[RE020] ElephantRAT (Kunming version): our latest discovered RAT of Panda and the
similarities with recently Smanager RAT

<

Jalue Meaning

)

iF3A3FBC Monday, 17.08.2020 08:27:56 UTC
)

)

' Visual C++ (CodeView)

iB

7DFO

65F0

lalue
13443352
b508a557-dd9b-444b-6583-7c9a10edBe5a}

+#\F35-F22\ R ARk A \ElephantRat\nwsapagent\Bin\ByPassUACE4.pdb I

Recently, ESET published a report on a supply chain attack targeting software company BigNox, taking advantage of the update
mechanism of the NoxPlayer software - an Android emulator on PC and Mac. This software is used by many gamers in Vietnam as well as
in all over the world. ESET has named this campaign Operation NightScout. With the assessment that Vietnam can also have many people
infected due to a large number of users, we have begun to investigate and analyze further.

Based on the hashes of the samples provided by ESET, we have not only re-analyzed them, but also digged deeper. We found many points
that the ESET did not mention in their report. At the same time, we have found a number of similarities and relationships between these
samples and those used in the last campaign against the Vietnam Government CertificationAuthority as well as a large Vietnamese
corporation that we already mentioned. Not only that, we have discovered a new RAT, which is named ElephantRat.

{ TMAGE_DEBING_T¥FE_D

Rl Tabde

“EBBAkRA” means “Kunming version”

In those samples, we focus on the E45A5D9B03CFBE7EB2E90181756 FDFoDD690C00C sample and analyze through to embedded PE(s)
and execute fileless on memory to the very end. Looking for similarities in the binary pattern, we discovered another pattern that is being
used by hackers recently, similar to the one used in our attack on large corporations in Vietnam.

Because the hacker does not use much C++ in OOP Style, the main tool we use is still IDA and the following main plugins: FindCrypt3,
SusanRTTI, LazyIDA.

Sample E45A5D9B03CFBE7EB2E90181756 FDFoDD690C00C (SHA-1), in ESET report is UpdatePackageSilence.exe, has:

¢ MD5 = 06AF27C0F47837FB54490A8FE8332E04
e SHA-256 = E76567A61F905A2825262D5F653416EF88728371A0A2FE75DDC53AAD100E6F 46
e Compiler time: Wednesday, 26.08.2020 08:39:20 UTC

It is the first stage in the infection chain. The way to code, execute, and behavior like VVSup.exe mentioned in the previous blog post.
The sample is compiled using Visual Studio 2008 (Linker version 9.00). In particular, this file has a very large overlay data at the end of
PE, offset 0x45800.

N . S
Unicer Enfo : (9,00 SubSystem : [Windows GUI =
e i (5]) O)

[

b4
Image is 32t exeastable nesjovrs 1 feewe] 2020
| Microsoft Visual C++ 9.0 - 2008 { £8) Viswal Studio 2008 - 10| | e [t
Lamer Infix - Help Hint - Unpack nfo
|Big sec. 1 text , Wot packed , try wwe.ollydbg.de or <64 debs a2

Viewes : [asde.exe.bin) n

[Uverlay Data at : 00045800k - ovl size : 457056 bytes (decimal) [

m e 2|

v &

DOC45800 B0 FA 30 A0 AJ AD AD AD A4 AD AD AD 5 5F AD AD 00E w __ ~
00045810 18 AD AD AQ AD AD AD AD EQ AD AD AD'AS AD AD AD a a

DOC4SBZ0 AD AD AL AD AQ AQ AD AD AD AD AD AD AD A AD AD

DOC4SB30 AD AD AD AD AD AQ AD AD AD AD AT AD 70 AD AD AD 3

00045840 AEBF LAAEAQ 14ASSDE1 1B ALECEDBIFSCE @ ® DEmODimE
00045850 COD3E0DODZCFCTD2CICOBOCSCICECECF EOedIcOAleRAlil
00045860 D4 B0 C2C5 B0 D2 DS CE 80 C9 CE 80 E4EF F380 oeAkeddiEiemie
00045870 CD CF C4C58E AD AD AL S4A0 ADADADAD AD AD (TARE -,

00045880 FB 52F 1 ED BF 33 9F BE BF 33 9F BEBF 3397 BE IR LT LT e
00045850 8% 1554 BE BD 33 9F BE 3C F 916E AB 33 % BE U OV M.,

1/10

https://blog.vincss.net/2021/02/re020-elephantrat-kunming-version-our-latest-discovered-RAT-of-Panda.html
https://www.bignox.com/
https://www.welivesecurity.com/2021/02/01/operation-nightscout-supply-chain-attack-online-gaming-asia/
https://blog.vincss.net/2020/12/re018-1-analyzing-new-malware-of-china-panda-hacker-group-used-to-attack-supply-chain-against-vietnam-government-certification-authority.html
https://1.bp.blogspot.com/-Ha3Rt-6D5c4/YCyf2pjMQfI/AAAAAAAACAw/wQ261LDB-ik6ZecMKT6Urfb5qXRJABB1ACNcBGAsYHQ/s1408/image1.png
https://www.virustotal.com/gui/file/e76567a61f905a2825262d5f653416ef88728371a0a2fe75ddc53aad100e6f46/detection
https://1.bp.blogspot.com/-d58po351cbI/YCyhSSRB1iI/AAAAAAAACA8/4DoOzmoCkToJ6f1EvNoDymRDsqiSPbwzACNcBGAsYHQ/s572/image2.png

This Exe file is also an MFC Dialog application, except that it uses MFC version 9.0 which included in Visual Studio 2008 (VVSup uses
MFC ver 4.2, included in Visual Studio 6), ANSI mode. And the Visual Studio that hacker used is the Chinese version, so all default
resource items that MFC Wizard automatically generates are in Chinese.

- 0, 76, 183, 70

L'lTO'uT | DS_MODALFRAME | WS_POFUP | WS_CAPTION | W3_SYSMEMU

H
B kg - 30721 * T
NCUACE LANG CHINESE, SUBLANC CHINESE SIMPLFIED

1440,

a1,

g BLkE,
(EEEI ety

tia il

R

FILETYPE 0x1
{
BLOCK "StringFileInfo™
{
BLOCK "040904b0"
{
VALUE "Comments", "asd"
VALUE "CompanyMame", "asd"
VALUE "FileDescription”, "asd"
VALUE "FileVersion", "17, 12, 27, 1"
VALUE "InternalMame", "asdc"
VALUE "LegalCopyright", "asdc"
VALUE "LegalTrademarks", "asdc"
VALUE "OriginalFilename", "asdc.EXE"
VALUE "PrivateBuild", "asd"
VALUE "ProductName”, "asd"
VALUE "Productversion", "17, 12, 27, 1"
VALUE "SpecialBuild", "asdc"

Dialog 30721 is the MFC's default "New Item" Dialog, the StringTable ID from 60000 is also the default resource string ID of MFC.
Hacker randomly entered the About Wizard named Exe and version number. The dialog that the hacker added was reseted to English.
Main Dialog has ID = 102, About Dialog has ID = 100.

Control IDs 1 and 2 are the default MFC Wizard generates, which are IDOK and IDCANCEL.

Buttons 3 ID_ABORT), 4 (ID_RETRY), 5 (ID_IGNORE) are added by hacker. We need to STat Do e ?{J?‘.}lfﬂfg,“w,\L, RAME | WS_POPUP | WS
notice Button ID_ABORT 3. The main icon of the app (ID 1) is used by the hacker using the T WS D APPIINGOW
icons that installers often use. LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US

FONT 9, "Arial”

SusanRTTI gives us the class flowchart of the app. The figure below is part of the flowchart. CONTROL ™, 1, BUTTON, BS_DEFPUSHBUTTON | WS5_CHILE

"™, 2, BUTTON, BS_PUSHBUTTON | WS_CHILD | v

STATIC, SS_LEFT | WS_CHILD | WS_VISH

, BUTTON, BS_DEFPUSHBUTTON | WS_CHILE

I BUTTON, BS_DEFPUSHBUTTON | WS5_CHILL

CONTROL "y 5 BUTTON, BS_DEFPUSHBUTTON | WS5_CHILL
H

BUTTOMN 47675014 =~

s @
ezt e el
et e, @k |

Using LazyIDA's Search features, with CSkinMfcApp and CSkinMfcDlg, we just found this one link from China, which mention about skin
dialog creation technique for MFC app.

2/10

https://1.bp.blogspot.com/-uBLXuCZNfdY/YCyhivM9RCI/AAAAAAAACBE/56s2-Kbm0fQou6othBzIw97SfeUES8fowCNcBGAsYHQ/s679/image3.png
https://1.bp.blogspot.com/-FYesbEMfy_E/YCyhpqEXUSI/AAAAAAAACBI/JgRaKWwXkKQILVCMFVF4fBfmZp0bS7ctwCNcBGAsYHQ/s362/image4.png
https://1.bp.blogspot.com/-xdHO8Kh5f6E/YCyh7gsPdDI/AAAAAAAACBU/qp09wcHoCIoKkj1kwp-OnOJ4DlEVT3-1ACNcBGAsYHQ/s502/image5.png
https://1.bp.blogspot.com/-clSgJO2FnfQ/YCyiS5AztvI/AAAAAAAACBc/49xf5uCZ9ZYSWawkSHokGtmapU7E3iNDgCNcBGAsYHQ/s1585/image6.jpg
http://blog.sina.com.cn/s/blog_a4b23162010162z4.html

With the addition of the CRgn class, we can believe that hackers took this entire project and made a few changes. The execution
mechanism of a dialog-type MFC app, we released in the previous blog post, you can review but in this blog post, we just focus on the main
point.

ruct defined,

-
-
L]
[]
L]
.
-
-
-

In the OnInitDialog method of CSkinMfcDlg, the hacker has changed the call to the main infection task and added code:

¢ Resize Dialog to 0

¢ Hide Dialog

¢ Change the style of Dialog to not show the Windows Taskbar

¢ Post WM_COMMAND to Button ID 3

e Hackers are also careful to simulate adding user left mouse to click on Button ID 3

EX_TOOLWINDOW, ©);

OMMAND, dwBtn3ID, hwn
OUSEFIRST, MK_LBUTTON,
WM_LBUTTONDOWN, _LBUTTON,
WM_LBUTTONUP, MK_LBUTTON,
return @;

® BB & SEEABEEE & B4

When ExtractAndLoadOverlayDll is called, the hacker will first check if the app has read permission to the Windows\System32 directory
and check if the clb.dll file exists. Clb.dll is Windows file - Column ListBox. Then the hacker opens the Exe, reads the Overlay data at offset
0x45800 and xor with 0xAo to decrypt the PE file is a DLL. It will then manually load this DLL to memory, starting a long series of
manually load fileless PE.

At this ManualLoadDIl function, we discovered a hacker programming error. Specifically, Malloc does not have free and wrong code:
malloc(sizeof(PE_LOADER_INFO)) (16 bytes) to malloc(sizeof(pLdrInfo)) (4 bytes). The PE_LOADER_INFO struct that we renamed,
including 4 data members, size is 16 bytes.

3/10

https://1.bp.blogspot.com/-itzGvtyszb0/YCyitvynOEI/AAAAAAAACBk/8bcrO4O4SD8Ovb2VHvH3aCsXuls-eZ7DgCNcBGAsYHQ/s1122/image7.png
https://1.bp.blogspot.com/-Uev8iZH6BOg/YCyjE5F5zbI/AAAAAAAACBs/mUhklk3dzrA14Ev_nAseXsogElGC2PKDwCNcBGAsYHQ/s855/image8.png
https://1.bp.blogspot.com/-N5im8faJ36g/YCyjSXey6KI/AAAAAAAACBw/cxpbj-IWOp8QDYqAeQd3OIvQ2Q-mzT4KQCNcBGAsYHQ/s1565/image9.png
https://1.bp.blogspot.com/-VjATrFpKVzw/YCyjfAF_b5I/AAAAAAAACB0/JPavbU5d8WELCh7nRQzsUCEFFO_Q_yWnQCNcBGAsYHQ/s1152/image10.png

Offset|Size|struct PE_LOADER_INFO
{
: LPBYTE m_pPERaw;
DWORD m_dwPERawSize;
LPBYTE m_pPEMem;
DWORD m_dwPEMemSize;

After alloc 4 byte:

After overwrite:

About values 0XBAADFOOD and 0xABABABAB ... of VC RTL and Windows Heap Manager, you can read more here. The functions that
manually (reflective) load overlay DIl functions are compiled into a shellcode array of bytes, embedded in the .data section, and have a
total size of OXAQE. Start at the address of the LoaderProc function: .data:00440830. 0xA95 is the RVA of constant 0x12345678, which
will be overwrite by the memory contents of the variable pLdrInfo after being saved by malloc, sizeof(pointer) = 4 (x86). The first byte of
the LoaderProc function will be modified to 0x55 = push ebp

GetLoaderApiAddrs function retrieves the API addresses from kernel32.dll and ntdll.dll into a struct containing pointers to those API
functions. The algorithm used to calculate the hash value from the exported API name is ROR13, which is commonly used in

name of the API function, select the hash function rori3AddHash32AddDIl. This struct has been redefined as follows:

4/10

https://1.bp.blogspot.com/-1R0dBs7B3ec/YCyjrQUW_QI/AAAAAAAACB8/1uO_a9iGYnMEfihkQ58mJ32Ge3jcdC7JgCNcBGAsYHQ/s385/image11.png
https://1.bp.blogspot.com/-CAVpFaulVU0/YCyj0hLUQmI/AAAAAAAACCA/q40p984bzaoNXFRRlMoQapoj7wDGhVPtACNcBGAsYHQ/s1689/image12.png
https://1.bp.blogspot.com/-FVSbnZ-WOFE/YCykIdNWMGI/AAAAAAAACCM/OXai7_fWA7MLE8-ov0oK0RO6Bk1t9kJyACNcBGAsYHQ/s954/image13.png
https://1.bp.blogspot.com/-CRzQBNyucWg/YCykQwG-FoI/AAAAAAAACCQ/nakLDQBT160mvMrGiiDvSGNVmfwExZBcACNcBGAsYHQ/s1106/image14.png
https://library.softwareverify.com/unusual-memory-bit-patterns
https://1.bp.blogspot.com/-MC6C--6mdzk/YCykkpsKYZI/AAAAAAAACCc/8bFLcKI3BTsQRAenlYjSx14HjT8R-Q3TQCNcBGAsYHQ/s1118/image15.png
https://github.com/snus-b/Metasploit_Function_Hashes
https://github.com/fireeye/flare-ida

i) LoaderapiAddrs

o Caneed

GetLoaderApiAddrs function:

O

#ndp

The remarkable point is the manual/reflective load feature is used directly with Ntdll.dll native functions, not through kernel32 functions.
This is possible to avoid detecting by the AV/EDR hook kernel32.dll. And it also goes with other samples and later fileless PE(s).

The code of ReflectiveLoadDIl is similar to the other manually load/reflective open source. We will not talk about it again. Searching on
Github, Google, and VirusTotal for GetLoaderApiAddrs function, we found no such function. So we think this is a manually/reflectively
load library that this group wrote themselves and didn't use any open source.

At this point, the Overlay DIl has been loaded and the execution flows directly into the OEP of the DII. The parent exe does not exit
immediately like VVSup.exe, the fileless child dlls will call ExitProcess or TerminateProcess later.

We temporarily move to another sample that the ESET report mentioned has SHA1 = 5732126743640525680C1F9460E52D361ACF6BBO.
This sample was compiled using Visual Studio 2012, built on 11/16.2020 08:35:32 UTC, also an MFC app, however no longer Dialog app
but a Doc - View app, using new MFC Ribbon classes. As a result, the amount of code and classes are bigger, and it is possible that the first
stage uses the latest MFC of this group. Hackers no longer rely on extrac32.exe to extract embedded Cab files, but write a CCabinet class
using Cabinet API functions available from Windows to unpack.

PDB path =
"C:\Users\enWin7yx64\Desktop\XActor\CreateServer_src\XActorCreateServer\DATA_RES\CommandoLoader\mfeesp\Release\mfeesp.pdt
executable code that extracts two cab files from the resource is written directly into the InitInstance function of the CmfeespApp class.

And LBTServ.dll malware file is extracted from the cab file is a DII, written in Delphi and built using Embarcadero's latest RAD Studio

10.4 Sydney. This could be a shift to another language, compiler/IDE for future malware development of this group. For the purposes and
scope of this article, we do not present these samples.

Back on the above DIl overlay, after extracting, we have a DLL with the following information:

¢ Size = 557,056 bytes

¢ MD5 = 054E07CB00E9B21786E2815E9B43CDA9

¢ SHA256 = 8BF3DF654459B1B8F553AD9A0770058FD2C31262F38F2E8BA12943F813200A4D
¢ Compile time: Monday, 17.08.2020 09:56:11 UTC

¢ Visual Studio 6

e There is no PDB path and export, so the original DLL name could not be determined.

5/10

https://1.bp.blogspot.com/-DXpQBn0vgGc/YCylNmllCAI/AAAAAAAACCo/kLW9KsBUr3E7x2vPrmGhpOA5pMNvGgTPQCNcBGAsYHQ/s1113/image16.png
https://1.bp.blogspot.com/-CkMj711lrks/YCylYJNyGiI/AAAAAAAACCs/b1shLhVWDUo7uyCjgje2FI2zvUXOToHwgCNcBGAsYHQ/s1737/image17.png
https://1.bp.blogspot.com/-F2xbbaC1DIw/YCyllfwePhI/AAAAAAAACC0/OQ2zGF156BAE0dQSx4SJW6HdoMkzTovoACNcBGAsYHQ/s1603/image18.png
https://www.virustotal.com/gui/file/5c2a6b11d876c5bad520ff9e79be44dfbb05ee6a6ff300e8427deab35085bef6/detection
https://docs.microsoft.com/en-us/windows/win32/devnotes/cabinet-api

The size of the .data section is large, after running FindCrypt3, we found that there were large data. All the main tasks of this DIl reside
entirely within the DIIMain function. When DIIMain is called with fdwReason other than DLL_PROCESS_ATTACK, hacker checks
whether the DIl can OpenProcess with System Process (PID = 4) with the highest permissions 0x1FOFFF or not. If OpenProcess succeeds,
it will return TRUE and do nothing next. Then hacker read from the parent Exe, use the MemSearch function as in VVSup.exe to find and
extract the C&C information and save it into a file C: | ProgramData/resmon.resmoncfg. The small difference is that VVSup uses
MemSearch to get the C&C info from the parent to write in the child's DIl. And here is the DIl child search back from the parent Exe.

MNEW. FILE_ATTR

}
hFile =

G,
CREATE_ALWAYS,
FILE_ATTRIBUTE_MORMAL,

IIM‘."ALlD_Ha'-"-f'IDLE_‘v'ALUE]
(hFile, p a, 155

}

return (hFile);

Byte array is the mask for searching is “3F 3E 2F 1E 7F 7E 6F 2E 1F 1E 00 03 3F 3E 2F 4E”. File size of resmon.resmoncfg file is 1550
bytes, copy the content from mask offset + 47.

Hackers also use the MakeSureDirectoryPathExists export function from dbghelp.dll to create directory, same as VVSup, and also use a lot
of global variables, strings, and arrays. There is a lot of redundant code such as getting CreationTime, LastAccessTime, LastWriteTime of
the csrss.exe file system that is not used, and initializing unused strings. Create Sandboxie directory, attribute hidden and system

6/10

https://1.bp.blogspot.com/-EXNiFiNbGME/YCyngsTdcEI/AAAAAAAACDE/QvzfIcbVTdICK62hBqKUCas0GiGSYCzjACNcBGAsYHQ/s1259/image19.png
https://1.bp.blogspot.com/-8IagiufrqmM/YCynvlfh3RI/AAAAAAAACDI/tQuxlSJ53r4LOih9y13C9c3a6gRKGAw9wCNcBGAsYHQ/s819/image20.png
https://1.bp.blogspot.com/-NiGGu6irXoI/YCyn9LTCeAI/AAAAAAAACDQ/_aNyzkOReugWtnm6NPCLAlFPyKRS5EyGQCNcBGAsYHQ/s808/image21.png

L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
]
L]

ureDir

DII continues to unpack embedded data in DLL into files: SbieIni.dat, SbieDIl.dll, SandboxieBITS.exe and saves them into
C:\ProgramData\Sanboxie.

pUnzip_;
(pUnzip_2,

punzip

szPath, puUnzip_1,
(pUnzip_1);

A X A A N NN E NN NNNENNNNENEHN.]

The compression and decompression algorithm that hackers use here is the LZMA algorithm. LZMA's SDK can be downloaded and
referenced here. The LZMA algorithm identifier used is LZMA_PROPS_SIZE = 5 and the first 8 bytes of the struct CLzmaProps at the
beginning of the data compressed.

The uncompressed function, the size of the compressed data is passed in minus 4, the size value of the uncompressed data region DWORD
immediately preceded the data compressed.

return (pbSrc, pbDst, sizeSrc - 4,

But especially the hacker has changed in the code of this LZMA algorithm, so if we statically extract these compressed data areas
according to the above information then when decompressing with 7z or tool, lib will normally error, but It is still possible to extract the
first area of the correct data compared to the results when debugging and dumping.

7/10

https://1.bp.blogspot.com/-yWIHwFSB4eY/YCyoUOmmifI/AAAAAAAACDc/QDHM3g10BxYvFKn9Vr_tAJrQ5iFg8wZFACNcBGAsYHQ/s1033/image22.png
https://1.bp.blogspot.com/-lhLtt2v0CbQ/YCyogNGM4_I/AAAAAAAACDg/tK8vJzrOiEoGSbzEIt8g1l8kPlIEIUxXgCNcBGAsYHQ/s720/image23.png
https://www.7-zip.org/sdk.html
https://1.bp.blogspot.com/-UAsEXmSIQ-0/YCyozVcJJcI/AAAAAAAACDs/v36CaZvf8MYnG9M6zzYr0urh_0v5MLreACNcBGAsYHQ/s887/image24.png
https://1.bp.blogspot.com/-17buBX4aT2E/YCyo8enmMfI/AAAAAAAACDw/rliqDdWuWQ83DI58asqm-DmDUdk5O8ybwCNcBGAsYHQ/s677/image25.png
https://1.bp.blogspot.com/-JG5Xr5gQmdU/YCypHKb6pNI/AAAAAAAACD4/WvgTJHuevPw7kPk0K310VedQSslyZNSnACNcBGAsYHQ/s753/image26.png

Size Packed Size Method

Narme
BC) LZMA:23

| Dump_At_100102B4_Size_28884 290 271 069 800 448

Mame

| Dump_At_ 10010284 _Size_ 28884

¥ Exeinfo PE - ver0.0.64 by ASL - 10874100 sign 20 x
Ele: |Dump_At_100102B4_Size_28884 | Pu =]
Entry Pomt : [0o00z=s0 | [oa| [« EP Section: | text 1| = Wl
Fie Offset : (00002260 First Bytes : [48,89,5C. 24.08] 1) Plug
Linker Info : (9,00 SubSystem ¢ [Windows G L
Fiesze: [ooowsooh | <] (K] Overlay: [no oo - &
b4
=
Image iz 64 bit ibrary RES/OVL:0 /0% 2020 =
| 64 Micrasoft Visual €4+ v9.0 - 200x - DLL_microsoft.com (4 5o /¢ Rip

W

Lamer Info - Help Hint - Unpack info
[Big sec. 1 .text, ot packed , try www.ollydby.de or x64 deb| &

Using this custom LZMA compression algorithm, we also found in a new sample SManager RAT plugin, uploaded to the first VirusTotal

on 23/01/2021:

¢ MD5 = 0603145EFAD6A63F52B6D5161CC5E5AE
e SHA256 = 321045519CC3A50CE7948C33C6BBC837B063CD878 F8C2CE67DC8DE0825515E10

¢ File name: SuperShellC_x86.d11

In this DLL file, the CSuperShellC class has the task of extracting an embedded Exe, the original name is ssh_server.exe.

MAPDST

pMem, d

This LZMA algorithm continues to be improved by hackers, so with static dump we could not open, we had to debug and dump it.

| Dump_At_71589760_Size_65110.dump

i-Fip
Can not open file
‘C\Sandbox\Dump_At_71589760_Size_65110.dump” as archive

Return to Overlay DII, after extracting 3 files x86 files into C: | ProgramData\Sandboxie folder, DIl continues to check if itself has write
permissions to the System32 directory and target Windows operating system is x64 or not. If all is passed, DIl will extract two additional

files SbieMsg.dll and SbieMsg.dat into that directory.

8/10

https://1.bp.blogspot.com/-oSUdUW3Ui3c/YCypPQnvapI/AAAAAAAACEA/r7TDEtAEnLcqYOwTPlL86iwaQguAWqChQCNcBGAsYHQ/s779/image27.png
https://www.virustotal.com/gui/file/321045519cc3a50ce7948c33c6bbc837b063cd878f8c2ce67dc8de0825515e10/submissions
https://1.bp.blogspot.com/-O8tj4qo32cI/YCypuqA3AAI/AAAAAAAACEM/msRpf4_RIFMSJbPzKKLezCtA86JTzsfTwCNcBGAsYHQ/s829/image28.png
https://1.bp.blogspot.com/-aQ2hCfpOmwA/YCyp3Rio-yI/AAAAAAAACEQ/jYOqy4dh5PcIKbNxr1N4b8G9aL1FPB5cACNcBGAsYHQ/s417/image29.png

. punzip

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

At the HavePermission function, hacker will create a random file in System32, the first name is wmkawe__and the content is only one line
of text: "Stupid Japanese".

» FILE_ATTRIBUTE_NORMA

{hFile);

In addition, the hacker also checks to see if there are two files with the same random name wmkawe_ xxx.data in the two folders:
"%LOCALAPPDATA%\VirtualStore\Windows\System32\" and "% LOCALAPPDATA%\VirtualStore\Windows\SysWOW64\", if any, it
will be deleted. The function will check in the targeted machine OS is Windows, hacker doesn't use the usual IsWow64Process API
function, but uses the GetNativeSystemInfo API function.

y: A/

h] [ebp-24h] BYREF

PROCESSOR_ARCHITECTURE_AMDG64
PROCESSOR_ARCHITECTURE_IAG4)

}
return result;

After extracting two more files SbieMsg.dat and SbieMsg.dll, DIl will load SbieMsg.dll by using rundll32.exe utility of Windows, call the
exported function is "installsve", pass the parameter as "ByPassUAC".

If it's not Windows x64, SandboxieBITS.exe will be called with the parameter "ByPassUAC" aswell. And if there is no write permission to
System32, the DIl just calls SandboxieBITS.exe with the parameter "InsertS". Finally, DIl will create bat file to delete parent Exe itself and
the bat file itself and then exit parent Exe.

HANDLE hPro
£ [esp+ah] [ebp-

th, |

. CREATE

The SelfDelete execute cmd.exe function in the hidden window, idle priority and disable Ctrl-C/Ctrl-Break.

9/10

https://1.bp.blogspot.com/--nia21ebA2E/YCyqFGYXjFI/AAAAAAAACEY/Jd6n8mXmZeAweT887aEAJw9Rgy-J7HsSgCNcBGAsYHQ/s1192/image30.png
https://1.bp.blogspot.com/-KbhI024F0ZI/YCyqUscAPdI/AAAAAAAACEk/fPaAlHYc8uQ8BAkJZmpPvk3rTtbmAE8gQCNcBGAsYHQ/s1034/image31.png
https://1.bp.blogspot.com/-WCSHw_oNKII/YCyqlk-H_1I/AAAAAAAACEs/4jJZ4KAQCAwRNK21BoAI4g6Qte91YzNnQCNcBGAsYHQ/s804/image32.png
https://1.bp.blogspot.com/-C9U7Ecq3iJo/YCyq8VD0aaI/AAAAAAAACE0/ftmJ6DF3Fc4JOte6M-w2UGCN74VjV2dTgCNcBGAsYHQ/s1061/image33.png

At this point, stage one of the infection is complete. Stage 2 starts from executing SandboxieBITS.exe or SbieMsg.dll (x64) run as a service
DIl

We would like to stop here and publish the following sections when the time appropriate.
We wish you a happy new year!

Click here for Vietnamese version.

Truong Quoc Ngan (aka HTC)

Malware Analysis Expert - VinCSS (a member of Vingroup)

10/10

https://1.bp.blogspot.com/-7I23_g9mm4I/YCyrG0Aj3FI/AAAAAAAACE4/EdG9dqgL2skEc2FMeTrIm5rpghJm2pg_ACNcBGAsYHQ/s1282/image34.png
https://blog.vincss.net/2021/02/re020-elephantrat-phien-ban-Con-Minh-dong-RAT-moi-cua-Panda.html

