
imports for hello.sys: DbgPrint and KeBugCheckEx.

31	 See the Windows Driver Kit help files for API details.
32	 http://linux.die.net/man/1/xxd
33	 http://www.vim.org/download.php#pc
34	 https://github.com/fancycode/MemoryModule
35	 https://github.com/stephenfewer/ReflectiveDLLInjection
36	 Conveniently, if you find yourself writing a kernel driver loader for Linux, you can find your “example code” for ELF parsing
	 within the Linux kernel source code.
37	 http://www.ntcore.com/exsuite.php

Figure 31:
CFF Explorer
displaying hello.sys
imports

http://linux.die.net/man/1/xxd
http://www.vim.org/download.php#pc
https://github.com/fancycode/MemoryModule
https://github.com/stephenfewer/ReflectiveDLLInjection
http://www.ntcore.com/exsuite.php

26

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

As long as your payload only references ntoskrnl.exe,
your loader can use the kernel’s
MmGetSystemRoutineAddress routine38 to resolve
symbols exported by the kernel or Hardware
Abstraction Layer (HAL). This does not significantly
constrain the utility of the resulting loader since
many rootkits can be written using only functions

from ntoskrnl.exe. If your payload references other
modules, you will need to write code to locate each
module base address and parse the driver to locate
its exported functions. Figure 32 shows import
resolution for a simple keystroke logger as an
example of a module that only requires functions
exported by ntoskrnl.exe.

38	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff554563(v=vs.85).aspx
39	 http://www.rohitab.com/discuss/topic/40696-list-loaded-drivers-with-ntquerysysteminformation/

Figure 31:
CFF Explorer
displaying hello.sys
imports

After you’ve parsed the headers and populated
the import table, you’re ready to call the entry
point. To rapidly test and develop without
rebooting, you’ll want to implement an unload
routine to call ChildPDO->OnUnload if one has
been registered by the payload. Before
integrating your loader with an exploit, test with
Driver Verifier and a checked build of Windows,
to detect any subtle errors.

Once you have tested the stand-alone loader
driver, you can migrate it to user space. In the
case of CVE-2015-1701, there is proof of
concept code available on the Internet3. Since
your loader is likely to import more than one or
two functions, you’ll want to refactor the
NtQuerySystemInformation wrapper39 so you
can conveniently look up arbitrary kernel
functions from user-space. Then, initialize a

https://msdn.microsoft.com/en-us/library/windows/hardware/ff554563(v=vs.85).aspx
http://www.rohitab.com/discuss/topic/40696-list-loaded-drivers-with-ntquerysysteminformation/

27

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

function pointer for each function imported by
your stand-alone loader driver, and port the
driver to user space. Consider whether you plan
to leak the memory you allocated and leave the
payload permanently resident in memory, or
create some way for a user-space control
application to call OnUnload and cause the
memory to be cleared and reclaimed.

With the heavy lifting done, you can add
networking code. Depending on the egress rules
and security controls in place at the
organizations you are assessing, you might
choose to directly use WinSock40 and an
arbitrary port, or you might choose WinHTTP41
or WinInet42 and use the HTTPS protocol.

If you are not using an encrypted protocol to
transmit your driver, you may wish to add
encryption. Depending upon your development
schedule, size constraints, and other factors, you
might choose to either directly integrate
something like the Rijndael AES algorithm43
(taking care to implement your own cipher mode),
or build against a full-featured library44 ,45. Note
that if you opt to build against a full-featured
library, it is easier to do so at this stage with the
driver loader already ported to user space, than
porting the library to the kernel to integrate it
with the stand-alone driver.

This describes the engineering effort required to
build an unsigned driver loader on top of a kernel
escalation of privilege exploit. The resulting code
can be reused by integrating it with any exploit
that provides execution of arbitrary code in the
kernel. There are limitations, however. For
instance, this code cannot load filesystem

mini-filters46 because the FltRegisterFilter47
routine requires configuration data from the
registry. Even so, this loader can work with many
different kernel rootkits.

The existence of publicly available code that can
produce a powerful rootkit loader underscores
the importance of prompt patching, the
ineffectiveness of user-space endpoint security
solutions in some cases, and the potential for
simulating advanced red team scenarios. The code
we’ve seen used by the RussianDoll developers
(and by myself) is widely available17, easily reused9,
and often many years old11.

For defenders, this should hit home how feasible it
is for a moderately sophisticated attacker to
cobble together a powerful and stealthy capability
and launch it the same day that an exploit
becomes available to them. This underscores the
urgency of closing the loop on patch cycles.

For security researchers, this kind of tool
exemplifies that observing user-space behaviors
and features is insufficient to evaluate threats. It
also demonstrates why virtualization and
whole-system analysis will be key for
instrumenting and detecting the most advanced
threats: you can’t trust kernel-based security
software because you can’t trust the kernel.

Finally, as a red teamer, this provides avenues for
advanced attacks. Our hypothetical example was
collecting a two-factor token from a user in a case
where endpoint security solutions have interfered
with commonly used tools, but your imagination is
the only limit on how this can be applied.

40	 https://msdn.microsoft.com/en-us/library/windows/desktop/ms740632(v=vs.85).aspx
41	 https://msdn.microsoft.com/en-us/library/windows/desktop/aa384081(v=vs.85).aspx
42	 https://msdn.microsoft.com/en-us/library/windows/desktop/aa385331(v=vs.85).aspx
43	 http://www.efgh.com/software/rijndael.htm
44	 http://openssl.org/
45	 https://tls.mbed.org/
46	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff540402(v=vs.85).aspx
47	 https://msdn.microsoft.com/en-us/library/windows/hardware/ff544305(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms740632(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384081(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385331(v=vs.85).aspx
http://www.efgh.com/software/rijndael.htm
http://openssl.org/
https://tls.mbed.org/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff540402(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff544305(v=vs.85).aspx

28

Lessons from Operation RussianDoll, January 2016 by Michael BaileyMatryoshka Mining

About FireEye

FireEye protects the most valuable assets in the world from those who have them in their sights. Our combination of
technology, intelligence, and expertise—reinforced with the most aggressive incident response team—helps eliminate
the impact of security breaches. We find and stop attackers at every stage of an incursion. With FireEye, you’ll detect
attacks as they happen. You’ll understand the risk these attacks pose to your most valued assets. And you’ll have the
resources to quickly respond and resolve security incidents. The FireEye Global Defense Community includes more
than 2,700 customers across 67 countries, including over 157 of the Fortune 500.

In this analysis, we shared tools and techniques that
defensive security professionals can use to conduct
enhanced analysis of malware, and discussed the
steps necessary for red team analysts to synthesize
powerful offensive tools based on malware used by
advanced persistent threat actors. As defensive
security controls raise the bar to attack, attackers
will employ increasingly sophisticated techniques to

complete their mission. Understanding the
mechanics and impact of these threats, then, is the
next step in systematically discovering and
deflecting the coming wave of advanced attacks.

We would like to thank Yu Wang of the FireEye
exploit analysis team for his notes on CVE-2015-
1701, which accelerated the timeline for
assembling a coherent analysis approach.

CONCLUSION

A FireEye® Company

For more about Mandiant Compromise Assessments, visit:

www.fireeye.com

Mandiant, a FireEye Company  |  703.683.3141  |  800.647.7020 |  info@mandiant.com  |  www.mandiant.com  |  www.fireeye.com

© 2016 FireEye, Inc. All rights reserved. Mandiant and the M logo are registered
trademarks of FireEye, Inc. All other brands, products, or service names are or may be
trademarks or service marks of their respective owners. WP.MM.EN.012016

	Introduction
	SIX CORE CAPABILITIES
FOR AN EFFECTIVE RESPONSE
	CONCLUSION

