@ FireEye

FirekEye Uncovers CVE-2017-8759: Zero-Day
Used in the Wild to Distribute FINSPY

September 12, 2017 | by Genwei Jiang, Ben Read, James T. Bennett | Threat Research

FireEye recently detected a malicious Microsoft Office RTF document that leveraged CVE-2017-8759, a
SOAP WSDL parser code injection vulnerability. This vulnerability allows a malicious actor to inject arbitrary
code during the parsing of SOAP WSDL definition contents. FireEye analyzed a Microsoft Word document
where attackers used the arbitrary code injection to download and execute a Visual Basic script that
contained PowerShell commands.

FireEye shared the details of the vulnerability with Microsoft and has been coordinating public disclosure
timed with the release of a patch to address the vulnerability and security guidance, which can be found here.

FireEye email, endpoint and network products detected the malicious documents.

Vulnerability Used to Target Russian Speakers

The malicious document, “INpoekTt.doc” (MD5: fe5¢c4d6bb78e170abf5cf3741868ea4c), might have been used
to target a Russian speaker. Upon successful exploitation of CVE-2017-8759, the document downloads
multiple components (details follow), and eventually launches a FINSPY payload (MD5:
a7b990d5f57b244dd17e9a937a41e7f5).

FINSPY malware, also reported as FinFisher or WingBird, is available for purchase as part of a “lawful
intercept” capability. Based on this and previous use of FINSPY, we assess with moderate confidence that
this malicious document was used by a nation-state to target a Russian-speaking entity for cyber espionage
purposes. Additional detections by FireEye’s Dynamic Threat Intelligence system indicates that related
activity, though potentially for a different client, might have occurred as early as July 2017.

CVE-2017-8759 WSDL Parser Code Injection

A code injection vulnerability exists in the WSDL parser module within the PrintClientProxy method
(http://referencesource.microsoft.com/ - System.Runtime.Remoting/metadata/wsdlparser.cs,6111). The
IsValidUrl does not perform correct validation if provided data that contains a CRLF sequence. This allows an
attacker to inject and execute arbitrary code. A portion of the vulnerable code is shown in Figure 1.

https://www.fireeye.com
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/cap-genwei-jiang
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/ben-read
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/cap-james-t-bennett
/blog/threat-research.html/category/etc/tags/fireeye-blog-threat-research/threat-research
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2017-8759
https://msdn.microsoft.com/en-us/library/ms996486.aspx
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2017-8759
http://download.microsoft.com/download/E/B/0/EB0F50CC-989C-4B66-B7F6-68CD3DC90DE3/Microsoft_Security_Intelligence_Report_Volume_21_English.pdf
https://www.fireeye.com/blog/threat-research/2017/04/cve-2017-0199_useda.html
http://referencesource.microsoft.com/#System.Runtime.Remoting/metadata/wsdlparser.cs,6111

for (inti=0; i< _connectURLs.Count; i++)
{
sb.Length = 0;
sb.Append(intend2);
if (i==0)
{
sb.Append("base.ConfigureProxy(this.GetType(), ");

sb.Append(");");
|}

else

{
// Only the first location is used, the rest are commented out in the proxy
sb.Append("//base.ConfigureProxy(this.GetType(), ");

sb.Append(");");

}
textWriter.WriteLine(sb);

}

Figure 1: Vulnerable WSDL Parser

When multiple address definitions are provided in a SOAP response, the code inserts the
“/Ibase.ConfigureProxy(this.GetType(),” string after the first address, commenting out the remaining
addresses. However, if a CRLF sequence is in the additional addresses, the code following the CRLF will not
be commented out. Figure 2 shows that due to lack validation of CRLF, a System.Diagnostics.Process.Start
method call is injected. The generated code will be compiled by csc.exe of .NET framework, and loaded by
the Office executables as a DLL.

.RemotingClientProxy

.ConfigureProxy .GetType

.Start

Figure 2: SOAP definition VS Generated code

The In-the-Wild Attacks

The attacks that FireEye observed in the wild leveraged a Rich Text Format (RTF) document, similar to the
CVE-2017-0199 documents we previously reported on. The malicious sampled contained an embedded
SOAP monikers to facilitate exploitation (Figure 3).

https://www.fireeye.com/blog/threat-research/2017/04/cve-2017-0199-hta-handler.html

0340h: 19 7F DE 11 97 SE 00 00 Fg 75 7E 2i 00 0O OO 0o O =L Lmu~t. L,
0350h: 7O 01 00O 0o 7% 00 73 00 64 00 &C OO0 3D 00 65 00 | p...w.=5.d.1.=.h.
0860L: 74 00 74 00 70 00 34 00 ZF 00 ZF 00 53 00 583 00 t.t.p.:././.H.H.
0370h: ZE 00 53 00 53 00 55 00 Z2E 00 53 00 55 00 55 00 CELEVELLVEVEVE,
0830h: ZE 00 53 00 53 00 55 00 &2F 00 &% 00 6D 0O &7 OO PP s T ¢ s I
0890h: 2ZF 00 &F 00 &6 00 &6 00 69 00 63 00 65 00 ZE o0 @ f.o.f.f.i.c.e.

0ZA0h: 7O 00 6E 0O &7 00 00 00 OO0 OO0 00 OO0 00 00 00 00 | Pullee e s eennssas

Figure 3: SOAP Moniker

The payload retrieves the malicious SOAP WSDL definition from an attacker-controlled server. The WSDL
parser, implemented in System.Runtime.Remoting.ni.dll of .NET framework, parses the content and
generates a .cs source code at the working directory. The csc.exe of .NET framework then compiles the
generated source code into a library, namely http[url path].dll. Microsoft Office then loads the library,
completing the exploitation stage. Figure 4 shows an example library loaded as a result of exploitation.

0:000> 1mvm httplo« N ingoofficedpng

start end module oomo
70b70000 70b78000 httplOl imgOofficedpng (deferred)

Image path: httplOO_unguoffice4png.dll
Image name: httpl00 imgO0officedpng.dll

Has CLR image header, track-debug-data flag not set

Timestamp: Thu Aug 24 23:21:28 2017 (599EEEFS)
CheckSum: 00000000

ImageSize: 00008000

File version: 0.0.0.0

Product version: 0.0.0.0

File flags: 0 (Mask 3F)

File 0S: 4 Unknown Win32

File type: 2.0 D11

File date: 00000000.00000000

Translations: 0000.04b0

InternalName: httplOO_imgOoffice4png.dll
OriginalFilename: httpl00 imgOofficedpng.dll

Figure 4: DLL loaded

Upon successful exploitation, the injected code creates a new process and leverages mshta.exe to retrieve a
HTA script named “word.db” from the same server. The HTA script removes the source code, compiled DLL
and the PDB files from disk and then downloads and executes the FINSPY malware named “left.jpg,” which in
spite of the .jpg extension and “image/jpeg” content-type, is actually an executable. Figure 5 shows the details
of the PCAP of this malware transfer.

IResuIt Pro... Host URL Body C... Content-Type P.. Comments
Ed 3 HTTP 91.219.... /img/office.png image/png SOAP WSDL response
E10 200 HTTP 91.219.... fimg/word.db 3,007 hta response

E11 200 HTTP 91.219.... [img/left.jpg 1,383,424 image/jpeg malware

Figure 5: Live requests

The malware will be placed at %appdata%\Microsoft\Windows\OfficeUpdte-KB[6 random numbers].exe.
Figure 6 shows the process create chain under Process Monitor.

Process Name PID Operation Path Result

1 Explorer EXE 2464 £ Process Create C:\Program Files\Microsoft Office\Office 14\WINWORD.EXE SUCCESS

WINWORD.EXE 3596 &F Process Create C:\Windows\Microsoft NET\Frameworkiv2.0.50727\csc.exe SUCCESS
[B 7 csrss.exe 376 &7 Process Create C:\Windows\system32\conhost exe SUCCESS
[Ecscexe 972 & Process Create C:\Windows\Microsoft NET\Frameworkiv2 0.50727\cvtres exe SUCCESS
@WINWORD_EXE 3596 & Process Create C\Windows\System32\mshta exe SUCCESS
[mshta.exe 3108 &F Process Create C:\Windows\System32\WindowsPowerShellw1 0\powershell exe SUCCESS
[E7csrss.exe 376 & Process Create C:\Windows\system32\conhost exe SUCCESS
£ powershell.exe 2868 L Process Create C:\Windows\system32\taskkil.exe SUCCESS
[Fmshta.exe 3108 &F Process Create C:\Windows\System32\WindowsPowerShellw1 0\powershell exe SUCCESS
[B 7 csrss.exe 376 &F Process Create C:\Windows\system32\conhost exe SUCCESS
[Fmshta.exe 3108 &F Process Create C:\Windows\System32\WindowsPowerShellw1 0\powershell exe SUCCESS
[8 7 csrss.exe 376 & Process Create C:\Windows\system32\conhost exe SUCCESS
[FImshta.exe 3108 &7 Process Create C:\Windows\System32\cmd.exe SUCCESS
[E 7 csrss.exe 376 & Process Create C:\Windows\system32\conhost exe SUCCESS
[FImshta.exe 3108 &7 Process Create C\Windows\System32\WindowsPowerShellv1 0\powershell exe SUCCESS
[E 7 csrss.exe 376 & Process Create C:\Windows\system32\conhost exe SUCCESS
ENcmd.exe 584 &F Process Create C:\Program Files\Microsoft Office\Office 14\WINWORD EXE SUCCESS
ﬂmshta_exe 3108 &7 Process Create C:\Users\test7\AppData\Roaming\Microsoft\Windows\OfficeUpdte-KB888330.exe SUCCESS

Figure 6: Process Created Chain

The Malware

The “left.jpg” (md5: a7b990d5f57b244dd17e9a937a41e7f5) is a variant of FINSPY. It leverages heavily
obfuscated code that employs a built-in virtual machine — among other anti-analysis techniques — to make
reversing more difficult. As likely another unique anti-analysis technique, it parses its own full path and
searches for the string representation of its own MD5 hash. Many resources, such as analysis tools and
sandboxes, rename files/samples to their MD5 hash in order to ensure unique filenames. This variant runs
with a mutex of "WininetStartupMutexQ".

Conclusion

CVE-2017-8759 is the second zero-day vulnerability used to distribute FINSPY uncovered by FireEye in
2017. These exposures demonstrate the significant resources available to “lawful intercept” companies and
their customers. Furthermore, FINSPY has been sold to multiple clients, suggesting the vulnerability was
being used against other targets.

It is possible that CVE-2017-8759 was being used by additional actors. While we have not found evidence of
this, the zero day being used to distribute FINSPY in April 2017, CVE-2017-0199 was simultaneously being
used by a financially motivated actor. If the actors behind FINSPY obtained this vulnerability from the same
source used previously, it is possible that source sold it to additional actors.

Acknowledgement

Thank you to Dhanesh Kizhakkinan, Joseph Reyes, FireEye Labs Team, FireEye FLARE Team and FireEye
iISIGHT Intelligence for their contributions to this blog. We also thank everyone from the Microsoft Security
Response Center (MSRC) who worked with us on this issue.

This entry was posted on Tue Sep 12 13:00:00 EDT 2017 and filed under 0-day, Ben Read, Blog, Genwei
Jiang, James T. Bennett, Latest Blog Posts, Threat Research, and Zero-day Vulnerability.

Sign up for email updates

Get information and insight on today's advanced threats from the leader in advanced
threat prevention.

/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/0-day
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/ben-read
/blog/threat-research.html/category/etc/tags/fireeye-doctypes/blog
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/cap-genwei-jiang
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/cap-james-t-bennett
/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/latest
/blog/threat-research.html/category/etc/tags/fireeye-blog-threat-research/threat-research
/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/zero-day-vulnerability

Email Address
Company Name

Executive Perspective Blog
Threat Research Blog

Products and Services Blog

Subscribe

in | f

Contact Us
+1 888-227-2721

Company

About FireEye
Customer Stories
Careers

Partners

Investor Relations
Supplier Documents

News & Events

Newsroom

Press Releases

Webinars

Events

Blogs

Communication Preferences

Technical Support
Incident?
Report Security Issue

/content/fireeye-www/en_US/blog/threat-research/_jcr_content.feed
https://www.linkedin.com/company/fireeye
https://twitter.com/fireeye
https://www.facebook.com/FireEye
https://plus.google.com/+Fireeye
https://www.youtube.com/user/FireEyeInc
https://itunes.apple.com/us/podcast/eye-on-security/id1073779629?mt=2
/company/why-fireeye.html
/customers.html
/company/jobs.html
/partners.html
http://investors.fireeye.com/
/company/supplier.html
/company/newsroom.html
/company/press-releases.html
/company/webinars.html
/company/events.html
/blog.html
https://www2.fireeye.com/manage-your-preferences.html
/company/incident-response.html
/company/security.html

Contact Support
Customer Portal
Communities
Documentation Portal

Cyber Threat Map

Copyright © 2017 FireEye, Inc. All rights reserved.
| |

/support/contacts.html
https://csportal.fireeye.com/secur/login_portal.jsp?orgId=00D3000000063LS&portalId=06030000000pSNE
https://community.fireeye.com/welcome
https://docs.fireeye.com
/cyber-map/threat-map.html
/company/privacy.html
/company/privacy-shield-commitment.html
/company/legal.html

	FireEye Uncovers CVE-2017-8759: Zero-Day Used in the Wild to Distribute FINSPY
	Vulnerability Used to Target Russian Speakers
	CVE-2017-8759 WSDL Parser Code Injection
	The In-the-Wild Attacks
	The Malware
	Conclusion
	Acknowledgement
	Sign up for email updates

