
Inside the EquationDrug Espionage Platform

Introduction

EquationDrug is one of the main espionage platforms used by the Equation Group[1], a highly
sophisticated threat actor that has been engaged in multiple CNE (computer network exploitation)

operations dating back to 2001, and perhaps as early as 1996. (See full report here [PDF][2]).

EquationDrug, which is still in use, dates back to 2003, although the more modern GrayFish platform is
being pushed to new victims.

EquationDrug represents the main espionage platform from the #EquationAPT Group

Tweet[3]

It's important to note that EquationDrug is not just a Trojan, but a full espionage platform, which includes
a framework for conducting cyberespionage activities by deploying speci�c modules on the machines of
selected victims. The concept of a cyberespionage platform is neither new nor unique. Other threat actors

known to use such sophisticated platforms include Regin[4] and Epic Turla[5].

The EquationDrug platform can be extended through plugins (or modules). It is pre-built with a default
set of plugins supporting a number of basic cyberespionage functions. These include common features
such as �le collection and the making of screenshots. Sophistication is added by storing stolen data inside
a custom-encrypted virtual �le system before it is sent to the command and control servers.

The name "EquationDrug" or "Equestre" was assigned to this framework by Kaspersky Lab researchers.
The only reference left by the framework developers was a short string "UR", as seen in several string
artifacts left in the binaries.

Platform Architecture

The EquationDrug platform includes dozens of executables, con�gurations and protected storage
locations. Putting all the pieces of this puzzle together in the right order may take time for those who are
not familiar with the platform.

The platform includes executables, con�gurations and protected storage locations #EquationAPT

Tweet[6]

http://securelist.com/blog/research/69203/inside-t...

1 of 30 03/22/2015 10:21 PM

The architecture of the whole framework resembles a mini-operating system with kernel-mode and
user-mode components carefully interacting with each other via a custom message-passing interface. The
platform includes a set of drivers, a platform core (orchestrator) and a number of plugins. Every plugin has
a unique ID and version number that de�nes a set of functions it can provide. Some of the plugins depend
on others and might not work unless dependencies are resolved.

[7]

[8]

http://securelist.com/blog/research/69203/inside-t...

2 of 30 03/22/2015 10:21 PM

Similar to popular OS kernel designs, such as on Unix-based systems, some of the essential modules are
statically linked to the platform core, while others are loaded on demand.

The hypothesis that these attackers have been active since the 90s seems realistic #EquationAPT

Tweet[9]

The platform is started by the kernel mode driver component ("msndsrv.sys" on Windows 2000 or above
and "mssvc32.vxd" on Windows 9x). The driver then waits for the system to start and initiates execution of
the user-mode loader "mscfg32.exe". The loader then starts the platform's central module (an
orchestrator) from the "mscfg32.dll" module. Additional drivers and libraries may be loaded by different
components of the platform, either built-in or auxiliary.

Platform Components

The EquationDrug platform can be as sophisticated as a space station, but it appears to be of no use
without its cyberespionage features. This function is provided by plugin modules that are part of the
massive framework described above. We discovered dozens of plugins and each is a sophisticated element
that can communicate with the core and become aware of the availability of other plugins.

The plugins we discovered probably represent just a fraction of the attackers' potential. Each plugin is
assigned a unique plugin ID number (WORD), such as 0x8000, 0x8002, 0x8004, 0x8006, etc. All plugin IDs
are even numbers and they all start from byte 0x80. The biggest plugin ID we have seen is 0x80CA. To
date, we have found 30 unique plugin IDs in total. Considering the fact that the developers assigned
plugin IDs incrementally, and assuming that other plugin IDs were assigned to modules that we have not
yet discovered, it's not hard to calculate that 86 modules have yet to be discovered.

86 modules have yet to be discovered #EquationAPT

Tweet[10]

The most interesting modules we have seen contain the following functionality:

Network traf�c interception for stealing or re-routing.
Reverse DNS resolution (DNS PTR records).
Computer management:

Start/stop processes
Load drivers and libraries
Manage �les and directories

System information gathering:
OS version
Computer name
User name

http://securelist.com/blog/research/69203/inside-t...

3 of 30 03/22/2015 10:21 PM

Locale
Keyboard layout
Timezone
Process list

Browsing network resources and enumerating and accessing shares.
WMI information gathering.
Collection of cached passwords.
Enumeration of processes and other system objects.
Monitoring LIVE user activity in web browsers.
Low-level NTFS �lesystem access based on the popular Sleuthkit framework.
Monitoring removable storage drives.
Passive network backdoor (runs Equation shellcode from raw traf�c).
HDD and SSD �rmware manipulation.
Keylogging and clipboard monitoring.
Browser history, cached passwords and form auto-�ll data collection.

Code Artifacts

During our research we paid attention to unique identi�ers and codenames used by the developers in the
malware. Most of this information is carefully protected with obfuscation or encryption algorithms to
prevent quick recognition, but anyone who breaks through this layer of encryption may discover some
interesting internal strings, as demonstrated below:

[11]

[12]

Some other interesting text strings include:

SkyhookChow Target
SkyhookChow Payload
Dissecorp
Manual/DRINKPARSLEY/2008-09-30/10:06:46.468-04:00
VTT/82053737/STRAITACID/2008-09-03/10:44:56.361-04:00
VTT/82051410/LUTEUSOBSTOS/2008-07-30/17:27:23.715-04:00
STRAITSHOOTER30.ex_
BACKSNARF_AB25
c:\users\rmgree5\co\standalonegrok_2.1.1.1\gk_driver\gk_sa_driver…

http://securelist.com/blog/research/69203/inside-t...

4 of 30 03/22/2015 10:21 PM

To install: run with no arguments
Attempting to drop
SFCriteria_Check failed!
SFDriver
Error detected! Uninstalling...
Timeout waiting for the "canInstallNow" event from the implant-speci�c EXE!
Trying to call privilege lib...
Hiding directory
Hiding plugin...
Merging plugin...
Merging old plugin key...
Couldn't reset canInstallNowEvent!
Performing UR-speci�c pre-install...
Work complete.
Merged transport manager state.
!!SFCon�g!!

Some other names, such as kernel object and �le names, abbreviations, resource code page and several
generic messages, point to English-speaking developers. Due to the limited number of such text strings
it's hard to tell reliably if the developers were native English speakers.

Link Timestamp Analysis

We have gathered a reasonably large number of executable samples to which we have been able to apply
link timestamp analysis.

A link timestamp is a 4-bytes value stored in an executable �le header. This value is automatically set by
compiler software when a developer builds a new executable. The value contains a detailed timestamp
including minutes and even seconds of compilation time (think of it as the �le's moment of birth).

[13]

Link timestamp analysis require the collection of the timestamps of all available executables, grouping
them according to certain criteria, such as the hour or day of the week, and putting them on a chart. Below
are some charts built using this approach.

[14]

http://securelist.com/blog/research/69203/inside-t...

5 of 30 03/22/2015 10:21 PM

[15]

[16]

Can we trust this information? The answer is: not fully, because the link timestamp can be altered by the
developer in a way that's not always possible to spot. However, certain indicators such as matching the
year on the timestamp with the support of technology popular in that year leads us to believe that the
timestamps were, at the very least, not wholly replaced. Looking at this from the other side, the easiest
option for the developer is to wipe the timestamp completely, replacing it with zeroes. This was not found
in the case of EquationDrug. In fact, the timestamps look very realistic and match the working days and
hours of a well-organized software developer from timezone UTC-3 or UTC-4, if you assume that they
come to work at 8 or 9 am.

The timestamps match the working days of software developer from timezone UTC-3 or UTC-4
#EquationAPT

Tweet[17]

http://securelist.com/blog/research/69203/inside-t...

6 of 30 03/22/2015 10:21 PM

And �nally, in case you are wondering if the developers work on public holidays, you can check this for
yourself against the full list of their working dates:

2001.08.17 2007.12.11 2009.04.16 2011.10.20 2012.08.31 2013.06.11

2001.08.23 2007.12.17 2009.06.05 2011.10.26 2012.09.28 2013.06.26

2003.08.16 2008.01.01 2009.12.15 2012.03.06 2012.10.23 2013.08.09

2003.08.17 2008.01.23 2010.01.22 2012.03.22 2012.11.02 2013.08.28

2005.03.16 2008.01.24 2010.02.19 2012.04.03 2012.11.06 2013.10.16

2005.09.08 2008.01.29 2010.02.22 2012.04.04 2013.01.08 2013.11.04

2006.06.15 2008.01.30 2010.03.27 2012.04.05 2013.02.07 2013.11.26

2006.09.18 2008.04.24 2010.06.15 2012.04.12 2013.02.21 2013.12.04

2006.10.04 2008.05.07 2011.02.09 2012.07.02 2013.02.22 2013.12.05

2006.10.16 2008.05.09 2011.02.23 2012.07.09 2013.02.27 2013.12.13

2007.07.12 2008.06.17 2011.08.08 2012.07.17 2013.04.16

2007.10.02 2008.09.17 2011.08.30 2012.08.02 2013.05.08

2007.10.16 2008.09.24 2011.09.02 2012.08.03 2013.05.14

2007.12.10 2008.12.05 2011.10.04 2012.08.14 2013.05.24

Conclusions

EquationDrug represents the main espionage platform from the Equation Group. It's been in use for over
10 years, replacing EquationLaser until it was replaced itself by the even more sophisticated GrayFish
platform.

The EquationDrug case demonstrates an interesting trend: a growth in code sophistication
#EquationAPT

Tweet[18]

The EquationDrug case demonstrates an interesting trend that we have been seeing while analyzing
supposedly nation-state cyberattack tools: a growth in code sophistication. It is clear that nation-state
attackers are looking for better stability, invisibility, reliability and universality in their cyberespionage
tools. You can make a basic browser password-stealer or a sniffer within days. However, nation-states are
focused on creating frameworks for wrapping such code into something that can be customized on live
systems and provide a reliable way to store all components and data in encrypted form, inaccessible to
normal users. While traditional cybercriminals mass-distribute emails with malicious attachments or
infect websites on a large scale, nation-states create automatic systems infecting only selected users.
While traditional cybercriminals typically reuse one malicious �le for all victims, nation-states prepare
malware unique to each victim and even implement restrictions preventing decryption and execution

http://securelist.com/blog/research/69203/inside-t...

7 of 30 03/22/2015 10:21 PM

outside of the target computer.

Nation-state attackers create automatic systems infecting only selected users #EquationAPT

Tweet[19]

Sophistication of the framework is what makes this type of actor different from traditional cybercriminals,
who prefer to focus on payload and malware capabilities such as implementing a long list of custom
third-party software credential database parsers.

The difference in tactics between cybercriminals and nation-state attackers appears to be due to relative
resource availability. It's known that cybercriminals attempt to infect as many users as possible and that
they can sometimes compromise hundreds of thousands of systems. It would will take many years to
check all those machines manually, analyzing who owns them, what data is stored on them, and what
custom software they run.

Cybercriminals probably don't even have enough disk space to collect all the potentially interesting data
from the victims hit by their large scale infections. That is why cybercriminals prefer to extract tiny
chunks of the most important data (credentials, credit card numbers, etc) on the machine of the victim
and transfer only few kilobytes from each compromised host. Such data, when combined from all users,
normally takes up gigabytes of disk space.

Nation-state attackers have suf�cient resources to store as much data as they want. They have access to
virtually unlimited data storage. However, they don't need, and often try to avoid, infecting random users,
for the obvious reason of avoiding attention and remaining invisible. Implementing custom data format
parsers in the malware not only doesn't help them �nd all the valuable data on the victim's machine, but
may also attract extra attention from security software running on the system. They mostly prefer to have
a generic remote system management tool that can copy any information they might need even if it
causes some redundancy. However, copying large volumes of information might slow down network
connection and attract attention, especially in some countries with poorly developed internet
infrastructure. To date, nation-state attackers have had to balance between these two poles: copying
victims' entire hard drives while stealing only tiny bits of passwords and keys.

Nation-state attackers use a remote system management tool that can copy any information they need
#EquationAPT

Tweet[20]

Now, if you wonder why EquationDrug, a powerful cyberespionage platform, doesn't provide all stealing
capability as standard in its malware core, the answer is that they prefer to customize the attack for each
one of their victims. Only if they have chosen to actively monitor you and the security products on your
machines have been disarmed, will you receive a plugin for the live tracking of your conversations or other
speci�c functions related to your activities. We believe modularity and customization will become a
unique trademark of nation-state attackers in the future.

http://securelist.com/blog/research/69203/inside-t...

8 of 30 03/22/2015 10:21 PM

Some code paths in EquationDrug modules lead to OS version checks including a test for Windows 95,
which is accepted as one of supported platforms. While some other checks will not pass on Windows 95,
the presence of this code means that this OS was supported in some earlier variants of the malware.
Considering this and the existence of components designed to run on Windows 9x (such as VXD-�les), as
well as compilation timestamps dating back to early 2000s, the hypothesis that these attackers have been
active since the 90s seems realistic. This makes the current attacker an outstanding actor operating longer
than any other in the �eld.

Technical Details

Kernel mode stage 0 (Windows 9x) - mssvc32.vxd

MD5 0a5e9b15014733ee7685d8c8be81fb0d

Size 6 710 bytes

Format Linear Executable (LE)

This VXD driver handles only two control messages: W32_DeviceIoControl and Dynamic_Init. The
DeviceIoControl part is not completely implemented and the driver is only able to check for some known
control codes. However it does nothing. This handler looks more like a code stub rather than actual
payload.

On the Dynamic_Init event, the driver retrieves the location of the user-mode loader executable from the
following registry value:

[HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\MemSubSys] Con�g

If the value is not present in the registry, it uses the following fallback string hardcoded in the binary:

C:\WINDOWS\SYSTEM\SVCHOST32.EXE

Next, it installs a callback procedure using Windows function _SHELL_CallAtAppyTime. This procedure
will be called when CPU is running in ring-3 mode, so that a new executable (loader process) can be
started via the traditional way. This is a standard trick that was used by developers in the 90s to initiate a
call to DLL export in ring-3 from ring-0 in Windows 9x OS family.

Kernel mode stage 0 and rootkit (Windows 2000 and above) - msndsrv.sys

MD5 c4f8671c1f00dab30f5f88d684af1927

Size 105 392 bytes

http://securelist.com/blog/research/69203/inside-t...

9 of 30 03/22/2015 10:21 PM

Format PE32 Native

Compiled 2008.01.23 14:12:33 (GMT)

Location %System32%\drivers\msndsrv.sys

This module can create log �les in the following known locations:

%systemroot%\system32\mslog32.dat
%systemroot%\system32\msperf32.dat (default location)

The driver acts as the �rst stage of the EquationDrug platform on Windows 2000+ and implements rootkit
functions for hiding the components of the platform. Additionally, it implements a NDIS driver for
�ltering network traf�c.

When started and initialized, the driver retrieves the location of the user-mode loader executable from the
registry value:

[HKLM\System\CurrentControlSet\Services\%driver name%] Con�g

The %driver name% is not hardcoded and is obtained dynamically from the current module name, which
means that different instances may check different registry keys and this may not be a reliable way to
check for infection. The sample we analyzed used "msndsrv" as the %driver name%.

Next, it crafts and injects a shellcode in "services.exe" or "winlogon.exe". The shellcode is designed to
spawn the loader process from the executable called "mscfg32.exe".

The rootkit code in the driver hooks several Native API functions that lets it hide or protect registry keys,
�les and running processes. The components of EquationDrug can modify the list of protected objects by
sending DeviceIoControl messages to the driver. The driver also maintains a persistent list of protected
objects that is stored in the following registry values:

[HKLM\System\CurrentControlSet\Services\%driver name%] 1
[HKLM\System\CurrentControlSet\Services\%driver name%] 2

These values are also protected by the rootkit. They can be revealed by booting Windows in Safe Mode.

The driver contains the following unused strings:

\\.\mailslot\dskInfo
Dissecorp

User-mode loader - mscfg32.exe, svchost32.exe

MD5 c3af66b9ce29efe5ee34e87b6e136e3a

http://securelist.com/blog/research/69203/inside-t...

10 of 30 03/22/2015 10:21 PM

Size 22 016 bytes

Format PE32 EXE

Compiled 2008.01.23 14:26:05 (GMT)

Location %System32%\mscfg32.exe

This module opens a unique event named "D0385CB7-B834-45d1-A501-1A1700E6C34E". If the event
exists, it waits for 10 seconds and attempts to open a �le whose name can be decrypted as
"\\.\MSNDSRV". If the device �le is successfully opened, the code issues a device request with IOCTL code
0x80000194 and no parameters.

This module uses RC5 in CBC-like mode with a key length of 96-bit for string encryption.

Careful analysis reveals some bits of uninitialized memory found next to encryption key locations. This is
unused but partly meaningful memory, because it seems to contain short chunks of strings resembling
some local �lepaths:

"rver\8" (probably part of "Server\8..." string)
"LInj" (could be a part of "DLLInjector" or similar)

It's apparent that some parts of the code were designed to run on Windows 9x, for example a call to
RegisterServiceProcess Windows API function makes sense only on Windows 9x OS family, because this
API function doesn't exist on Windows NT platform.

The module uses a unique algorithm for generating registry value names. The code contains strings, such
as "SkyhookChow Target", that are converted to GUID-like strings by calculating SHA1 hash and using its
hexadecimal representation as a string. The resulting strings are used as actual registry value names in
[HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\MemSubSys] registry key.

Sample registry value names:

Original String GUID-like registry value name

SkyhookChow Target {B6F5CD13-A74D-8B82-A6AA-6FA1BE2484C1-6832DF06}

SkyhookChow Payload {F4CF0326-6DCD-EEC8-5323-01CEDB66741A-B55F6F12}

These registry values are encrypted using an RC5 algorithm using a hardcoded 1024-bit key with 24
rounds.

The registry value:

[HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\MemSubSys] {F4CF0326-6DCD-
EEC8-5323-01CEDB66741A-B55F6F12} ("SkyhookChow Payload")
should contain the location of the orchestrator DLL �le ("mscfg32.dll"). If the value is not present a
default value "%SYSTEM%\mscfg32.dll" is used.

http://securelist.com/blog/research/69203/inside-t...

11 of 30 03/22/2015 10:21 PM

The registry value:

[HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\MemSubSys] {B6F5CD13-A74D-8B82-
A6AA-6FA1BE2484C1-6832DF06} ("SkyhookChow Target")
may contain the location of the executable �le that will be used as a "shell" process for the orchestrator
library.

The module attempts to start the "shell" process in suspended mode. If there is no "SkyhookChow Target"
value or the speci�ed executable fails to start, the module tries different failsafe locations of the programs
that can be used instead:

Default browser set in the registry [HKLM\SOFTWARE\Clients\StartMenuInternet\{current @default
value}\shell\open\command]

1.

%SystemRoot%\System32\svchost.exe2.
%SystemRoot%\System32\lsass.exe3.
Spoolsv service binary from the [HKLM\SYSTEM\CurrentControlSet\Services\Spooler] ImagePath
registry value.

4.

Default html �le handler from [HKLM\SOFTWARE\Classes\html�le\shell\open\command]registry value.5.
Internet Explorer path from [HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\]
IEXPLORE.EXE registry value.

6.

Next, the module injects extra code into a newly started target process. The injected code loads the
payload DLL ("mscfg32.dll") into the target process and waits for the parent process to exit. When the
parent process quits, it unloads the payload DLL and exits as well. The rest of the logic relies on the
loaded DLL in that new process. See the description of the "mscfg32.dll" module below.

The module communicates with the Stage0/Rootkit driver "msndsrv.sys" by sending DeviceIoControl
messages to the device "\\.\MSNDSRV". It activates the rootkit for its own process, for the target process
holding the orchestrator and for all the �les involved.

Platform orchestrator - mscfg32.dll, svchost32.dll

MD5 5767b9d851d0c24e13eca1bfd16ea424

Size 249 856 bytes

Format PE32 DLL

Compiled 2008.01.24 22:11:34 (GMT)

Location %System%\mscfg32.dll

Creates mutex: "01C482BA-BD31-4874-A08B-A93EA5BCE511", or terminates if one already exists.

Writes a timestamped log �le to one of the following locations:

%SystemRoot%\temp\~yh56816.tmp

http://securelist.com/blog/research/69203/inside-t...

12 of 30 03/22/2015 10:21 PM

C:\Windows\Temp\~yh56816.tmp
%Registry_SystemRoot_Value%\temp\~yh56816.tmp
Value of [HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\MemSubSys] D

The �le "~yh56816.tmp" retains the history of execution. It comprises debug records of simple structure:

 Stage: DWORD | DateTimeLow: DWORD | DateTimeHigh: DWORD

Basically, it logs the execution of every stage of the orchestrator and the time of execution. The Stage is
an integer number starting from 1.

This module spawns a new thread in the DllMain function which contains the main function body. The
procedure disables application error popups shown by the default exception handler. This is probably
done only in the "Release" version of the malware, because the following code generates exceptions that
are reported to the user if application error popups are not disabled. We assume that the "Debug" version
of the code doesn't suppress error popups when exception occurs as this helps with the debugging of the
code.

The module checks the OS version and if it encounters an unsupported operating system the code
generates an exception which terminates the application. The list of OS versions that pass this test:

Windows 95/98/ME
Windows NT 4.0 and above.

If the module runs on Win9x, it executes Win9x-speci�c function RegisterServiceProcess to hide from the
Windows Task Manager application. If the module is NOT running on WinNT6.0+, it then attempts to
open a virtual device �le with one of the following names:

\\.\MSSVC32 on Win9x
\\.\MSNDSRV on WinNT

If the device �le is successfully opened, the module activates a rootkit for its process and for the �le
location "%SYSTEM%\unilay.dll" local path. This is followed by �nding and terminating a process named
"winproc.exe" which is the name of another component of the platform. Note that this part of the code is
executed only on platforms different from WinNT 6.x (Windows Vista and later).

The module was designed to fetch or update its main con�guration data from different places. There are
some default values set inside the code, such as some timeout values and the following C&Cs:

www.waeservices[.]com
213.198.79.49

These default values can be overwritten later.

Next, it locates a data section called "Share2" in the current module and veri�es the starting magic
number. If it is 0x63959700, it then decrypts the rest of the data in the section and interprets it as a

http://securelist.com/blog/research/69203/inside-t...

13 of 30 03/22/2015 10:21 PM

con�guration block. However, data from the next location can override all previous settings. This is a
registry value with special name.

The naming of the registry location is the same GUID-like SHA1 value as the one used in the loader
("mscfg32.exe"), and is produced from the source string "Con�guration":

[HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\MemSubSys] {42E14DD3-
F07A-78F1-7659-26AE141569AC-E0B3EE89}

The con�guration block stored in the registry value is encrypted using RC5 with the 1024-bit key. Both the
loader and the orchestrator share the same key for encrypting and decrypting the registry values in the
"MemSubSys" key.

The decrypted con�guration block consists of a series of tagged con�guration records in the following
format:

 [RecordType:DWORD][RecordSize: DWORD][RecordValue: %RecordSize%]

We retrieved a copy of a con�guration block and decrypted and partly interpreted it. We are including the
results for one of the con�guration blocks:

Time value: 1 year 0 months 1 days 22 hours 6 mins 52 secs. The orchestrator is expected to set this �eld
to the time of initial con�guration.
Binaries: 3x1024-bit encryption keys
1b8e7818dad6345c53c2707a2c44648eee700d5cf34fea6a19a3fa0a6a871c72963fdded
91e2703c82b7747b8793e3063700da32cfb8d907dcce1beb36edd575418d1134ef188b
27ec3ce23711a656b0a8bf28921fbf1c39b4c90ad561e4174ed90f26ce11245bb9deb4b
4720403f47ca865ec8bbd3c1df9d93d042ff5b52ec6
0500
00
00
00
ed04953f3452068ae6439f04c7904c8be5e98e66e2cd0f267d65240aeed88bd4d3c6105
c99950dd42ccde4bc6bbaf9f6cb1b4e628d943e91f8f97f2aff705fdd25e3af6ba0bc4fd13
d67a2bcb751bb8f21f3d4b66c599f3e572802911394d142f8cf3a299d6d4558f9f0f01634
9afd1888472f4f8c729ffe913f670931f1a227
C&C domain: www[dot]waeservices[dot]com
C&C IP address: 213.198.79.49
C&C port: 443
Timestamp: 2010-12-08 11:35:57
Tool Reference: VTT/82055898/STEALTHFIGHTER/ 2008-10-16/14:59:06.229-04:00
TimeoutA: 25200 sec (7 hours)
TimeoutB: 32400 sec (9 hours)
TimeoutC: 3600 sec (1 hour)

http://securelist.com/blog/research/69203/inside-t...

14 of 30 03/22/2015 10:21 PM

TimeoutD: 172800 sec (48 hours)
+Several Unknown Values

Other con�guration blocks we discovered contained similar information, with only some unique values:

Timestamp: 2009-11-23 14:10:15
Tool Reference: Manual/DRINKPARSLEY/2008-09-30/10:06:46.468-04:00
Tool Reference: VTT/82053737/STRAITACID/2008-09-03/10:44:56.361-04:00
Tool Reference: STRAITSHOOTER30.ex_
Tool Reference: VTT/82051410/LUTEUSOBSTOS/2008-07-30/17:27:23.715-04:00
Tool Reference: BACKSNARF_AB25

During the next step, the module obtains PE �le version information from the resource section. It loads
the version info using hard-coded module names, which are supposed to match the current module name:

SVCHOST32.DLL for Windows 9x
MSCFG32.DLL for Windows NT

If �le version information is available, it gets language-speci�c values of the PrivateBuild block. The
codepage and languages that are veri�ed: Unicode, LANG_NEUTRAL and LANG_ENGLISH_US. When this
check passes, the module gets @default registry value from the following location:

[HKLM\SOFTWARE\Classes\CLSID\{091FD378-422D-A36E-8487-83B57ADD2109}] TypeLib

If the key is not found, the code checks for registry value TypeLib in the following key:

[HKLM\SOFTWARE\Classes\CLSID\{091FD378-422D-A36E-8487-83B57ADD2109}]

If such a value is found, it is then deleted along with the Version value if it exists in the same key.

The string obtained from one of two possible registry values is processed as if this value is a CLSID-like
string: the code takes the last 16 hexadecimal digits, splits them in two 8-chars values, converts them to
binary form (two DWORDs) and reverses the order of bytes in each DWORD and XORs, the �rst value with
0x8ED400C0, and the second with 0x4FC2C17B. Next, the �rst DWORD value becomes second and the
second becomes �rst. In this order, they are stored in a structure in memory. These two values seem to be
very important as they override a few values in the previously known con�guration. If they don't exist,
values from the current con�guration replace them and are stored back in the registry following the
reverse procedure:

[HKLM\SOFTWARE\Classes\CLSID\{091FD378-422D-A36E-8487-83B57ADD2109}\Version] is created
and @default value is set to version obtained from �le version information PrivateBuild �eld (i.e.
3.04.00.0001). This seems to be used as kit version number.

1.

[HKLM\SOFTWARE\Classes\CLSID\{091FD378-422D-A36E-8487-83B57ADD2109}\Version] is created
and @default value is set to a CLSID like string generated from the following:

Fixed pre�x string: "{8C936AF9-243D-11D0-"
Two important DWORD values in the format of "%04X-%04X%08X}" string.

2.

http://securelist.com/blog/research/69203/inside-t...

15 of 30 03/22/2015 10:21 PM

We collected and decrypted several samples of such values. According to the code, they are initialized with
values of the Microsoft �letime format. So, we decided to interpret them as �letime values:

20101C04EC2C17B: 1 year(s) 7 month(s) 21 day(s) 23 hour(s) 32 min(s) 1 sec(s)
81E01C04EC2C17B: 1 year(s) 7 month(s) 8 day(s) 12 hour(s) 13 min(s) 5 sec(s)
E0001C04EC2C17B: 1 year(s) 7 month(s) 21 day(s) 1 hour(s) 6 min(s) 15 sec(s)
77101C04EC2C17B: 1 year(s) 5 month(s) 20 day(s) 19 hour(s) 15 min(s) 4 sec(s)
30F01C04EC2C17B: 1 year(s) 8 month(s) 0 day(s) 6 hour(s) 10 min(s) 33 sec(s)
C0901C04EC2C17B: 1 year(s) 8 month(s) 2 day(s) 6 hour(s) 29 min(s) 39 sec(s)
66701C04EC2C17B: 1 year(s) 6 month(s) 9 day(s) 2 hour(s) 10 min(s) 23 sec(s)
F6501C04EC2C17B: 1 year(s) 6 month(s) 6 day(s) 19 hour(s) 53 min(s) 22 sec(s)
01401C04EC2C17B: 1 year(s) 6 month(s) 25 day(s) 23 hour(s) 34 min(s) 13 sec(s)

After that, the module stores current time values in encrypted form in the registry value:

[HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\MemSubSys] {08DAB849-0E1E-
A1F0-DCF1-457081E091DB-117DB663} (encoded SHA1 of "StartTime")

The module contains an additional compressed Windows DLL �le in the resource section, which is
extracted as "unilay.dll" (see below). This DLL exports a number of functions that are just wrappers of the
system API used to work with �les and the registry, and also start processes and load additional DLL �les.

The orchestrator contains several built-in plugins that form the core of the platform. These are initialized
in the �rst place, and then additional plugins are loaded. All the plugins are indexed in a single encrypted
registry value:

[HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\MemSubSys] 1

This value has information about all the components of the current kit. It may include Unicode strings
with paths to extra DLLs which serve as plugins. Each DLL exports at least four functions which are
imported by ordinal numbers from 1 to 4.

The structure of the registry value "1":

[Count:DWORD]{ [Plugin Id:WORD][Plugin Path Length:DWORD][Plugin Path String:VARIABLE] }

Plugins interact with each other and with the orchestrator by exchanging messages of pre-de�ned format.
The message transport is implemented as a global object that contains four communication streams.
Every stream contains a pair of kernel synchronization object handles (a semaphore with �xed maximum
value defaulted to 1000 and a mutex) and a message queue as an array. A dedicated thread processes
messages that appear in the message queues.

A message arrives in a parcel, represented as two DWORD values that contain the size of the message and
a pointer to the message data. The message data starts with a DWORD identifying a class of message (a

http://securelist.com/blog/research/69203/inside-t...

16 of 30 03/22/2015 10:21 PM

request, reply, etc).

The orchestrator contains the following built-in plugins (listed by internal ID): 8000, 8022, 8024, 803C,
8046, 800A, 8042, 8002, 8004, 8006, 8008, 8070, 808E. Several additional built-in modules have been
discovered in newer versions of the orchestrator that was shipped with the GrayFish platform.

EquationDrug Plugins:

Plugin
ID

File name Description

8000 Built-in Core, basic API for other modules

8002 wshcom.dll C&C communication using Windows sockets

8004 Built-in Additional message queue

8006 Built-in Memory allocation / storage

8008 vnetapi32.dll& C&C communication code based on DoubleFantasy, using WinInet API

800A Built-in C&C communication orchestrator

800C perfcom.dll HTTP communication

8022 khlp680w.dll System API: execute processes, load libraries, manipulate �les and directories

8024 cmib158w.dll Collects system information: OS version, computer name, user name, locale,
keyboard layout, timezone, process lists

8034 cmib456w.dll Management of the VFS backed by encrypted ".FON" �les in the
"Fonts\Extension" directory. Provides encryption using RC5 for these �les

803E nls_874w.dll Network sniffer

803C Built-in Communication with the NDIS �lter part of "msndsrv.sys"

8040 khlp807w.dll Network exploration API, share enumeration and access

8042 Built-in Compression library based on Nrv2d / UCL

8046 Built-in Communication with the rootkit part of "msndsrv.sys"

8048 mstkpr.dll Disk forensics and direct NTFS reader based on sources of SleuthKit

8050 khlp760w.dll Additional encryption facilities for the �le-backed VFS

8058 khlp733w.dll Collects local system information, WMI information, cached passwords

8070 khlp747w.dll Enumerates processes and system objects

807A mscoreep32.dll Plugins for monitoring Internet Explorer and Mozilla browser activities

808A khlp866w.dll Compression library based on Zlib

808E Built-in Reverse (PTR record) DNS resolver

8094 Built-in In-memory storage

http://securelist.com/blog/research/69203/inside-t...

17 of 30 03/22/2015 10:21 PM

809C Built-in In-memory storage

80AA nls933w.dll HDD / SSD �rmware manipulation

80AE wpl913h.dll Keylogger and clipboard monitoring (aka "GROK")

80BE vnetapi.dll C&C communication via WinHTTP API

80C6 webmgr.dll Extracts web history, Mozilla/Internet Explorer-saved form data and cached
credentials

80CA wshapi.dll C&C communications interface via Windows sockets

Additional components

Unilay.DLL

This module provides a compatibility layer for accessing system API functions for Windows 9x. It redirects
Unicode ("W") variants of Windows API functions to corresponding ANSI variants by converting Unicode
string parameters to multi-byte strings and calling the respective ANSI API.

MD5 EF4405930E6071AE1F7F6FA7D4F3397D

Size 9 728 bytes

Compiled 2008.01.23 14:23:10 (GMT)

Format PE32 DLL, linker version 6.0 (Microsoft Visual C++ 6.0)

Exported functions (redirected to ANSI variants):

100017EF: CopyFileW
10001039: CreateDirectoryW
10001111: CreateFileW
100011B3: CreateProcessW
10001177: DeleteFileW
10001516: FindFirstChangeNoti�cationW
10001466: FindFirstFileExW
10001300: FindFirstFileW
100014C6: FindNextFileW
10001564: GetCurrentDirectoryW
1000188F: GetFileAttributesW
100016C6: GetStartupInfoW
10001602: GetSystemDirectoryW
10001664: GetWindowsDirectoryW
10001853: LoadLibraryW
1000178B: MoveFileExW
1000172D: MoveFileW

http://securelist.com/blog/research/69203/inside-t...

18 of 30 03/22/2015 10:21 PM

10001913: RegCreateKeyExW
100019F5: RegDeleteKeyW
10001DDF: RegDeleteValueW
10001A39: RegEnumKeyExW
10001BE2: RegEnumValueW
1000199B: RegOpenKeyExW
10001B23: RegQueryInfoKeyW
10001D57: RegSetValueExW
100010D5: RemoveDirectoryW
10001E81: SHGetFileInfoW
100015C6: SetCurrentDirectoryW
100018CB: SetFileAttributesW
10001E23: lstrcmpW

Network-sniffer/patcher - atmdkdrv.sys

MD5s 8d87a1845122bf090b3d8656dc9d60a8
214f7a2c95bdc265888fbcd24e3587da

Size 41 440, 43 840 bytes

Format PE32 Native

Compiled 2009.04.16 17:19:30 (GMT)
2008.05.07 19:55:14 (GMT)

Version Info FileDescription: Network Services
LegalCopyright: Copyright (C) Microsoft Corp. 1981-2000
InternalName: atmdkdrv.sys

FileDescription: CineMaster C 1.1 WDM Main Driver
LegalCopyright: Copyright 1999 RAVISENT Technologies Inc.
InternalName: ATMDKDRV.SYS

Creates a �le storage "\SystemRoot\fonts\vga�xa1.fon". Its �rst word is set to 0x21 at the beginning of
the DriverEntry function, and is replaced with 0x20 at the end of DriverEntry.

This driver appears to have been put together in "quick-and-dirty hack" style, using parts of the
"mstcp32.sys" sniffer and other unknown drivers. It contains a lot of unused code which is partially
broken or disabled. These include a broken "Dynamically disable/enable windows audit logging"
subsystem and an incomplete "Patcher mode".

There are three algorithms used for strings encryption - RC5; alphabet encryption like the one used in
"mstcp32.sys"; and XOR with a pre-seeded random number generator. Decrypted strings are immediately
encrypted back until the next usage to avoid in-memory detection.

http://securelist.com/blog/research/69203/inside-t...

19 of 30 03/22/2015 10:21 PM

The driver's �lename and device name differ across the samples. They depend on the name of the registry
key that is used to start the driver.

The driver may operate in one of two independent modes - as a network sniffer or as a memory patcher.
The mode of operation is selected on startup, based on the "Con�g2" value of the driver's registry key. By
default the driver starts in "sniffer mode".

Sniffer mode

The sniffer code is similar to the one used in the driver's "tdip.sys" and "mstcp32.sys" and uses NT4
NDIS-4, XP NDIS-5 interfaces, targeting incoming traf�c on Ethernet and VPN (ndiswanip) interfaces. It
captures only directed packets (containing a destination address equal to the station address of the NIC).
Packers-�ltering engine rules may be set via DeviceIoControl messages. Filtered packets are stored
in-memory until requested. Maximum packets storage list length is 128 items per �ltering rule.

Patcher mode

Almost broken, it does nothing interesting except, possibly, replace the thread's ServiceTable to an
unchanged, clear copy taken from the on-disk image of "ntoskrnl.exe".

Sniffer only IOCTLs:
44038004 - add �ltering rule
44038008 - clear stored packet in speci�ed �ltering rules list
4403800C - enable speci�ed �ltering rule
44038010 - disable speci�ed �ltering rule
44038014 - get stored packet from speci�ed �ltering rules list
44038018 - process packet like the one received from the wire (�lter and store)
4403801C - set maximum rules list length
44038020 - get maximum rules list length
80000004 - enablePacketsFiltering
80000008 - disablePacketsFiltering (PauseSniffer)
800024B4 - send packet to the speci�ed network interface

Common IOCTLs:
80000028 - do nothing (broken/unused part)
80000038 - set external object (broken/unused part)
8000003C - get 4 dwords struct (broken/unused part)
80000040 - copy 260 bytes from the request (broken/unused part)
80000320 - set I/O port mapping (broken/unused part)
80000324 - clear I/O port mapping (broken/unused part)
80000328 - set external PnP Event (broken/unused part)
80000640 - replace speci�ed thread's SDT (ETHREAD.ServiceTable �eld) to a given copy

http://securelist.com/blog/research/69203/inside-t...

20 of 30 03/22/2015 10:21 PM

Backdoor driven by network sniffer - "mstcp32.sys", "fat32.sys"

MD5s 74DE13B5EA68B3DA24ADDC009F84BAEE
B2C7339E87C932C491E34CDCD99FEB07
311D4923909E07D5C703235D83BF4479
21C278C88D8F6FAEA64250DF3BFFD7C6

Size 57 328 - 57 760 bytes

Format PE32 Native

Compiled 2007.10.02 12:42:14 (GMT)
2001.08.17 20:52:04 (GMT)

Version Info FileDescription: TCP/IP driver
LegalCopyright: Copyright (C) Microsoft Corp. 1981-1999
InternalName: mstcp32.sys

This is a sniffer tool similar to "tdip.sys" and it uses NT4 NDIS-4, XP NDIS-5 interfaces. It targets
incoming traf�c on Ethernet and VPN (ndiswanip) interfaces, but instead of dumb packet dumping, it uses
received packets as commands for the "process injector" subsystem that is able to extract and execute code
from the specially crafted network packets.

Default �ltering rules are stored in the "Options" registry value of the driver's registry key. It captures only
directed packets (containing a destination address equal to the station address of the NIC).

The driver's �lename and device name differ across the samples. They depend on the name of the registry
key that is used to start the driver.

Code Patcher

The driver patches OS code to dynamically disable or enable Windows audit logging.

It patches the function "LsapAdtWriteLog" in "lsasrv.dll" module of the "lsass.exe" process.

It searches for pre-de�ned signatures of the function "LsapAdtWriteLog" of known Windows versions -
4.0, 5.0, 5.1, 5.2 (NT4, Win2000, XP, WinSrv2003).

Then it selects a corresponding offset to replace the opcodes:

'jz' to never taken 'jo' in case of XP
jmp over inner logic to procedure epilog in case of Windows Server 2003 so LsapAdtWriteLog skips
logging of audit records

The module also patches "SepAdtLogAuditRecord" inside "ntoskrnl.exe" to "retn 4" instead of the �rst
opcode of the function.

http://securelist.com/blog/research/69203/inside-t...

21 of 30 03/22/2015 10:21 PM

The disabled audit can be restored after a timeout or on-event by a dedicated thread.

Expected IOCTL codes:

80000004 - setFilteringRules
80000008 - disablePacketsFiltering (PauseSniffer)
80000028 - do nothing (possible broken GetDriverName)
80000038 - disable_audit
8000003C - enable_audit

Code Injector

The code-builder within this module facilitates exploitation by providing up to four prede�ned execution
templates, which seem to be suitable for generating several code patterns.

Below is a list of the execution templates we found:

locate a DLL via PEB structure and resolve exports
call single function
call four functions
call six functions

Using these as a base for the templates, the code-builder inserts parameters and proper offsets to call one
of the following code patterns:

Locate and call WinExec
Locate and call LoadLibraryW, GetProcAddress, call exported procedure, FreeLibrary
Locate and call LoadLibraryW, GetProcAddress, call GetModuleHandle, FreeLibrary
Locate and call OpenProcess, VirtualAllocEx, WriteProcessMemory, CreateRemoteThread,
VirtualFreeEx, CloseHandle

The code injection procedure allocates memory via ZwAllocateVirtualMemory in services.exe and copies
implanted code. After that it uses KeInsertQueueApc to let the code run and waits 30 seconds for APC to
complete.

When the module starts, it reads registry value [HKLM\System\CurrentControlSet\Services\%driver name%]
Processes. This value may contain a list of process names that should be started by injected executable
code but only after services.exe and winlogon.exe has been started. The injection of code into
winlogon.exe and services.exe ensures that the newly started process will have SYSTEM user privileges.
During the injection stage Windows Audit Logging is fully disabled to avoid leaving any suspicious records
in Windows Logs.

Magic Packet Recognition

http://securelist.com/blog/research/69203/inside-t...

22 of 30 03/22/2015 10:21 PM

All incoming packets are �rst �ltered by BPF-like rules. The �ltering rules are located in [HKLM\System
\CurrentControlSet\Services\%driver name%] Options registry value or passed via corresponding IOCTL.
Packets that passed through the �lter are added in the end of processing queue.

Packets from the queue must have valid checksum values. After checking that, the code XOR-decrypts
additional data from the end of the packet. The decrypted end of the packet contains another control
structure that de�nes which encryption algorithm is used to decipher packet body. Supported algorithms
include RC5 and RSA. There is a 1024-bits RSA public key hardcoded inside the module body, while a
96-bits RC5 key is generated dynamically.

The backdoor command may arrive in a single packet or be split into pieces and come with several
packets. There is a procedure for re-assembling pieces together: a multi-packet command is added to a
special packet collector which puts all the pieces together before passing it further.

Backdoor command is stored in the �rst byte of the decrypted request and can be one of the following
values:

Command
Byte

Short Name Description

0 StatusCheck Reply with encrypted DriverName, packet collector keys, "Processes"
and "Params" registry values, names of processes for code injection
(defaults are "services.exe" and "winlogon.exe"), list of unprocessed
commands from packet collector.

1 Panic Disable packet �ltering, securely delete driver �le, clear related
registry keys, set ClearPageFileAtShutdown �ag, unbind adapters,
delete devices and prepare for unloading. However, the driver cannot
unload itself and it remains in the memory until reboot, which means
it can be detected via DRIVER_OBJECT structure.

2 CodeInject Injects code implant received from packet body.

3 CallWinExec Disable Windows Audit and start new process via standard code
injection in Winlogon.exe.

4 ResetCollector Drop all packets with speci�c key from packet collector.

5 Unused or disabled

6 GenerateRC5Key Generates RC5 session key. 96-bits RC5 key is generated by taking a
SHA1 hash of value from KeTickCount, XOR-encrypt with SHA1 hash
of two PerformanceFrequency values, which is followed by nine more
additional SHA1 hashing.

7 SetRegProcesses Sets new "Processes" registry value.

8 DeleteRegProcesses Deletes current "Processes" registry value.

9 SetRegParams Sets a universal "Params" registry value which is used for storing any
information, i.e. could be a unique victim marker or exploitation stage

http://securelist.com/blog/research/69203/inside-t...

23 of 30 03/22/2015 10:21 PM

number.

a Unused or disabled

b Ping Reply with classic ICMP Echo Response packet.

c ChangeInjectTarget Set new target injection processes (defaults are "Winlogon.exe" and
"Services.exe"). Effective until reboot.

Note: "mstcp32" is mentioned together with rootkit-like behavior in 2004 here: http://www.pcreview.co.uk

/forums/mstcp32-t1445152.html[21]

Network Sniffer - tdip.sys

MD5s 20506375665a6a62f7d9dd22d1cc9870
60dab5bb319281747c5863b44c5ac60d

Size 22448 - 28800 bytes

Format PE32 Native

Compiled 2006.10.16 18:42:40 (GMT)
2003.08.17 21:47:33 (GMT)

Supports the following versions of Windows: NT4 using NDIS-4 and XP using NDIS-5. Doesn't use Vista
and later NDIS-6 features. However, later NDIS versions are backward-compatible, so the driver is still
valid for current versions of Windows.

Version Info:

FileDescription: IP Transport Driver
LegalCopyright: © Microsoft Corporation. All rights reserved.
FileVersion: 5.1.2600.2180
InternalName: tdip.sys

This driver is a packet sniffer for incoming-only traf�c on Ethernet and VPN (ndiswanip) interfaces or any
used with ms_pschedmp as an alternative connection.

It implements a BPF (Berkeley packet �lter) style packet-�ltering system that is con�gured from the
driver's registry con�guration values or from DeviceIoControl messages.

The captured network packets may be written to disk in libpcap format (magic 0xA1B2C3D4 version 2.4)
and encrypted with one-byte XOR, key 0xE3.

The driver's con�guration is stored in the registry key:
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\tdip]

Options - packet �ltering rules in BPF format

http://securelist.com/blog/research/69203/inside-t...

24 of 30 03/22/2015 10:21 PM

Tag - selector of �ltered packet types / Defaults in case of MediumWan to
NDIS_PACKET_TYPE_BROADCAST|NDIS_PACKET_TYPE_MULTICAST|NDIS_PACKET_TYPE_DIRECTED;
(or NDIS_PACKET_TYPE_BROADCAST|NDIS_PACKET_TYPE_DIRECTED in any other case)
ImageFile - full path name to the resulting pcap �le
Duration - used as Length of the original packet in dump �le. (default 0xffff)
Backup - max size of the pcap �le

IOCTLs:

0x80002004 getCurrentState
0x80002008 setFilteringRules
0x8000200C getFilteringRules
0x80002024 getDumpFileSize
0x80002010/0x80002014/0x80002018/0x8000201C pause/resume
0x80002020 getVersion - returns 2.4.0

Driver has three logical parts, and uses an incomplete function pointer table as interface:

Business logic: �ltering rules, packet dumping, device ioctl, options1.
Ndis driver skeleton2.
Primitives lib: Strings, XORing, registry I/O3.

The code is of very good quality. It looks more complicated than Winpcap 2.3 (released 28 mar 2002), but
less so than Winpcap 3.0 (released by 10 apr 2003). Interestingly, the driver identi�es itself as "version
2.4" in the pcap �le despite there being no Winpcap version 2.4.

Key/clipboard logger driver - msrtvd.sys

MD5s 98dea1bce37bf7087360e1958400589b
bb8f56874189d5dfe9294f0553a49b83
f6bf3ed3bcd466e5fd1cbaf6ba658716

Size 31 488 - 36 736 bytes

Format PE32 Native

Compiled 2010.02.19 22:45:18 (GMT)
2008.09.17 16:23:54 (GMT)

Version Info FileDescription: MSRTvd interface driver
LegalCopyright: © Microsoft Corporation. All rights reserved.
InternalName: msrtvd.sys

This is a keylogger and clipboard monitoring tool.

On startup, the driver creates a device named "\Device\Gk0" and a symbolic link named

http://securelist.com/blog/research/69203/inside-t...

25 of 30 03/22/2015 10:21 PM

"\DosDevices\Gk".

Then it attaches to the csrss.exe process and disassembles user32.dll and ntdll.dll routines to obtain
win32k.sys and ntoskrnl.exe SDT services indexes and pointers of needed Nt/Zw APIs.

Then, using a built-in disassembler, it obtains pointers to NtUserPeekMessage, NtUserGetMessage,
NtUserGetClipboardData and using the disassembler again selects the parts of the code that will be then
hooked by splicing.

The interceptor routines are copied from a special PE section named ".msda". These routines are able to
collect key press chains and clipboard text data, add information about current Time, ProcessName,
ForegroundWindowText,and UserName related to this event.

A dedicated thread ("dumper") gathers the collected data, compresses the results with LZO appends it
every 30 minutes to a �le "%system-wide TEMP%\tm154o.da".

Most strings inside are encrypted by XOR with a pre-seeded random number generator.

IOCTLs:

0x22002C -start dumper thread
0x220030 - stop dumper thread
0x220034 - check if the driver has new data to dump
0x220038 - set two external events signaled on dump data availability (it references a plugin
possibility)
0x22003C - restart dumper thread
0x220040 - get size of available data

Collector plugin for Volrec - msrstd.sys

MD5s 69e7943f3d48233de4a39a924c59ed2c
15d39578460e878dd89e8911180494ff

Size 13 696 - 17 408 bytes

Format PE32 Native

Compiled 2009.06.05 16:21:55 (GMT)
2009.12.15 16:33:52 (GMT)

Version Info FileDescription: msrstd driver
LegalCopyright: © Microsoft Corporation. All rights reserved.
InternalName: msrstd.sys

This driver is a plugin that collects events from the "volrec.sys" driver, and delivers them by sending
DeviceIoControl messages. It collects events about �le and disk volume operations.

http://securelist.com/blog/research/69203/inside-t...

26 of 30 03/22/2015 10:21 PM

On startup the driver obtains a pointer to "\Device\volrec", then creates a control device "\Device
\msrstd0" and a symbolic link to it named "\DosDevices\msrstd"

All strings inside the driver are encrypted by XOR with a pre-seeded random number generator.

For �le events the driver collects the �lenames, and caches data about read and write operations. For disk
volume events it queries disk properties and reads volume labels and disk serial numbers of removable
drives (USB, FireWire drives).

IOCTLs:

0x220004 - turn on VolumeEvents collection
0x220008 - turn off VolumeEvents collection
0x22000C - retrieve previously stored VolumeEvent (operationType, deviceTypeFlags, VolumeLabel,
volumeSerialNumber, DosDriveLetter)
0x220010 - turn on FileEvents collection
0x220014 - turn off FileEvents collection
0x220018 - retrieve previously stored FileEvent (�leName, deviceTypeFlags, VolumeLabel,
volumeSerialNumber, DosDriveLetter)
0x22001C - connect to Volrec.sys (send ioctl 0x220004), enable plugin operation
0x220020 - disconnect from Volrec.sys (send ioctl 0x220008), disable plugin operation

Filesystem �lter driver – volrec.sys, scsi2mgr.sys

MD5s a6662b8ebca61ca09ce89e1e4f43665d
c17e16a54916d3838f63d208ebab9879

Size 14 464-14 848 byres

Format PE32 Native

Compiled 2009.06.05 16:21:57 (GMT)
2009.12.15 16:33:57 (GMT)

Version Info FileDescription: Volume recognizer driver
LegalCopyright: © Microsoft Corporation. All rights reserved.
InternalName: volrec.sys

This driver is a generic �lesystem �lter which feeds system events to user-mode plugins.

On startup the driver creates a control device named "\Device\volrec" and a symbolic link to it named
"\DosDevices\volrec0". It then attaches all available �lesystem devices. It is also, able to handle
removable storage devices.

All strings inside the driver are encrypted by XOR with a pre-seeded random number generator.

http://securelist.com/blog/research/69203/inside-t...

27 of 30 03/22/2015 10:21 PM

IOCTLs:

0x220004 - setup plugin interface
0x220008 - disable plugin calls

The driver handles the following system events:

�le opened, created or closed
data is read or written to a �le
new volume is mounted, unmounted
new USB or FireWire device attached

HDD/SSD operation helper driver - WIN32M.SYS

MD5s 2b444ac5209a8b4140dd6b747a996653
b3487fdd1efd2d1ea1550fef5b749037

Size 19 456 - 26 631 bytes

Format PE32 Native, PE32+ Native

Compiled 2001.08.23 17:03:19 (GMT)
2013.05.14 15:58:36 (GMT)

Description This module will be the subject of a dedicated blogpost.

HDD/SSD �rmware operation - nls_933w.dll

MD5s 11fb08b9126cdb4668b3f5135cf7a6c5
9f3f6f46c67d3fad2479963361cf118b

Size 212 480 - 310 272 bytes

Format PE32 DLL, PE32+ DLL

Compiled 2010.06.15 16:23:37 (GMT)
2013.05.14 16:12:35 (GMT)

Version Info
(64bit dll only)

FileDescription: Windows Networking Library
LegalCopyright: Copyright (C) Microsoft Corp. 1981-2001
FileVersion: 80AA
InternalName: nls_933w.dll
OriginalFilename: nls_933w.dll
PrivateBuild: 4.0.1.0
ProductName: Microsoft(R) Windows (R) 2000 Operating System
ProductVersion: 5.0.2074.0
Full Version: 1.0.0.1

http://securelist.com/blog/research/69203/inside-t...

28 of 30 03/22/2015 10:21 PM

http://securelist.com/blog/research/68750/equation-the-death-star-of-malware-galaxy/1.

https://securelist.com/�les/2015/02/Equation_group_questions_and_answers.pdf2.

https://twitter.com/share?url=http%3A%2F%2Fsecurelist.com%2Fblog%2Fresearch%2F69203%2Finside-

the-equationdrug-espionage-platform%2F&

text=EquationDrug+represents+the+main+espionage+platform+from+the+%23EquationAPT+Group

3.

http://securelist.com/blog/research/67741/regin-nation-state-ownage-of-gsm-networks/4.

http://securelist.com/analysis/publications/65545/the-epic-turla-operation/5.

https://twitter.com/share?url=http%3A%2F%2Fsecurelist.com%2Fblog%2Fresearch%2F69203%2Finside-

the-equationdrug-espionage-platform%2F&

text=The+platform+includes+executables%2C+con�gurations+and+protected+storage+locations+%23EquationAPT

6.

http://cdn.securelist.com/�les/2015/03/EquationDrug_1.jpg7.

http://cdn.securelist.com/�les/2015/03/EquationDrug_1.jpg8.

https://twitter.com/share?url=http%3A%2F%2Fsecurelist.com%2Fblog%2Fresearch%2F69203%2Finside-

the-equationdrug-espionage-platform%2F&

text=The+hypothesis+that+these+attackers+have+been+active+since+the+90s+seems+realistic+%23EquationAPT

9.

https://twitter.com/share?url=http%3A%2F%2Fsecurelist.com%2Fblog%2Fresearch%2F69203%2Finside-

the-equationdrug-espionage-platform%2F&text=86+modules+have+yet+to+be+discovered+%23EquationAPT

10.

http://cdn.securelist.com/�les/2015/03/EquationDrug_2.jpg11.

http://cdn.securelist.com/�les/2015/03/EquationDrug_2.jpg12.

http://cdn.securelist.com/�les/2015/03/EquationDrug_3.jpg13.

http://cdn.securelist.com/�les/2015/03/EquationDrug_4.jpg14.

http://cdn.securelist.com/�les/2015/03/EquationDrug_4.jpg15.

http://cdn.securelist.com/�les/2015/03/EquationDrug_5_1.jpg16.

https://twitter.com/share?url=http%3A%2F%2Fsecurelist.com%2Fblog%2Fresearch%2F69203%2Finside-

the-equationdrug-espionage-platform%2F&

text=The+timestamps+match+the+working+days+of+software+developer+from+timezone+UTC-3+or+UTC-

4+%23EquationAPT

17.

https://twitter.com/share?url=http%3A%2F%2Fsecurelist.com%2Fblog%2Fresearch%2F69203%2Finside-

the-equationdrug-espionage-platform%2F&

text=The+EquationDrug+case+demonstrates+an+interesting+trend%3A+a+growth+in+code+sophistication+%23EquationAPT

18.

https://twitter.com/share?url=http%3A%2F%2Fsecurelist.com%2Fblog%2Fresearch%2F69203%2Finside-

the-equationdrug-espionage-platform%2F&text=Nation-

state+attackers+create+automatic+systems+infecting+only+selected+users+%23EquationAPT

19.

https://twitter.com/share?url=http%3A%2F%2Fsecurelist.com%2Fblog%2Fresearch%2F69203%2Finside-20.

Description This (80AA) plugin is a HDD �rmware �ashing tool which includes an API and the
ability to read/write arbitrary information into hidden sectors on the disk.
The plugin will be the subject of a separate blogpost.

http://securelist.com/blog/research/69203/inside-t...

29 of 30 03/22/2015 10:21 PM

the-equationdrug-espionage-platform%2F&text=Nation-

state+attackers+use+a+remote+system+management+tool+that+can+copy+any+information+they+need+%23EquationAPT

http://www.pcreview.co.uk/forums/mstcp32-t1445152.html21.

http://securelist.com/blog/research/69203/inside-t...

30 of 30 03/22/2015 10:21 PM

