Iron Tiger APT Updates Toolkit With Evolved SysUpdate Malware

🥏 trendmicro.com/en_us/research/21/d/iron-tiger-apt-updates-toolkit-with-evolved-sysupdate-malware-va.html

April 9, 2021

APT & Targeted Attacks

This blog details how Iron Tiger threat actors have updated their toolkit with an updated SysUpdate malware variant that now uses five files in its infection routine instead of the usual three.

By: Daniel Lunghi, Kenney Lu April 09, 2021 Read time: 11 min (3014 words)

More than a year after Operation DRBControl, a campaign by a cyberespionage group that targets gambling and betting companies in Southeast Asia, we found evidence that the Iron Tiger threat actor is still interested in the gambling industry.

This blog details how Iron Tiger threat actors have updated their toolkit with an updated SysUpdate malware variant that now uses five files in its infection routine instead of the usual three. We also provide details on Iron Tiger's possible connections to other threat actors based on similar tactics, techniques, and procedures (TTPs) we've observed. Finally, we describe some of the rootkits that Iron Tiger is using, one of which is used to hide files at the kernel level, and has not been previously reported as being used by this threat actor.

A Look at the Iron Tiger Threat Group

In 2019, Talent-Jump, Inc., a security service and system integration company, discovered several malware variants in a gambling company during an incident response operation and sought our help for further investigation and analysis.

In 2020 and 2021, Talent-Jump found new samples for malware families that are attributed to the Iron Tiger threat actor, which is also referred to as LuckyMouse, EmissaryPanda, and APT27.

While investigating Operation DRBControl in 2019, we found several connections to multiple threat actors:

- Iron Tiger, which uses the HyperBro trojan and some infrastructure links
- · Winnti, which uses the same infrastructure and code-sharing links detailed in our paper
- Bronze President, a threat actor that targets non-governmental organizations (NGOs). Back in 2019, we named a malware family, which we believed was new, as "Type 2."

However, after the publication of our report, we learned that the Type 2 malware family described in our report was the same as the "RCSession" malware family that Dell Secureworks described in a blog that they published in December 2019.

After finding multiple tools belonging to the Iron Tiger threat actor (which we now track as Earth Smilodon), it is likely that the new malware families that we found during the Operation DRBControl investigation came from the same threat actor.

New Version of SysUpdate Malware

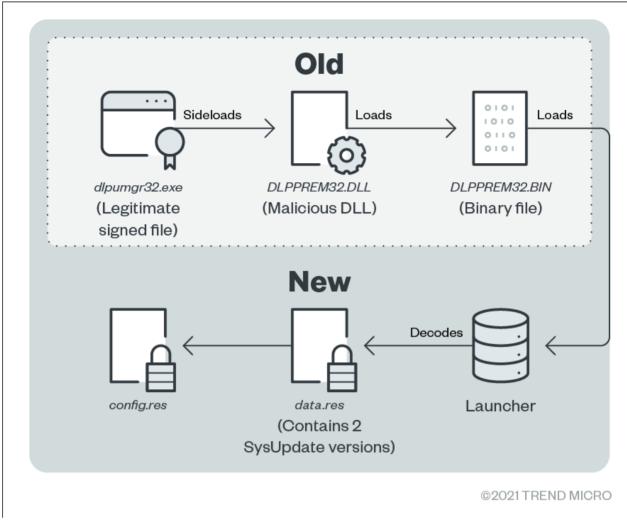


Figure 1. The old and new SysUpdate infection chains

In December 2020, we found a sample that we identified as one belonging to the SysUpdate malware family, also named Soldier, FOCUSFJORD, and HyperSSL. SysUpdate was first described by the NCC Group in 2018.

In the past, SysUpdate was loaded in memory by a known method involving three files:

- One legitimate executable, sometimes signed, and vulnerable to dynamic-link library (DLL) sideloading
- One malicious DLL loaded by the legitimate file
- One binary file usually containing obfuscated code, unpacked in memory by the malicious DLL

An additional executable that serves as a launcher is loaded in memory, which then loads the final SysUpdate payload. Based on our investigation, instead of the usual three files, the threat actor used five:

- *dlpumgr32.exe*, a legitimate signed file that belongs to the DESlock+ product
- *DLPPREM32.DLL*, a malicious DLL sideloaded by dlpumgr32.exe that loads and decodes *DLPPREM32.bin*
- DLPPREM32.bin, a shellcode that decompresses and loads a launcher in memory
- data.res, an encrypted file decoded by the launcher and contains two SysUpdate versions: one for a 32bit architecture and another for a 64-bit architecture
- config.res, an encrypted file decoded by the launcher and contains the SysUpdate configuration, such as the command-and-control (C&C) address

Analysis of the Updated Tool: The Launcher

In summary, the launcher acts as an installer — it will copy the malware to a fixed place and ensure that it runs during the next boot of the infected host. In detail, this process involves multiple steps.

The launcher starts by instantiating the *CLoadInfo* object, which has the following structure:

Offset	Description	Hardcoded values in our sample
0	VTable of CLoadInfo class	
4	Directory to copy all files	%PROGRAMDATA%\Test\
8	Name of the legitimate executable	dlpumgr32.exe
12	Name of the sideloaded DLL	DLPPREM32.DLL
16	Name of the shellcode	DLPPREM32.bin
20	Name of the encrypted payload	data.res
24	MD5 of the encrypted payload	e43e40416520dab5b4c44ac8af907078
28	Name of the encrypted configuration	config.res
32	Name of the registry key value	servTest
36	Name of the service DisplayName	Servdisplay

Table 1. CLoadInfo object structure

The launcher's behavior changes depending on the number of arguments passed to the executable. It's important to highlight that the change of behavior only depends on the number of arguments, and not the content:

- No argument. If there is no argument, a hardcoded directory will be created wherein all the files will be copied. *The CreationTime, LastWriteTime,* and *LastAccessTime* will be updated according to the C:\Windows\system32\kernel32.dll file and their file attributes will be set to "hidden" and "system". Windows Management Instrumentation (WMI) will be used to run dlpumgr32.exe with arguments "-up -run -x" and it will exit the current process.
- **One argument**. It will skip the decoding of the configuration and persistence setup, and will perform the same behavior as one with three arguments.

• Three arguments.

- The launcher first decrypts the config.res file with a hardcoded Data Encryption Standard (DES) key. It encodes it using another key and writes it to the registry key
 "Software\Classes\scConfig" (HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER hive, depending on the privileges of the process).
- After decrypting the configuration, the *config.res* file is deleted.
- Depending on the privileges of the process, the malware will add a value to the
 "Software\Microsoft\Windows\CurrentVersion\Run" key, or it will create a service that runs the malware at boot time
- The launcher decrypts the data.res file with a different hardcoded DES key. The result is a file with the following structure:

Size of the 32-bit shellcode
32-bit shellcode
Size of the 64-bit shellcode
64-bit shellcode

Table 2. Structure of decrypted data.res file

Lastly, the launcher starts a suspended process with the command line

"C:\Windows\system32\svchost.exe -k LocalServices," and injects the appropriate shellcode into it (either 32- or 64-bit). It will then resume the newly created process and exit the current process.

The following diagram summarizes the launch procedure:

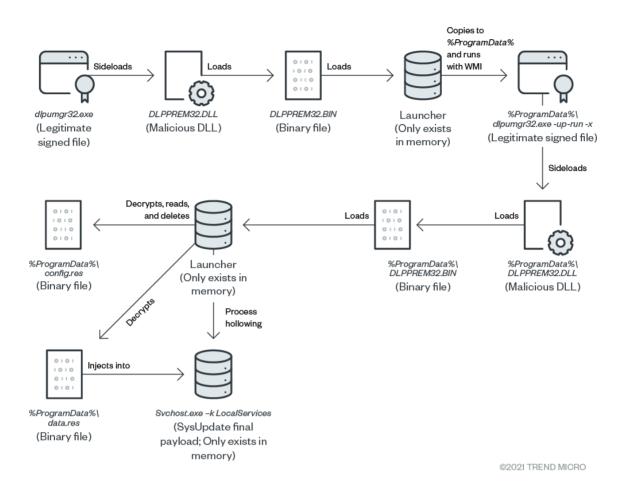


Figure 2. The launch procedure of the updated tool

The payload itself is a new version of SysUpdate.

Analysis of the Payload

The features of the updated SysUpdate payload look similar to its previous versions. We observed that the C++ code is structured around classes, many of which have self-explanatory names. Some of these classes, such as *CCompress, CIOStreamIF*, or *CTcpSocket*, have been present in the older versions of SysUpdate and compiled near the end of 2015.

Others have been in existence for many years, such as *TPacket*, *SCM Client*, *SystemInfo*, *CMD5*, *CIOStream*, and *CInfo*. Some of them are newer and have been developed in 2020, such as *ConfigReg*, *CWorkQueue*, *WindowsEvent*, and *CEncoder* or *cudp*.

The sample we've analyzed contained many new and unique classes that featured a particular naming convention. The names of classes are mostly self-explanatory, and the manner in which the classes have been organized is probably the result of a framework developed by our threat actor.

Some of the classes' names start with "H" (*HControl*, *HSleep*, and *HTrans*), "I" (*IAgent*, *ITcpAgent*, and *IAgentListener*), "T" (*TCommon*, *TFileInfo*, *TFileRename*, *TFileUpload*, *TServicesInfo*, *TListUser*, and *TTransmit*), "C" (*CSSLAgent*, *CSocks5*, and *CTcpAgent*) or "CM" (*CMCapture*, *CMFile*, *CMPipeClient*, *CMPipeServer*, *CMProcess*, *CMServices*, and *CMShell*).

The communication is made via a named pipe (in our case, it's "\\.**pipe\testPipe**"). Multiple features that are expected of an espionage backdoor are present in the sample. These include a screenshot feature, file management functions (such as search, delete, move, upload, and download), process and services

management, and command execution.

It should be noted that we also found recent samples of the SysUpdate backdoor that do not implement these "new" classes. This suggests that different groups (or subgroups of Iron Tiger) are also using this malware family in their attacks.

Pandora Backdoor

On two occasions (in March and October 2020), we found a kernel rootkit that had been deployed. After analysis, it appears that this rootkit's behavior is very similar to that of the NDISProxy driver and remote access trojan (RAT). The version we found is slightly different — the driver isn't digitally signed but instead utilizes a known exploit to bypass Windows Driver Signature Enforcement (DSE) protection and load the driver directly into the system.

We chose to call it "Pandora" based on the program database (PDB) path of the unpacked stage 2, which is **"F:\Pandora\x\drv(32-64)\bin\src\drvx64.pdb.**"

The rootkit has multiple stages before getting to the actual payload:

Stage 1

- Grants system privileges via Windows services
- · Uses DLL sideloading technique to evade security solutions
- Starts and injects code to a new suchost process to prevent tracking

Stage 2

- Utilizes a known vulnerability (CPU-Z CVE-2017-15303) that allows it to read and write into physical memory and read CPU control registers to turn the DSE off. This is done in conjunction with the Process Monitor driver (**procxp152.sys**), both of which are dropped upon loading the rootkit, even if they are not originally installed in the machine.
- Loads "drvx64.sys," a crafted Windows Presentation Foundation (WPF) driver

Stage 2 - Driver

- Registers WPF callback and filters incoming traffic with a predefined token
- Injects final payload into "lsass.exe"

Stage 3 - Final Payload

- Installs itself as a Windows service
- · Sets a specific keyword for communication
- Exchanges messages and commands with the kernel driver
- Performs backdoor functions

Each backdoor has a different token that is encrypted in the registry. If the incoming traffic contains a token and is in the HTTP format, the backdoor will intercept the traffic and process the command. In the version that we've analyzed, the installer writes the token in the registry key. We can't trigger the backdoor without a current token, which makes the backdoor more difficult to find and analyze.

Sample	Token	Mutex	Semaphore
Pandora 20200310	FHHqw@nF4Jo0vPAU180IP5h9umnd4KFi	ENDnetfilter	234netfilter
Pandora 20201010	Qp\$zo&FgPBjGhm(.LGi_&j~tmhMO08)	ENDdsfsfs	xwwadsfsfs

Table 3. Pandora backdoor samples with different tokens

Based on our analysis, the Pandora backdoor contains more public code repositories compared with previous versions.

Feature	Name	Repository
Driver memory injection	Blackbone	https://github.com/DarthTon/Blackbone
NDIS network filtering driver	WFP Sample	"WDK\Windows Filtering Platform Stream Edit Sample/C++/sys/stream_callout.c"
Parse HTTP packets	HTTP Parser	https://github.com/nodejs/http-parser
Turn off DSE	StryKer	https://github.com/hfiref0x/Stryker
Encrypted Communication	D3DES	https://gitlab.gnome.org/GNOME/gtk-vnc/-/blob/v0.1.0/src/d3des.c
Compression	QuickLZ	https://github.com/robottwo/quicklz

Table 4. Pandora's public code repositories

Rootkit From a Public Repository

We found a rootkit that is being used for hiding processes, files, and services. It was taken from a public GitHub repository whose author is not associated with the threat actor.

Hidden.sys - https://github.com/JKornev/hidden/tree/master/

The sample was found in April 2020. The driver was not signed and used the same DSE exploit that the Pandora backdoor uses for it to load.

The tool is used to hide the threat actors' tools and services. The tool's configuration was added to registry run keys on a victim's computer.

Hidden Registry/Folder/File

Туре	Value
REG	HKLM\SYSTEM\CurrentControlSet\services\HiddenService
REG	HKLM\SYSTEM\CurrentControlSet\services\servTest
REG	HKLM\SYSTEM\CurrentControlSet\services\TrkWkss
Folder	C:\programdata\vlc

File	C:\programdata\vlc\vlc.exe
Folder	C:\programdata\test
File	C:\programdata\test\dlpumgr32.exe
File	C:\windows\system32\drivers\Hidden.sys
File	C:\windows\system32\HiddenService.exe

Table 5. The tool's configuration

The references to "Hidden" are related to the rootkit itself. The "**dlpumgr32.exe**" and "servTest" lines are related to the new version of SysUpdate which we described earlier.

We do not know which malware variant is being sideloaded by **vlc.exe**. It is probably installed as a service named "**TrkWkss.**" We found a SysUpdate sample compiled in November 2020 that abuses a DLL sideloading vulnerability in VLC (see IOC list). This confirms that this threat actor is abusing this legitimate program to sideload its backdoors.

HyperBro Malware Family

The Iron Tiger APT group has used the HyperBro malware family since at least 2017. It is the evolved version of HttpBrowser, which the group has been using since at least 2015.

We found earlier versions of this malware that were sideloaded by malicious DLL files that unpacked and loaded a binary file named **"thumb.db"** in memory. All the requests were sent to the C&C server on port 443, with **"/ajax**" as the uniform resource identifier (URI).

While investigating Operation DRBControl, we found an updated version of this malware family that implements some new classes. We provided a detailed analysis of this new HyperBro version in our research.

We also discovered that the binary file that's being unpacked and loaded in memory by malicious DLL files is named "**thumb.dat.**" We also saw that all requests sent to the C&C server were sent to the URI "/**api/v2/ajax**" on port 443.

Since we analyzed that single sample, we found several new samples that matched the newer behavior, some of which have been deployed in our gambling target.

However, we continue seeing samples that feature the "older" behaviors, which suggests that different groups - or possibly subgroups of Iron Tiger - are using this malware family. Some of these samples match the target and behavior listed by ESET in their blog.

FRP Tool

We found the FRP tool being used on a Linux host, which is similar to Avast's findings in a report that they published on the Iron Tiger threat actor.

The FRP tool that we analyzed was a modified version, which was possibly copied off of Github.

Type 1 Malware Family

We found three new samples of the Type 1 malware family that abuses Dropbox as a secondary C&C channel, which we described in our Operation DRBControl whitepaper.

Apart from a modification in the malware sample's configuration (which happened after we published our paper), the differences with the versions that we analyzed in 2019 are minor. The version numbering was at 11.0, while the last sample we analyzed in August 2019 was at version number 9.0. This shows that the development is still active.

On the infrastructure side, we observed that the threat actor switched from using IP addresses hosted on the Google Cloud Platform (GCP) to IP addresses hosted on Microsoft Azure.

It should be noted that after our blog publication in February 2020, the threat actor compiled new Type 1 malware samples using a new configuration, which prevented us from closely monitoring their operations. We believe that this was a direct reaction to our research, suggesting that the threat actor read our investigation.

It's also important to note that the compilation timestamp of the sideloaded DLLs were set a few months in advance. For example, the binaries that we found in March and April 2020 had an August 26, 2020 compilation date. This is consistent with the behavior that we noticed during Operation DRBControl, wherein some binaries that have been found in mid-2019 had a compilation date of March 4, 2020. This shows that the threat actors intended to confuse forensics investigators with incorrect timestamps, which is why it's critical to analyze timestamps with caution during investigations.

Infection Vector

We could not confirm the primary infection vector. However, traces of the exploitation of the Microsoft Exchange vulnerability CVE-2020-0688 were found.

Multiple infection vectors have been attributed to this threat actor in the past:

- Watering holes
- Weaponized documents exploiting the Dynamic Data Exchange (DDE) method
- Weaponized documents exploiting the CVE-2018-0798 vulnerability in Equation Editor
- Exploitation of the CVE-2019-0604 vulnerability in Sharepoint
- Supply chain attack that compromises a chat software installer, Able Desktop
- Exploitation of recent vulnerabilities (CVE-2021-26855, CVE-2021-26857, CVE-2021-26858, and CVE-2021-27065) in Microsoft Exchange Server

During our investigation, we found some old samples that fit in these categories but have not been reported. They are unrelated to this campaign and can be found in our IOC list.

Targets

The closer look into Iron Tiger was prompted because of an incident response investigation involving a Philippine-based gambling company that the group targeted. True to form, the Iron Tiger threat actor has targeted the same company for 18 months.

Aside from targeting the same company, Iron Tiger also targeted other countries and industries. Over the past 18 months, we observed how the group targeted governments, banks, telecommunication providers, and even the energy sector in the Middle East and Southeast Asia.

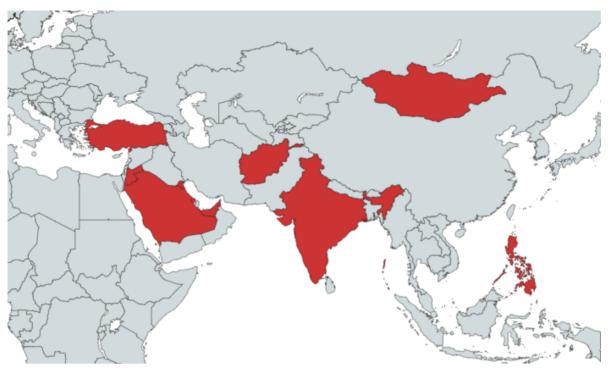


Figure 3. The countries that Iron Tiger has targeted in the past 18 months

Timeline

The following timeline shows different samples found in the same gambling company that Talent-Jump and Trend Micro investigated:

- July 2019: Operation DRBControl starts
- October 2019: One HyperBro malware sample found
- March 2020: New sample of Type 1 malware variant and a rootkit called Pandora found
- April 2020: One rootkit sample for hiding files processes, files, and services found
- October 2020: New HyperBro and Pandora samples found
- December 2020: One sample of the SysUpdate malware variant found
- January 2021: Fast Reverse Proxy (FRP) Linux tool found

Conclusion

This investigation provides more insight into the evolution of Iron Tiger's toolkit and shows the threat actor's persistence after targeting the same company for 18 months, as well as expanding its target base to include other companies and sectors in different countries in the Middle East and Southeast Asia.

We detailed how Iron Tiger threat actors have updated their tools, adding new features, and slightly changing their tactics, techniques, and procedures (TTPs), notably by using a rootkit to hide its backdoors. The different campaigns with different versions of the same tools concurrently being used suggest that there might be subgroups for this threat actor, or multiple groups with access to the builders of these tools.

We expect to see more cases involving four or five files instead of the usual "trident" in the future.

Indicators of Compromise (IoCs)

SHA-256

SHA-256

Detection Name

0aef64991f9121a244c3f3bf7f5448bb8fb2c858bcf0ff26b3b663937af9ef40	HackTool.Linux.ReverseProxy.AA
0e3cc4de26f59e4bee6760bdb1fb8cb9f48dc18aad1d8909c736a1a12841e1dd	Trojan.Win32.HYPERBRO.AA.enc
0e4becf70bb3c624b24d38f44bf92bd510f0ff718df2e3db8b71ef009189f072	Trojan.Win32.SYSUPDATE.BYY
10ca2b47daaadb716b12a2b071de01e86c902e11263dc39e396be642adf369ce	TROJ_FRS.VSNTCT21
15d404e03f1335a3e4a9e691a3f57b3765823249d5f28a23a728dab6f19cedc0	TROJ_ZBOTENC.ZCHE-A
1ac0be7d289f2bbd00979069b9d3bf6ac76c0828c0ca7674ec791cdb463b8ff0	TROJ_GEN.R002C0RLM20
1b07b070eeec2744c7be733590a5694cd1ee9e967249a8efa50d3243468aa7b1	TROJ_GEN.R002C0DL420
244cc119ec1e77262f48dc5d2fc285ed4904b30b44ea28bf41f531cfb75cff99	TROJ_FRS.VSNTCT21
36fad80a5f328f487b20a3f5fc5f1902d50cbb1bd9167c44b66929a1288fc6f4	TROJ_GEN.R002C0DKU20
3e04eb55095ad6a45905564d91f2ab6500e07afcdf9d6c710d6166d4eef28185	TROJ_FRS.0NA103CT21
4123a19cda491f4d31a855e932b8b7afdcf3faf5b448f892da624c768205a289	TROJ_FRS.0NA103CU21
434cbc840f64033d64f76de7234afb05fddf582195c68bf8f786dd22daaa1c21	TROJ_FRS.VSNTAR21
4f01ccf39dd17b3820b3ae2c650dab8d508254db6022b4aacf43d908e0fec678	TROJ_FRS.VSNTCT21
4f6987f39b14372d724086cbafc87de37d4b0f78491af93de1161f0b6ed413a7	Trojan.Win32.HYPERBRO.AA.enc
4fce3d38e0a308088cd75c2ef1bb5aa312e83447d63a82f62839d3609a283b02	TROJ_FRS.0NA103CU21
5665fbb579e72e5b7a891389181c1cd9c6162bc684948483f1a0a685c134d848	Backdoor.Win32.HYPERBRO.END
5a98c49b4e5d980bc8078cbbd8899397e95a488234a87a12813fe437c585600f	Trojan.Win32.HYPERBRO.AA.enc
5d7ceaa3947d08636070f102772190ce7267d8f7d8e9fd58b29573b229de6599	Trojan.Win32.SYSUPDATE.BYY.enc
601a02b81e3bd134c2cf681ac03d696b446e10bf267b11b91517db1b233fec74	Trojan.Win32.HYPERBRO.AA.enc
69f1914582f66ed216369d3a95842d58de9dffdbe8ae98712513c4ce142658ea	Rootkit.Win64.HIDDEN.A
6e1e74b0a064cc7d9aba8e485417632d7a55e0ff4ba9b078358ce9dd8b85ece4	TROJ_FRS.0NA103CT21
6e32c33c82efaf05822a0d5c610adbc2c1e8fd4d99955b1050496ad29ec927de	Backdoor.Win32.HYPERBRO.ENE

	1
734373b9d486c0a29a5b849f65cc060f461c471f318b61e122d813432a0bb752	TROJ_FRS.0NA103CT21
74780cd444b41d2fc8438f71528923d3ab297deed0fd1588d6d0c6707aecdc13	Trojan.Win32.HYPERBRO.AA.enc
788bd34d3c5d12b9767f8ac5587f1970597c47fb06713a6070d430a593bb4945	TROJ_GEN.R002C0DKU20
7b007e0989e57e4507888cbb7ddd1c59002ba9e2071c36ac2e6d8e44648cda11	Trojan.Win32.SYSUPDATE.BZA.enc
7fa187c76316a428b0d0cecb8e5e12893a2b020fecde540246bb30d7f8868199	Trojan.Win32.HYPERBRO.AA.enc
809aa69cd6c335f100baef5fa7897b153762e527bb811d2c570e8b3c7448f3b6	TROJ_FRS.0NA103CT21
80fc8917c91c132e5274319013a4b659e435e8de8abf655cf3482798acb8650a	Trojan.Win32.HYPERBRO.AA.enc
9000ce3c0e01b6c80edb3af87aad8117513ce334135aa7d7b1c2afa067f4c4ab	TROJ_GEN.R002C0DB321
92bbcb5461ab5959e31f997a6df77995377d69f8077e43e5812fcbe9303d831c	TROJ_FRS.0NA103CT21
942213df53d2c84a0efdd7c6a72ea4767cb4fa5f339bd86f7188be605818904e	Trojan.Win32.HYPERBRO.AA.enc
999b1e31893d02dcef20a3846ad7e96153b0057b960488ad8b07c4d9c33d099e	TROJ_FRS.VSNTAR21
a4c7fe8278be79ce0bb0eca168412d5d25305dfc71b062af91e8cabbc8164783	Trojan.Win32.SYSUPDATE.BYY.enc
a5d8cae9de9edf81d4898879b09c16d6afd12f1bdc320acdbc5c8a430831e55b	TROJ_FRS.0NA103CU21
ab6998352fc0d745af94f02e42f8c3f061a99179fce2c890760f293f9744d1e8	TROJ_FRS.VSNTCU21
af31c16dcd54ee11d425eb3a579ad0606a05b36c0605cc16007f3d3c84d8e291	TROJ_ZBOT.ZCHE-A
b39e2cf333b9f854bcdf993aa6c1f357d2a7042139e4c6ca47ed504090006a61	Trojan.Win32.SYSUPDATE.BZA.enc
d40414b1173d59597ed1122361fe60303d3526f15320aede355c6ad9e7e239af	TROJ_GEN.R002C0DL420
d474198fd5ab7800cf00afbff16b258493529bc0e8451fb9382250a15ae29edb	TROJ_FRS.VSNTCT21
e05e853cca1a8e9c8b1674f59c27b562887742f3110499f8ff38d0d287f0e7de	Trojan.Win32.SYSUPDATE.BZA.enc
83406f39147b01136bf9b3b88a1ec1a9339cd9d0cbcfa2a2583e3f97ad852287	Trojan.Win32.HYPERBRO.AB.enc
52072a8f99dacd5c293fccd051eab95516d8b880cd2bc5a7e0f4a30d008e22a7	Trojan.Win32.HYPERBRO.AB
e123481468938fd56eeb506148db923033c3b1ed1d09088640fcf9031cd583c9	TROJ_FRS.VSNTCT21
	1

TROJ_FRS.VSNTCT21
TROJ_GEN.R03BC0WLB20
TROJ_FRS.VSNTCT21
TROJ_FRS.0NA103CT21
Trojan.Win32.SYSUPDATE.BZA.enc
TROJ_GEN.R002C0DB321

SysUpdate URLs

URL	Category
139[.]59[.]81[.]253	C&C Server
34[.]93[.]247[.]126	C&C Server
45[.]142[.]214[.]188	C&C Server

HyperBro URLs

URL	Category
hxxp://35.187.148.253:443/api/v2/ajax	C&C Server
hxxps://89.35.178.105:443/api/v2/ajax	C&C Server
ns162[.]nsakadns[.]com:443/api/v2/ajax	C&C Server
104[.]09[.]198[.]177:443/api/v2/ajax	C&C Server
35[.]220[.]135[.]85:443/api/v2/ajax	C&C Server
47[.]75[.]49[.]32:443/api/v2/ajax	C&C Server
85[.]204[.]74[.]143:443/ajax	C&C Server
139[.]180[.]208[.]225:443/ajax	C&C Server
103[.]79[.]78[.]48	C&C Server

Type 1 Malware URLs

URL	Category
settings-win[.]dyndns-office[.]com	C&C Server