

D r a g o n T h r e a t L a b s , H o n g K o n g

Author: Dan

January 12

 2015
Insight in to a strategic web compromise and attack campaign against
Hong Kong infrastructure. Revealing an attacker’s persistence,
sophistication and aggression.

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 1

Contents
Introduction .. 2

Strategic web compromise ... 2

First stage malware (Dropper component – “Swisyn” part 1) .. 4

Second stage (Decoder and loader – “Swisyn” part 2) ... 6

Final stage (RAT – “PCClient”) ... 7

Infrastructure & associations .. 9

Detection & mitigation ... 11

Appendix ... 14

Contact .. 15

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 2

Introduction
Over the past several months an increasing number of strategic web compromises (“wateringholes”)

have been discovered on websites in Hong Kong. This rise in activity coincides with the Occupy

Central protests. In this post we will talk about a single attack, whilst not trying to distract attention

from the vast number of attacks and subsequent compromises that remain persistent in Hong Kong.

Whilst going about our daily business we were alerted to a website that began serving a malicious

payload alongside its usual web page. The initial investigation revealed that the attack and

associated payloads are part of an ongoing attack campaign by an Advanced Persistent Threat group

that is known to target various sectors of industry and Government in Hong Kong.

In this instance we have chosen to obfuscate details of the compromised website to protect the

identity of the victim. This website belongs to a private educational institution who, since being

notified about the compromise, has removed the malicious executable and remediated the

compromised of their server, thus breaking a crucial link in the chain of this attack.

Strategic web compromise
The website in question was implanted with some HTML code that simply reaches out to a

secondary website and downloads malware. Whilst this in itself is not interesting the methodology

used to obfuscate code and evade detection are. The underlying code in the first page that loads

exploits a vulnerability in Internet Explorer (CVE-2014-6332) and runs several scripts, each with

support for different operating systems and methods of downloading and executing a file from a

website. The first script is obfuscated Visual Basic Script (“VBS”)

By decoding this we can see the true intentions of the script – which opens a whole new can of

worms.

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6332

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 3

This code is extremely interesting because not only does it contain VBScript but also contains

PowerShell script. Once running it uses an elaborate way to detect the operating system version and

then selects whether to use VBScript or Powershell based on the result; VBScript for Windows XP

and Powershell for newer versions of Windows. The Powershell script is compressed and Base64

encoded. By decoding this script we can determine its nature

As you can see this powershell script simply extracts another VBScript and executes it. The VBScript

then downloads the first binary payload into the user’s temporary directory and names it ‘plug.exe’.

If the operating system version is too old to support Powershell then the script will attempt to use

VBScript. This VBScript downloads the primary payload to the temporary directory and names it

“z1.exe”.

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 4

First stage malware (Dropper component – “Swisyn” part 1)
The first binary payload that lands on the system is relatively simple and serves as a method of yet

again detecting the operating system version and where to drop a secondary payload file. Whilst this

binary is not complicated by nature it has been designed to masquerade as a legitimate application

and contains functionality to evade anti-virus. This malware implant is commonly detected by anti-

virus as Swisyn.

Upon running this malware determines the operating system version, but only delineating between

Windows XP, Visa and above.

It appears that this functionality is included because the secondary payload comes in both 32bit and

64bit versions.

Both of these second stage payloads are obfuscated but decoded with a simple bitwise operation as

per below

https://www.virustotal.com/en/file/143b17615314b43c3fd1b26d9432ce58298bec96981186023540670203b0b8d4/analysis/

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 5

In this scenario, the secondary payloads can be decoded using a simple subtraction of 3 followed by

an XOR of 3 from each byte. This file is then written to %User%\Application Data\Microsoft in a

newly created folder name ‘wuauclt’. The filename depends on the operating system version, for

Windows XP it is “clbcatq.dll”, for Windows Vista and above it is “profapi.dll”. Once this file has

been written to disk a file from the Windows System32 folder is copied into the directory. This file,

named ‘wuauclt.exe’, is the Windows update client interface and it a standard windows file. By

executing this file in a specific manner it will load the freshly dropped DLL file – affectively this is

known as DLL hijacking.

Following this action another file, named ‘wuauclt.dat’, is written on to the disk under the same

directory. This file is encoded and not decoded at this stage of the attack. To complete the file drop

wuauclt.exe is executed.

The 64bit version of this dropper is vastly similar in functionality although it offers slightly more

efficiency in the code. The decoding routine is more simplified than its 32bit counterpart and the

decoding key is hardcoded

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 6

The following pseudo-code can decode both 32bit and 64bit versions of the DLL stored in

‘wuauclt.dat’

Not to dwell on a dropper, let’s move on to the second stage malware.

Second stage (Decoder and loader – “Swisyn” part 2)
The malware second stage is now loaded and running. Interestingly, this payload is also detected by

anti-virus as Swisyn. This DLL is again fairly simple and acts as a secondary dropper. It primarily

serves as a method of decoding one of the files dropped by the previous malware stage and creating

a method to start the malware on system boot-up or user login. In order to do this the malware

firstly decodes a file that was dropped by the previous stage – in this case it is “wuauclt.dat”. The

decoding routine is again overly complex but ultimately amounts to a simple subtraction and XOR,

again both of these operations are performed by the number 3, thus each byte is subtracted by 3

and then XOR’d with 3

https://www.virustotal.com/en/file/f79392364595487a049d9ebce118781063225af00a57e80c6591c01a5ccc5b21/analysis/1420727554/

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 7

Once this file has been decoded it is loaded into memory and executed. This file, once decoded is

the third and final payload. The method of leaving the encoded file on disk and only decoding it in

memory is to thwart poorly configured anti-virus or disk surface heuristic scanners.

Finally to wrap up, an entry is created in the registry named ‘wuauclt’ is created under

‘HKCU\Software\Microsoft\Windows\Current Version\Run’ to ensure that this file is executed upon

user-login.

Final stage (RAT – “PCClient”)
Finally we are left with a full payload. Unsurprisingly the 3rd and final stage of this part of the attack

is a fully fledged RAT (Remote Administration Tool), which is detected by anti-virus as PCClient. This

RAT allows the attacker to control the infected workstation and perform a vast array of

administrative functions such as:

 Downloading files to the infected workstation

 Uploading from the infected workstation files to the attackers

 Enumerate/list all connected drives such as network shares or external devices

 Search the infected workstations hard drive for files

 Deleting, copying and moving files on the infected workstation

 Executing commands on the infected workstation

A high-level view of the command structure gives us an idea as to how simple this functionality

can seem, but does not turn away from how damaging the affects can be:

https://www.virustotal.com/en/file/debabe7707040b16172545fc174bd4ded36599ebd032a6f09baa2653b32e4f21/analysis/1420727848/

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 8

Once the RAT has been loaded on the infected machine it begins calling out to the command and

control server (“phoning home”) and waits for the attackers to issue one of the above

commands to the victim. As we usually see with APT attacks the malware controllers use a

specific ID to code their attack campaign, which in this case is ‘C00BBB’.

Information about the victim system is collected and posted off to the command and control

server. This information gives the attacker a brief description about the machine. The

information consists of:

 Machine hostname

 Total amount of RAM memory

 Operating system and service pack level

 Attack campaign code

This information is encoded using a simple bitwise operation and then sent to the command and

control server. For example:

Unencoded data Encoded data

44 45 4C 4C 2D 31 37 38 DELL-178
44 33 43 00 00 00 00 00 D3C.....
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
35 31 32 4D 42 00 00 00 512MB...
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
57 69 6E 20 58 50 20 53 Win XP S
50 33 20 28 42 75 69 6C P3 (Buil

BA B9 B2 B2 51 4D 47 46 º¹²²QMGF
BA 4B BB 7E 7E 7E 7E 7E ºK»~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
49 4D 4C B1 BC 7E 7E 7E IML±¼~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
A7 95 90 5E A6 AE 5E AB §••^¦®^«
AE 4B 5E 56 BC 89 95 92 ®K^V¼‰•’

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 9

64 20 32 36 30 30 29 00 d 2600).
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
43 30 30 42 42 42 00 00 C00BBB..

9A 5E 4C 48 4E 4E 55 7E š^LHNNU~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
7E 7E 7E 7E 7E 7E 7E 7E ~~~~~~~~
BB 4E 4E BC BC BC 7E 7E »NN¼¼¼~~

Whilst this may seem to make the data harder to recover it actually makes detection of the traffic

easier. To decode the traffic a simple calculation can be performed by reversing the encoding

operations. In this case the malware simply increases the initial encoding key by 1, then adds this

value to each byte in the buffer and finally XOR’s each byte. Once again, the following pseudo-code

can decode this data

Infrastructure & associations
During in the investigation we performed analysis of the infrastructure that this malware

communicates with. On this occasion we have not been able to gain physical access to the command

and control server as it is legitimate, but compromised production infrastructure. The graph below

shows the flow in which various parts of the attack are loaded and how they chain together.

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 10

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 11

Detection & mitigation
This attack can be detected and/or mitigated at each stage. In order to help organisations protect

themselves we have created a number of network IDS rules and disk-scan rules that can be used

with Snort and Yara. Rules are provided in a best-effort basis and we cannot vouch for their

efficiency in your environment.

Wateringhole code

rule apt_win_wateringhole {

meta:

 author = "@dragonthreatlab "

 description = "Detects code from APT wateringhole"

strings:

 $str1 = "function runmumaa()"

 $str2 = "Invoke-Expression $(New-Object IO.StreamReader ($(New-

Object IO.Compression.DeflateStream ($(New-Object IO.MemoryStream

(,$([Convert]::FromBase64String("

 $str3 = "function MoSaklgEs7(k)"

condition:

 any of ($str*)

}

Swisyn

rule apt_win_swisyn {

meta:

 author = "@dragonthreatlab"

 md5 = "a6a18c846e5179259eba9de238f67e41"

 description = "File matching the md5 above tends to only live

in memory, hence the lack of MZ header check."

strings:

 $mz = {4D 5A}

 $str1 = "/ShowWU" ascii

 $str2 = "IsWow64Process"

 $str3 = "regsvr32 "

 $str4 = {8A 11 2A 55 FC 8B 45 08 88 10 8B 4D 08 8A 11 32 55 FC

8B 45 08 88 10}

condition:

 $mz at 0 and all of ($str*)

}

Malware dropper 32bit

rule apt_win32_dropper {

meta:

 author = "@dragonthreatlab"

 md5 = "ad17eff26994df824be36db246c8fb6a"

 description = "APT malware used to drop PcClient RAT"

strings:

 $mz = {4D 5A}

 $str1 = "clbcaiq.dll" ascii

 $str2 = "profapi_104" ascii

 $str3 = "/ShowWU" ascii

 $str4 = "Software\\Microsoft\\Windows\\CurrentVersion\\" ascii

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 12

 $str5 = {8A 08 2A CA 32 CA 88 08 40 4E 75 F4 5E}

condition:

 $mz at 0 and all of ($str*)

}

Malware dropper 64bit

rule apt_win64_dropper {

meta:

 author = "@dragonthreatlab"

 md5 = "ad17eff26994df824be36db246c8fb6a"

 description = "APT malware used to drop PcClient RAT"

strings:

 $mz = {4D 5A}

 $str1 = "clbcaiq.dll" ascii

 $str2 = "profapi_104" ascii

 $str3 = "\\Microsoft\\wuauclt\\wuauclt.dat" ascii

 $str4 = {0F B6 0A 48 FF C2 80 E9 03 80 F1 03 49 FF C8 88 4A FF

75 EC}

condition:

 $mz at 0 and all of ($str*)

}

Encoded version of PcClient

rule apt_win_disk_pcclient {

meta:

 author = "@dragonthreatlab "

 md5 = "55f84d88d84c221437cd23cdbc541d2e"

 description = "Encoded version of pcclient found on disk"

strings:

 $header = {51 5C 96 06 03 06 06 06 0A 06 06 06 FF FF 06 06 BE

06 06 06 06 06 06 06 46 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06

06 EE 06 06

06 10 1F BC 10 06 BA 0D D1 25 BE 05 52 D1 25 5A 6E 6D 73 26 76 74 6F

67 74 65 71 26 63 65 70 70 6F 7A 26 64 69 26 74 79 70 26 6D 70 26 4A

4F 53 26 71 6F 6A 69 30 11 11 0C 2A 06 06 06 06 06 06 06 73 43 96 1B

37 24 00 4E 37 24 00 4E 37 24 00 4E BA 40 F6 4E 39 24 00 4E 5E 41 FA

4E 33 24 00 4E 5E 41 FC 4E 39 24 00 4E 37 24 FF 4E 0D 24 00 4E FA 31

A3 4E 40 24 00 4E DF 41 F9 4E 36 24 00 4E F6 2A FE 4E 38 24 00 4E DF

41 FC 4E 38 24 00 4E 54 6D 63 6E 37 24 00 4E 06 06 06 06 06 06 06 06

06 06 06 06 06 06 06 06 56 49 06 06 52 05 09 06 5D 87 8C 5A 06 06 06

06 06 06 06 06 E6 06 10 25 0B 05 08 06 06 1C 06 06 06 1A 06 06 06 06

06 06 E5 27 06 06 06 16 06 06 06 36 06 06 06 06 06 16 06 16 06 06 06

04 06 06 0A 06 06 06 06 06 06 06 0A 06 06 06 06 06 06 06 06 76 06 06

06 0A 06 06 06 06 06 06 04 06 06 06 06 06 16 06 06 16 06 06}

condition:

 $header at 0

}

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 13

In-memory version on PcClient

rule apt_win_memory_pcclient {

meta:

 author = "@dragonthreatlab "

 md5 = "ec532bbe9d0882d403473102e9724557"

 description = "File matching the md5 above tends to only live

in memory, hence the lack of MZ header check."

strings:

 $str1 = "Kill You" ascii

 $str2 = "%4d-%02d-%02d %02d:%02d:%02d" ascii

 $str3 = "%4.2f KB" ascii

 $encodefunc = {8A 08 32 CA 02 CA 88 08 40 4E 75 F4}

condition:

 all of them

}

PcClient malware beaconing

alert tcp $HOME_NET any -> $EXTERNAL_NET [80,443] (msg:"MALWARE –

DTL ID 12012015 - PcClient beacon"; flow:established,to_server;

content:"|BB 4E 4E BC BC BC 7E 7E|"; nocase; offset:160; depth:8;

classtype:trojan-activty; sid:YOUR_SID; rev:20122014;)

Malware domain

alert udp $HOME_NET any -> $EXTERNAL_NET 53 (msg:"MALWARE - DTL ID

12012015 - C2 Domain"; content:"|06|aoemvp|03|com";

classtype:trojan-activity; sid:YOUR_SID; rev: 20122014;)

 C2 server IP #1

alert ip $HOME_NET any <> 45.64.74.101 any (msg:"MALWARE - DTL ID

12012015 – C2 IP Address"; classtype:trojan-activity; sid:YOUR_SID;

rev: 20122014;)

C2 server IP #2

alert ip $HOME_NET any <> 103.229.127.104 any (msg:"MALWARE - DTL ID

12012015 - C2 IP Address "; classtype:trojan-activity; sid:YOUR_SID;

rev: 20122014;)

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 14

Appendix
The following artefacts were found during the investigation

MD5s Network artefacts

a6a18c846e5179259eba9de238f67e41

55f84d88d84c221437cd23cdbc541d2e

a6a18c846e5179259eba9de238f67e41

279ef79f904476ba0f9f44c87358bb1f

42b76c0503a6bf21f1ea86e0b14d67ea

cff25fe24a90ef63eaa168c07008c2bb

ad17eff26994df824be36db246c8fb6a

f66b64ef984ac46ac7395358059979bc

efd9dc39682312d6576468f5c0eb6236

c.aoemvp.com

aoemvp.com

lim.kiu@hotmail.com

45.64.74.101

103.229.127.104

D r a g o n T h r e a t L a b s , H o n g K o n g

Page 15

Contact
For all questions relating to the publication or specifics in this document please contact us via one of

the following methods:

Twitter: @dragonthreatlab

Website: http://dragonthreat.blogspot.hk

Email: dragonthreatlabs@gmail.com

Kind regards,

Dan

Dragon Threat Labs

https://twitter.com/DragonThreatLab
http://dragonthreat.blogspot.hk/
mailto:dragonthreatlabs@gmail.com

