
By Andrey Dolgushev , Dmitry Tarakanov , Vasily Berdnikov on October 19, 2018. 10:00 am

DarkPulsar
securelist.com/darkpulsar/88199/

In March 2017, the ShadowBrokers published a chunk of stolen data that included two
frameworks: DanderSpritz and FuzzBunch.

DanderSpritz consists entirely of plugins to gather intelligence, use exploits and examine
already controlled machines. It is written in Java and provides a graphical windows
interface similar to botnets administrative panels as well as a Metasploit-like console
interface. It also includes its own backdoors and plugins for not-FuzzBunch-controlled
victims.

DanderSprit interface

Fuzzbunch on the other hand provides a framework for different utilities to interact and
work together. It contains various types of plugins designed to analyze victims, exploit
vulnerabilities, schedule tasks, etc. There are three files in the plugin set from the
FuzzBunch framework:

%pluginName%-version.fb

This is the utility file of the framework. It duplicates the header from XML and includes the
plugin’s ID.

%pluginName%-version.exe

This executable file is launched when FuZZbuNch receives the command to do so.

%pluginName%-version.xml

1/10

https://securelist.com/darkpulsar/88199/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/10/12114908/181012-darkpulsar-1.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/10/12114913/181012-darkpulsar-2.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/10/12114918/181012-darkpulsar-3.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/10/12114923/181012-darkpulsar-4.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/10/12114928/181012-darkpulsar-5.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/10/12114932/181012-darkpulsar-6.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/10/12114936/181012-darkpulsar-7.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/10/12114941/181012-darkpulsar-8.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/10/12114945/181012-darkpulsar-9.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/10/12114949/181012-darkpulsar-10.png


This configuration file describes the plugin’s input and output parameters – the parameter
name, its type and description of what it’s responsible for; all of these can be shown in
FuzzBunch as a prompt. This file also contributes a lot to the framework’s usability, as it
supports the specification of default parameters.

One of the most interesting Fuzzbunch’s categories is called ImplantConfig and includes
plugins designed to control the infected machines via an implant at the post-exploitation
stage. DarkPulsar is a very interesting administrative module for controlling a passive
backdoor named ‘sipauth32.tsp’ that provides remote control, belonging to this category.

It supports the following commands:

Burn
RawShellcode
EDFStagedUpload
DisableSecurity
EnableSecurity
UpgradeImplant
PingPong

Burn, RawShellcode, UpgradeImplant, and PingPong remove the implant, run arbitrary code,
upgrade the implant and check if the backdoor is installed on a remote machine,
respectively. The purpose of the other commands is not that obvious and, to make it
worse, the leaked framework contained only the administrative module to work with
DarkPulsar’s backdoor, but not the backdoor itself.

While analyzing the administrative module, we noticed several constants that are used to
encrypt the traffic between the C&C and the implant:

2/10



We thought that probably these constants should also appear in the backdoor, so we
created a detection for them. Several months later we found our mysterious DarkPulsar
backdoor. We later were able to find both 32- and 64-bit versions.

We found around 50 victims located in Russia, Iran and Egypt, typically infecting Windows
2003/2008 Server. Targets were related to nuclear energy, telecommunications, IT,
aerospace and R&D.

DarkPulsar technical highlights
The DarkPulsar implant is a dynamic library whose payload is implemented in exported
functions. These functions can be grouped as follows:

1. Two nameless functions used to install the backdoor in the system.
2. Functions with names related to TSPI (Telephony Service Provider Interface)

operations that ensure the backdoor is in the autorun list and launched
automatically.

3. A function with a name related to SSPI (Security Support Provider Interface)
operations. It implements the main malicious payload.

The implementations of the SSPI and TSPI interfaces are minimalistic: the functions that
are exported by DarkPulsar have the same names as the interface functions; however,
they include malicious code instead of the phone service.

The implant is installed in the system by the nameless exported function. The backdoor is
launched by calling Secur32.AddSecurityPackage with administrator privileges with the

3/10



path to its own library in the parameter, causing lsass.exe to load DarkPulsar as SSP/AP
and to call its exported function SpLsaModeInitialize used by DarkPulsar to initialize the
backdoor. In this way AddSecurityPackage is used to inject code into lsass.exe. It also
adds its library name at
HKLM\Software\Microsoft\Windows\CurrentVersion\Telephony\Providers

This is loaded at start by the Telephony API (TapiSrv) launched alongside the Remote
Access Connection Manager (RasMan) service, setting startup type as “Automatic”. When
loading the telephony service provider’s library, TapiSrv calls
TSPI_lineNegotiateTSPIVersion which contains the AddSecurityPackage call to make the
inject into lsass.exe.

DarkPulsar implements its payload by installing hooks for the SpAcceptLsaModeContext
– function responsible for authentication. Such injects are made in several system
authentication packets within the process lsass.exe and allow Darkpulsar to control
authentication process based on the following protocols:

Msv1_0.dll – for the NTLM protocol,
Kerberos.dll – for the Kerberos protocol,
Schannel.dll – for the TLS/SSL protocols,
Wdigest.dll – for the Digest protocol, and
Lsasrv.dll –for the Negotiate protocol.

After this, Darkpulsar gets ability to embed malware traffic into system protocols. Since
this network activity takes place according to standard system charts, it will only be
reflected in the System process – it uses the system ports reserved for the above
protocols without hindering their normal operation.

4/10



Network traffic during successful connection to DarkPulsar implant

The second advantage of controlling authentication processes is ability to bypass entering
a valid username and password for obtaining access to objects that require authentication
such as processes list, remote registry, file system through SMB. After Darkpulsar’s
DisableSecurity command is sent, backdoor’s hooks on the victim side will always returns
in the SpAcceptLsaModeContext function that passed credentials are valid. Getting that,
system will provide access to protected objects to client.

Working with DarkPulsar
Darkpulsar-1.1.0.exe is the administrative interface working under the principle of “one
command – one launch”. The command to be executed must be specified either in the
configuration file Darkpulsar-1.1.0.9.xml or as command line arguments, detailing at least:

whether the target machine uses a 32-bit or 64-bit system;
protocol (SMB, NBT, SSL, RDP protocols are supported) to deliver the command and
port number
private RSA key to decrypt the session AES key

Darkpulsar-1.1.0 was not designed as a standalone program for managing infected
machines. This utility is a plugin of the Fuzzbunch framework that can manage

5/10



parameters and coordinate different components. Here is how DisableSecurity command
in Fuzzbunch looks like:

Below is an example of Processlist after DisableSecurity, allowing to execute any plugin
without valid credentials and operating via regular system functions (remote registry
service):

6/10



DanderSpritz
DanderSpritz is the framework for controlling infected machines, different from
FuZZbuNch as the latter provides a limited toolkit for the post-exploitation stage with
specific functions such as DisableSecurity and EnableSecurity for DarkPulsar.

For DanderSpritz works for a larger range of backdoors, using PeedleCheap in the victim
to enable operators launching plugins. PeddleCheap is a plugin of DanderSpritz which can
be used to configure implants and connect to infected machines. Once a connection is
established all DanderSpritz post-exploitation features become available.

This is how DarkPulsar in EDFStagedUpload mode provides the opportunity to infect the
victim with a more functional implant: PCDllLauncher (Fuzzbunch’s plugin) deploys the
PeddleCheap implant on the victim side, and DanderSpritz provides a user-friendly post-
exploitation interface. Hence, the full name of PCDllLauncher is ‘PeddleCheap DLL
Launcher’.

The complete DanderSpritz usage scheme with the plugin PeddleCheap via FuZZbuNch
with the plugins DarkPulsar and PCDllLauncher consists of four steps:

7/10



DanderSpritz

Via FuZZbuNch, run command EDFStagedUpload to launch DarkPulsar.
In DanderSpritz, run command pc_prep (PeedelCheap Preparation) to prepare the

payload and the library to be launched on the implant side.
In DanderSpritz, run command pc_old (which is the alias of command pc_listen -reuse -

nolisten -key Default) – this sets it to wait for a socket from Pcdlllauncher.
Launch Pcdlllauncher via FuZZbuNch and specify the path to the payload that has been

prepared with the command pc_prep in the ImplantFilename parameter.
/ol>

File System plugin

Conclusions

8/10



The FuzzBunch and DanderSpritz frameworks are designed to be flexible and to extend
functionality and compatibility with other tools. Each of them consists of a set of plugins
designed for different tasks: while FuzzBunch plugins are responsible for reconnaissance
and attacking a victim, plugins in the DanderSpritz framework are developed for managing
already infected victims.

The discovery of the DarkPulsar backdoor helped in understanding its role as a bridge
between the two leaked frameworks, and how they are part of the same attacking platform
designed for long-term compromise, based on DarkPulsar’s advanced abilities for
persistence and stealthiness. The implementation of these capabilities, such as
encapsulating its traffic into legitimate protocols and bypassing entering credentials to
pass authentication, are highly professional.

Our product can completely remove the related to this attack malware.

Detecting malicious network activity

When EDFStagedUpload is executed in an infected machine, a permanent connection is
established, which is why traffic via port 445 appears. A pair of bound sockets also
appears in lsass.exe:

When DanderSpritz deploys PeddleCheap’s payload via the PcDllLauncher plugin, network
activity increases dramatically:

When a connection to the infected machine is terminated, network activity ceases, and
only traces of the two bound sockets in lsass.exe remain:

9/10



IOCs
implant – 96f10cfa6ba24c9ecd08aa6d37993fe4
File path – %SystemRoot%\System32\sipauth32.tsp
Registry – HKLM\Software\Microsoft\Windows\CurrentVersion\Telephony\Providers

10/10


	DarkPulsar
	DarkPulsar technical highlights
	Working with DarkPulsar
	DanderSpritz
	Conclusions
	Detecting malicious network activity

	IOCs


