

Lab Analysis

Written by:

Yonatan Striem-Amit, CTO, Co-Founder

Yoav Orot, Senior Researcher

Webmail Server APT:

A New Persistent Attack

Methodology Targeting Microsoft

Outlook Web Application (OWA)

2

This document analyzes a real and unique APT technique detected by the Cybereason

platform in one of our customer’s environment. The attack involved a malicious module

that was loaded onto Microsoft Outlook Web Application (OWA), an internet-facing web-

mail server, which enabled the attackers to record authentication credentials and be

provided with complete backdoor capabilities. By using this approach, the hackers

managed to collect and retain ownership over a large set of credentials, allowing them

to maintain persistent control over the organization's environment.

A New Approach to APT

Introduction

A Cybereason POC customer suspected that it had an infected server due to several

behavioral abnormalities spotted by its security team. They reached out to

Cybereason and together we decided to deploy our platform across the customer’s

entire environment of 19,000 endpoints.

Discovering a Suspicious DLL

Within several hours, the Cybereason platform found a suspicious DLL loaded into the

Outlook Web App (OWA) server (a webmail component of Microsoft Exchange Server),

with several interesting characteristics. Although it had the same name as another

benign DLL, the suspicious DLL went unsigned and was loaded from a different

3

Contrary to other web servers that typically have only a web interface, OWA is unique: it is

a critical internal infrastructure that also faces the Internet, making it an intermediary

between the internal, allegedly protected DMZ, and the web. The customer was using

OWA to enable remote user access to Outlook. This configuration of OWA created an

ideal attack platform because the server was exposed both internally and externally.

Moreover, because OWA authentication is based on domain credentials, whoever gains

access to the OWA server becomes the owner of the entire organization’s domain

credentials. Later, we will see how the attacker extracted credentials from the OWA

server using their malicious module.

Backdooring a world-accessible server in the
Demilitarized Zone

The hackers installed a backdoored malicious OWAAUTH.dll which was used by OWA

as part of the authentication mechanism, and was responsible for authenticating users

against the Active Directory (A/D) server used in the environment. In addition, the

malicious OWAAUTH.DLL also installed an ISAPI filter into the IIS server, and was

filtering HTTP requests.

Persistence, Hiding and Loading

directory. Since OWA servers typically load only legitimately signed DLLs, the

Cybereason behavioral engine immediately elevated this event to a suspicion.

4

The final touch was the hackers choosing the .NET assembly cache. This folder was used to

store locally compiled native binaries in order to accelerate the loading and execution

of .NET applications. These locally compiled binaries were only used on the computer in

which they were generated, and thus had no reputation or digital signatures. It is interesting

to note that the hackers chose this folder exactly for that reason, in order to avoid human-

driven inspection. The hackers attempted to fool the hunters into thinking that it was simply

another locally generated file, as if they were Obi-Wan practicing a little Jedi magic,

convincing the defender to think: these are not the files you’re looking for, move along.

Hooking the Request Handlers

Once loaded, the DLL implemented an HTTP Module and registered two request handling

function callbacks on its initialization:

•  Application_BeginRequest() registered as BeginRequest - Not implemented

•  Application_EndRequest() registered as EndRequest - Called at the end of the request

handling chain. Implements the main malware logic.

At the end of each HTTP request handling in the OWA server, Application_EndRequest()

was called, executing the malware backdoor main function.

This enabled the hackers to get all requests in cleartext after SSL/TLS decryption. The

malware replaced the OWAAUTH by installing an IIS filter in the registry, which enabled the

malware to automatically load and persist on every subsequent server restart.

�

5

Capturing OWA Authentication Tokens

The hacker’s first goal was to use the visibility they had gained into the OWA authentication

process to steal the passwords of users logging into OWA - namely everyone.

�

While most security professionals understand the sensitivity of data in the A/D server, the

OWA server serves as a focal point for the exact same sensitive data.

Whenever Application_EndRequest() was called, it read the request variables using the

Request sub-object of the HttpApplication object. It then checked whether there were two

variables named “username” and “password”. These variables were passed in the request

query URL whenever a user logged into the OWA service.

�

If the function found the username and password, it recorded them together with a

timestamp, the client host address, and the client user agent to an encrypted file named

log.txt, stored in C:\.

The encryption algorithm was DES, implemented by the DESCryptoServiceProvider class,

with both a password and IV values of the ASCII string “12345678”. Following this

discovery, we wrote a decryption tool for this file, and found more than 11,000(!) user/

password pairs. This treasure trove essentially gave the hackers complete access to

every identity and therefore every asset in the organization.

�

6

In order to get access to the usernames and passwords , and to ensure that the hackers

could gain more control over the environment, the malware also possessed covert

backdoor functionalities. The attacker used HTTP request query URL variables in order to

use the backdoor functionality remotely.

�

The malware was searching every incoming request for a special parameter, in our case

“<CustomerName>XXX”. When the parameter was found, the backdoor functionality

would parse the remainder of the parameters. Naturally, the fact that the hacker

embedded the customer name in the parameters proves that this malware was tailored

for this particular target.

�

If the variable “<CustomerName>XXX” was found in the HTTP query URL, the code also

looked for the two other variables - Z1 and Z2. Together, they represented a function call

with specific parameters, as “<CustomerName>XXX” represented a function ID of a

single ASCII character with possible values of “A” through “Q,” while Z1/Z2 were

parameters of the function.

A Complete Backdoor

7

If the called function returned a value to the client, it would be in the form of a string

formatted as: “->|ResultData|<-”, with ResultData as the returned data. The formatted result

string would then be returned to the client through the HTTP response data.

As you can see in the following functionality map (Table-1), some basic backdoor

capabilities were implemented in the malware. Also, there were several SQL control

functions, enabling the attacker to read, write and execute command on SQL servers inside

and outside the targeted organization.

Naturally, the facilities below allowed the hacker to write and execute any code on the OWA

server, and by using the previously collected passwords, impersonate any user and perform

lateral movement.

8

9

10

The hackers in this case managed to gain a foothold into a highly strategic asset: the

OWA server. Almost by definition, OWA requires organizations to define a relatively lax set

of restrictions; and in this case, OWA was configured in a way that allowed internet-facing

access to the server. This enabled the hackers to establish persistent control over the

entire organization’s environment without being detected for a period of several months.

�

By combining endpoint level visibility and the Cybereason Malop hunting engine’s

contextual analysis, the organization was finally able to visualize the entire attack and

pinpoint the root cause of the threat.

�

Our customer’s instincts were spot on when his “Spidey Sense” told him there was more to

the OWA server’s odd behavior than what met the eye, but it would have likely taken him

weeks of uninterrupted analysis to investigate the situation manually. Only by automating

detection and analysis was this clever hack detected, understood, and contained.

�

Herein lies the magic of Endpoint Detection and Response (EDR). The Cybereason

platform immediately pinpointed how the OWA server was compromised and provided

clear visibility to the affected machine, enabling our customer to clean and fix it.

Cybereason was designed to empower smart people with good instincts to be top-notch

cyber-defenders, and this is a perfect example of what that looks like.

�

�

Conclusions

11

Cybereason:

Let the Hunt Begin.

Cybereason was founded in 2012 by a team of ex-military cybersecurity
experts to revolutionize detection and response to cyber attacks. The
Cybereason Malop Hunting Engine identifies signature and non-signature
based attacks using big data, behavioral analytics, and machine learning. The
Incident Response console provides security teams with an at-your-fingertip
view of the complete attack story, including the attack’s timeline, root cause,
adversarial activity and tools, inbound and outbound communication used by
the hackers, as well as affected endpoints and users. This eliminates the need
for manual investigation and radically reduces response time for security
teams. The platform is available as an on premise solution or a cloud-based
service. Cybereason is privately held and headquartered in Boston, MA with
offices in Tel Aviv, Israel.

© All Rights Reserved. Cybereason 2015

About Cybereason

222 Berkeley Street

13th Floor

Boston, MA 02116 USA

www.cybereason.com

