
https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 1/17

LOWKEY: Hunting for the Missing Volume Serial ID
fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html

In August 2019, FireEye released the “Double Dragon” report on our newest graduated threat
group: APT41. A China-nexus dual espionage and financially-focused group, APT41 targets
industries such as gaming, healthcare, high-tech, higher education, telecommunications, and
travel services.

This blog post is about the sophisticated passive backdoor we track as LOWKEY, mentioned in
the APT41 report and recently unveiled at the FireEye Cyber Defense Summit. We observed
LOWKEY being used in highly targeted attacks, utilizing payloads that run only on specific
systems. Additional malware family names are used in the blog post and briefly described. For a
complete overview of malware used by APT41 please refer to the Technical Annex section of our
APT41 report.

The blog post is split into three parts, which are shown in Figure 1. The first describes how we
managed to analyze the encrypted payloads. The second part features position independent
loaders we observed in multiple samples, adding an additional layer of obfuscation. The final part
is about the actual backdoor we call LOWKEY, which comes in two variants, a passive TCP
listener and a passive HTTP listener targeting Internet Information Services (IIS).

Figure 1: Blog post overview

DEADEYE – RC5

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html
https://content.fireeye.com/apt41/rpt-apt41
https://summit.fireeye.com/
https://content.fireeye.com/apt-41/rpt-apt41/


10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 2/17

Tracking APT41 activities over the past months, we observed multiple samples that shared two
unique features: the use of RC5 encryption which we don’t encounter often, and a unique string
“f@Ukd!rCto R$.”. We track these samples as DEADEYE.

DEADEYE comes in multiple variants:

DEADEYE.DOWN has the capability to download additional payloads.
DEADEYE.APPEND has additional payloads appended to it.
DEADEYE.EXT loads payloads that are already present on the system.

DEADEYE.DOWN

A sample belonging to DEADEYE.DOWN (MD5: 5322816c2567198ad3dfc53d99567d6e)
attempts to download two files on the first execution of the malware.

The first file is downloaded from hxxp://checkin.travelsanignacio[.]com/static/20170730.jpg. The
command and control (C2) server response is first RC5 decrypted with the key “wsprintfA” and
then RC5 encrypted with a different key and written to disk as <MODULE_NAME>.mui.

The RC5 key is constructed using the volume serial number of the C drive. The volume serial
number is a 4-byte value, usually based on the install time of the system. The volume serial
number is XORed with the hard-coded constant “f@Ukd!rCto R$.” and then converted to hex to
derive a key of up to 28 bytes in length. The key length can vary if the XORed value contains an
embedded zero byte because the lstrlenA API call is used to determine the length of it. Note that
the lstrlenA API call happens before the result is converted to hex. If the index of the byte modulo
4 is zero, the hex conversion is in uppercase. The key derivation is illustrated in Table 1.

Volume Serial number of C drive, for example 0xAABBCCDD

F          ^          0xAA =          0xCC uppercase

@         ^          0xBB =          0xFB lowercase

U          ^          0xCC =          0x99 lowercase

k          ^          0xDD =          0xB6 lowercase

d          ^          0xAA =          0xCE uppercase

!           ^          0xBB =          0x9A lowercase

r           ^          0xCC =          0xBE lowercase

C          ^          0xDD =          0x9E lowercase

t           ^          0xAA =          0xDE uppercase



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 3/17

o          ^          0xBB =          0xD4 lowercase

(0x20)   ^          0xCC =          0xEC lowercase

R          ^          0xDD =          0x8F lowercase

$          ^          0xAA =          0x8E uppercase

.           ^          0xBB =          0x95 lowercase

Derived key CCfb99b6CE9abe9eDEd4ec8f8E95

Table 1: Key derivation example

The second file is downloaded from hxxp://checkin.travelsanignacio[.]com/static/20160204.jpg.
The C2 response is RC5 decrypted with the key “wsprintfA” and then XORed with 0x74, before it
is saved as C:\Windows\System32\wcnapi.mui.

Figure 2: 5322816c2567198ad3dfc53d99567d6e download

The sample then determines its own module name, appends the extension mui to it and attempts
to decrypt the file using RC5 encryption. This effectively decrypts the file the malware just
downloaded and stored encrypted on the system previously. As the file has been encrypted with a
key based on the volume serial number it can only be executed on the system it was downloaded
on or a system that has the same volume serial number, which would be a remarkable
coincidence.



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 4/17

An example mui file is the MD5 hash e58d4072c56a5dd3cc5cf768b8f37e5e. Looking at the
encrypted file in a hex editor reveals a high entropy (7.999779/8). RC5 uses Electronic Code
Book (ECB) mode by default. ECB means that each code block (64 bit) is encrypted independent
from other code blocks. This means the same plaintext block always results in the same cipher
text, independent from its position in the binary. The file has 792933 bytes in total but almost no
duplicate cipher blocks, which means the data likely has an additional layer of encryption.

Without the correct volume serial number nor any knowledge about the plaintext there is no
efficient way to decrypt the payload e58d4072c56a5dd3cc5cf768b8f37e5e with just the
knowledge of the current sample.

DEADEYE.APPEND

Fortunately searching for the unique string “f@Ukd!rCto R$.“ in combination with artifacts from
RC5 reveals additional samples. One of the related samples is DEADEYE.APPEND (MD5:
37e100dd8b2ad8b301b130c2bca3f1ea), which has been previously analyzed by Kaspersky
(https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/). This
sample is different because it is protected with VMProtect and has the obfuscated binary
appended to it. The embedded binary starts at offset 3287552 which can be seen in Figure 3 with
the differing File Size and PE Size.



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 5/17

Figure 3: A look at the PE header reveals a larger file size than PE size

The encrypted payload has a slightly lower entropy of 7.990713 out of 8. Looking at the
embedded binary in a hex editor reveals multiple occurrences of the byte pattern 51 36 94 A4 26
5B 0F 19, as seen in Figure 4. As this pattern occurs multiple times in a row in the middle of the
encrypted data and ECB mode is being used, an educated guess is that the plaintext is supposed
to be 00 00 00 00 00 00 00 00.

Figure 4: Repeating byte pattern in 37e100dd8b2ad8b301b130c2bca3f1ea

RC5 Brute Forcer

With this knowledge we decided to take a reference implementation of RC5 and add a main
function that accounts for the key derivation algorithm used by the malware samples (see Figure
5). Brute forcing is possible as the key is derived from a single DWORD; even though the final
key length might be 28 bytes, there are only 4294967296 possible keys. The code shown in
Figure 5 generates all possible volume serial numbers, derives the key from them and tries to
decrypt 51 36 94 A4 26 5B 0F 19 to 00 00 00 00 00 00 00 00. Running the RC5 brute forcer for a
couple of minutes shows the correct volume serial number for the sample, which is 0xc25cff4c.

Note if you want to run the brute forcer yourself
The number of DWORDs of the key in the reference implementation we used is represented by
the global c, and we had to change it to 7 to match the malware’s key length of 28 bytes. There
were some issues with the conversion because in the malware a zero byte within the generated
key ultimately leads to a shorter key length. The implementation we used uses a hard-coded key
length (c), so we generated multiple executables with c = 6, c = 5, c = 4… as these usually only
ran for a couple of minutes to cover the entire key space. All the samples mentioned in the
Appendix 1 could be solved with c = 7 or c = 6.

https://github.com/stamparm/cryptospecs/blob/master/symmetrical/sources/rc5.c


10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 6/17

Figure 5: Main function RC5 brute forcer

The decrypted payload belongs to the malware family POISONPLUG (MD5:
84b69b5d14ba5c5c9258370c9505438f). POISONPLUG is a highly obfuscated modular
backdoor with plug-in capabilities. The malware is capable of registry or service persistence, self-
removal, plug-in execution, and network connection forwarding. POISONPLUG has been
observed using social platforms to host encoded command and control commands.

We confirmed the findings from Kaspersky and additionally found a second command and control
URL hxxps://steamcommunity[.]com/id/oswal053, as mentioned in our APT 41 report.



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 7/17

Taking everything into account that we learned from DEADEYE.APPEND
(MD5: 37e100dd8b2ad8b301b130c2bca3f1ea), we decided to take another look at the
encrypted mui file (e58d4072c56a5dd3cc5cf768b8f37e5e). Attempts to brute force the first bytes
to match with the ones of the decrypted POISONPLUG payload did not yield any results.

Fortunately, we found additional samples that use the same encryption scheme. In one of the
samples the malware authors included two checks to validate the decrypted payload. The
expected plaintext at the specified offsets for DEADEYE.APPEND (MD5:
7f05d410dc0d1b0e7a3fcc6cdda7a2ff) is shown in Table 2.

Offset Expected byte after decryption

0 0x48

1 0x8B

0x3C0 0x48

0x3C1 0x83

Table 2: Byte comparisons after decrypting in DEADEYE.APPEND (MD5:
7f05d410dc0d1b0e7a3fcc6cdda7a2ff)

Applying these constraints to our brute forcer and trying to decrypt mui file
(e58d4072c56a5dd3cc5cf768b8f37e5e) once moreresulted in a low number of successful hits
which we could then manually check. The correct volume serial number for the encrypted mui is
0x243e2562. Analysis determined the decrypted file is XMRig miner. This also explains why the
dropper downloads two files. The first, <MODULE_NAME>.mui is the crypto miner, and the
second C:\Windows\System32\wcnapi.mui, is the configuration. The decrypted mui contains
another layer of obfuscation and is eventually executed with the command x -c wcnapi.mui. An
explanation on how the command was obtained and the additional layer of obfuscation is given in
the next part of the blog post.

For a list of samples with the corresponding volume serial numbers, please refer to Appendix 1.

Additional RC4 Layer

An additional RC4 layer has been identified in droppers used by APT41, which we internally track
as DEADEYE. The layer has been previously detailed in a blog post by ESET. We wanted to
provide some additional information on this, as it was used in some of the samples we managed
to brute force.

The additional layer is position independent shellcode containing a reflective DLL loader. The
loader decrypts an RC4 encrypted payload and loads it in memory. The code itself is a straight
forward loader with the exception of some interesting artifacts identified during analysis.

https://www.welivesecurity.com/2019/03/11/gaming-industry-scope-attackers-asia/


10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 8/17

As mentioned in the blog post by ESET, the encrypted payload is prepended with a header. It
contains the RC4 encryption key and two fields of variable length, which have previously been
identified as file names. These two fields are encrypted with the same RC4 encryption key that is
also used to decrypt the payload. The header is shown in Table 3.

Header bytes Meaning

0 – 15 RC4 key XOR encoded with 0x37

16 – 19 Size of loader stub before the header

20 – 23 RC4 key size

24 – 27 Command ASCII size (CAS)

28 – 31 Command UNICODE size (CUS)

32 – 35 Size of encrypted payload

36 – 39 Launch type

40 – (40 + CAS) Command ASCII

(40 + CAS) – (40 + CAS + CUS) Command UNICODE

(40 + CAS + CUS) – (40 + CAS + CUS + size of encrypted payload) Encrypted payload

Table 3: RC4 header overview

Looking at the payloads hidden behind the RC5 layer, we observed, that these fields are not
limited to file names, instead they can also contain commands used by the reflective loader. If no
command is specified, the default parameter is the file name of the loaded payload. In some
instances, this revealed the full file path and file name in the development environment. Table 4
shows some paths and file names. This is also how we found the command (x -c wcnapi.mui)
used to launch the decrypted mui file from the first part of the blog post.

MD5 hash Arguments found in the RC4 layer

7f05d410dc0d1b0e7a3fcc6cd‐
da7a2ff

E:\code\PortReuse\3389-share\DeviceIOContrl-Hook\v1.3-53\Inner-
Loader\x64\Release\Inner-Loader.dll

7f05d410dc0d1b0e7a3fcc6cd‐
da7a2ff

E:\code\PortReuse\3389-share\DeviceIOContrl-Hook\v1.3-
53\NetAgent\x64\Release\NetAgent.exe



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 9/17

7f05d410dc0d1b0e7a3fcc6cd‐
da7a2ff

E:\code\PortReuse\3389-share\DeviceIOContrl-Hook\v1.3-
53\SK3.x\x64\Release\SK3.x.exe

7f05d410dc0d1b0e7a3fcc6cd‐
da7a2ff

UserFunction.dll

7f05d410dc0d1b0e7a3fcc6cd‐
da7a2ff

ProcTran.dll

c11d‐
d805de683822bf4922aecb9bfef5

E:\code\PortReuse\iis-share\2.5\IIS_Share\x64\Release\IIS_Share.dll

c11d‐
d805de683822bf4922aecb9bfef5

UserFunction.dll

c11d‐
d805de683822bf4922aecb9bfef5

ProcTran.dll

Table 4: Decrypted paths and file names

LOWKEY

The final part of the blog post describes the capabilities of the passive backdoor LOWKEY (MD5:
8aab5e2834feb68bb645e0bad4fa10bd) decrypted from DEADEYE.APPEND (MD5:
7f05d410dc0d1b0e7a3fcc6cdda7a2ff). LOWKEY is a passive backdoor that supports
commands for a reverse shell, uploading and downloading files, listing and killing processes and
file management. We have identified two variants of the LOWKEY backdoor.

The first is a TCP variant that listens on port 53, and the second is an HTTP variant that listens on
TCP port 80. The HTTP variant intercepts URL requests matching the UrlPrefix
http://+:80/requested.html. The + in the given UrlPrefix means that it will match any host name. It
has been briefly mentioned by Kaspersky as “unknown backdoor”.

Both variants are loaded by the reflective loader described in the previous part of the blog post.
This means we were able to extract the original file names. They contain meaningful names and
provide a first hint on how the backdoor operates.

HTTP variant (MD5: c11dd805de683822bf4922aecb9bfef5)
E:\code\PortReuse\iis-share\2.5\IIS_Share\x64\Release\IIS_Share.dll

TCP variant (MD5: 7f05d410dc0d1b0e7a3fcc6cdda7a2ff)
E:\code\PortReuse\3389-share\DeviceIOContrl-Hook\v1.3-53\SK3.x\x64\Release\SK3.x.exe

The interesting parts are shown in Figure 6. PortReuse describes the general idea behind the
backdoor, to operate on a well-known port. The paths also contain version numbers 2.5 and v1.3-
53. IIS_Share is used for the HTTP variant and describes the targeted application,
DeviceIOContrl-Hook is used for the TCP variant.

https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/


10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 10/17

Figure 6: Overview important parts of executable path



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 11/17

Both LOWKEY variants are functionally identical with one exception. The TCP variant relies on a
second component, a user mode rootkit that is capable of intercepting incoming TCP
connections. The internal name used by the developers for that component is
E:\code\PortReuse\3389-share\DeviceIOContrl-Hook\v1.3-
53\NetAgent\x64\Release\NetAgent.exe.

Figure 7: LOWKEY components

Inner-Loader.dll

Inner-Loader.dll is a watch guard for the LOWKEY backdoor. It leverages the
GetExtendedTcpTable API to retrieve all processes with an open TCP connection. If a process is
listening on TCP port 53 it injects NetAgent.exe into the process. This is done in a loop with a 10
second delay. The loader exits the loop when NetAgent.exe has been successfully injected. After
the injection it will create a new thread for the LOWKEY backdoor (SK3.x.exe).

The watch guard enters an endless loop that executes every 20 minutes and ensures that the
NetAgent.exe and the LOWKEY backdoor are still active. If this is not the case it will relaunch the
backdoor or reinject the NetAgent.exe.

NetAgent.exe

NetAgent.exe is a user mode rootkit that provides covert communication with the LOWKEY
backdoor component. It forwards incoming packets, after receiving the byte sequence FF FF 01
00 00 01 00 00 00 00 00 00, to the named pipe \\.\pipe\Microsoft Ole Object {30000-7100-12985-
00001-00001}.

The component works by hooking the NtDeviceIoControlFile API. It does that by allocating a
suspiciously large region of memory, which is used as a global hook table. The table consists of
0x668A0 bytes and has read, write and execute permissions set.



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 12/17

Each hook table entry consists of 3 pointers. The first points to memory containing the original 11
bytes of each hooked function, the second entry contains a pointer to the remaining original
instructions and the third pointer points to the function hook. The malware will only hook one
function in this manner and therefore allocates an unnecessary large amount of memory. The
malware was designed to hook up to 10000 functions this way.

The hook function begins by iterating the global hook table and compares the pointer to the hook
function to itself. This is done to find the original instructions for the installed hook, in this
case NtDeviceIoControlFile. The malware then executes the saved instructions which results in a
regular NtDeviceIoControlFile API call. Afterwards the IoControlCode is compared to 0x12017
(AFD_RECV).

If the IoControlCode does not match, the original API call results are returned.

If they match the malware compares the first 12 bytes of the incoming data. As it is effectively a
TCP packet, it is parsing the TCP header to get the data of the packet. The first 12 bytes of
the data section are compared against the hard-coded byte pattern: FF FF 01 00 00 01 00 00 00
00 00 00.

If they match it expects to receive additional data, which seems to be unused, and then responds
with a 16 byte header 00 00 00 00 00 91 03 00 00 00 00 00 80 1F 00 00, which seems to be
hard-coded and to indicate that following packets will be forwarded to the named
pipe \\.\pipe\Microsoft Ole Object {30000-7100-12985-00001-00001}. The backdoor
component (SK3.x.exe) receives and sends data to the named pipe. The hook function will
forward all received data from the named pipe back to the socket, effectively allowing a covert
communication between the named pipe and the socket.

SK3.x.exe

SK3.x.exe is the actual backdoor component. It supports writing and reading files, modification of
file properties, an interactive command shell, TCP relay functionality and listing running
processes. The backdoor opens a named pipe \\.\pipe\Microsoft Ole Object {30000-7100-12985-
00001-00001} for communication.

Data received by the backdoor is encrypted with RC4 using the key “CreateThread“ and then
XORed with 0x77. All data sent by the backdoor uses the same encryption in reverse order (first
XOR with 0x77, then RC4 encrypted with the key “CreateThread“). Encrypted data is preceded by
a 16-byte header which is unencrypted containing an identifier and the size of the following
encrypted packet.

An example header looks as follows:
00 00 00 00 00 FD 00 00 10 00 00 00 00 00 00 00

Bytes Meaning

00 00 00 00
00

unknown



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 13/17

FD 00 Bytes 5 and 6 are the command identifier, for a list of all supported identifiers check Table 6
and Table 7.

00 unknown

10 00 00 00 Size of the encrypted packet that is send after the header

00 00 00 00 unknown

Table 5: Subcomponents of header

The backdoor supports the commands listed in tables Table 6 and Table 7. Most commands
expect a string at the beginning which likely describes the command and is for the convenience of
the operators, but this string isn't actively used by the malware and could be anything. For
example, KILL <PID> could also be A <PID>. Some of the commands rely on two payloads
(UserFunction.dll and ProcTran.dll), that are embedded in the backdoor and are either injected
into another process or launch another process.

UserFunction.dll

Userfunction.dll starts a hidden cmd.exe process, creates the named pipe \\.\pipe\Microsoft Ole
Object {30000-7100-12985-00000-00000} and forwards all received data from the pipe to the
standard input of the cmd.exe process. All output from the process is redirected back to the
named pipe. This allows interaction with the shell over the named pipe.

ProcTran.dll

The component opens a TCP connection to the provided host and port, creates the named
pipe \\.\pipe\Microsoft Ole Object {30000-7100-12985-00000-00001} and forwards all received
data from the pipe to the opened TCP connection. All received packets on the connection are
forwarded to the named pipe. This allows interaction with the TCP connection over the named
pipe.

Iden‐
tifier

Argu‐
ments

Description

0xC8 <cmd>
<arg1>
<arg2>

Provides a simple shell, that supports the following commands, dir, copy, move, del, sys‐
teminfo and cd. These match the functionality of standard commands from a shell. This is
the only case where the <cmd> is actually used.

0xC9 <cmd>
<arg1>

The argument is interpreted as a process id (PID). The backdoor injects UserFunction.dll
into the process, which is an interactive shell that forwards all input and output data to
Microsoft Ole Object {30000-7100-12985-00000-00000}. The backdoor will then forward
incoming data to the named pipe allowing for communication with the opened shell. If no
PID is provided, the `cmd.exe` is launched as child process of the backdoor process with
input and output redirected to the named pipe Microsoft Ole Object {30000-7100-12985-
00001-00001}



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 14/17

0xCA <cmd>
<arg1>
<arg2>

Writes data to a file. The first argument is the <file_name>, the second argument is an
offset into the file

0xCB <cmd>
<arg1>
<arg2>
<arg3>

Reads data from a file. The first argument is the <file_name>, the second argument is an
offset into the file, the third argument is optional, and the exact purpose is unknown

0xFA - Lists running processes, including the process name, PID, process owner and the exe‐
cutable path

0xFB <cmd>
<arg1>

Kills the process with the provided process id (PID)

0xFC <cmd>
<arg1>
<arg2>

Copies the files CreationTime, LastAccessTime and LastWriteTime from the second ar‐
gument and applies them to the first argument. Both arguments are expected to be full
file paths. The order of the arguments is a bit unusual, as one would usually apply the ac‐
cess times from the second argument to the third

0xFD - List running processes with additional details like the SessonId and the CommandLine by
executing the WMI query SELECT Name,ProcessId,SessionId,CommandLine,Exe‐
cutablePath FROM Win32_Process

0xFE - Ping command, the malware responds with the following byte sequence 00 00 00 00 00
65 00 00 00 00 00 00 06 00 00 00. Experiments with the backdoor revealed that the iden‐
tifier 0x65 seems to indicate a successful operation, whereas 0x66 indicates an error.

Table 6: C2 commands

The commands listed in Table 7 are used to provide functionality of a TCP traffic relay. This
allows operators to communicate through the backdoor with another host via TCP. This could be
used for lateral movement in a network. For example, one instance of the backdoor could be used
as a jump host and additional hosts in the target network could be reached via the TCP traffic
relay. Note that the commands 0xD2, 0xD3 and 0xD6 listed in Table 7 can be used in the main
backdoor thread, without having to use the ProcTran.dll.

Iden‐
tifier

Argu‐
ments

Description

0x105 <cmd>
<arg1>

The argument is interpreted as a process id (PID). The backdoor injects ProcTran.dll into
the process, which is a TCP traffic relay component that forwards all input and output
data to Microsoft Ole Object {30000-7100-12985-00000-00001}. The commands 0xD2,
0xD3 and 0xD6 can then be used with the component.

0xD2 <arg1>
<arg2>

Opens a connection to the provided host and port, the first argument is the host, the sec‐
ond the port. On success a header with the identifier set to 0xD4 is returned (00 00 00
00 00 D4 00 00 00 00 00 00 00 00 00 00). This effectively establishes a TCP traffic relay
allowing operators to communicate with another system through the backdoored
machine.



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 15/17

0xD3 <arg1> Receives and sends data over the connection opened by the 0xD2 command. Received
data is first RC4 decrypted with the key “CreateThread“ and then single-byte XOR de‐
coded with 0x77. Data sent back is directly relayed without any additional encryption.

0xD6 - Closes the socket connection that had been established by the 0xD2 command

0xCF - Closes the named pipe Microsoft Ole Object {30000-7100-12985-00000-00001} that is
used to communicate with the injected ProcTran.dll. This seems to terminate the thread
in the targeted process by the 0x105 command

Table 7: C2 commands TCP relay

Summary

The TCP LOWKEY variant passively listens for the byte sequence FF FF 01 00 00 01 00 00 00
00 00 00 on TCP port 53 to be activated. The backdoor then uses up to three named pipes for
communication. One pipe is used for the main communication of the backdoor, the other ones are
used on demand for the embedded payloads.

\\.\pipe\Microsoft Ole Object {30000-7100-12985-00001-00001} main communication pipe
\\.\pipe\Microsoft Ole Object {30000-7100-12985-00000-00001} named pipe used for
interaction with the TCP relay module ProcTran.dll
\\.\pipe\Microsoft Ole Object {30000-7100-12985-00000-00000} named pipe used for the
interactive shell module UserFunction.dll

Figure 8 summarizes how the LOWKEY components interact with each other.



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 16/17

Figure 8: LOWKEY passive backdoor overview

Appendix

MD5 HASH Correct Volume
Serial

Dropper Family Final Payload
Family

2b9244c526e2c2b6d40e79a8c3ed‐
b93c

0xde82ce06 DEADEYE.AP‐
PEND

POISONPLUG

04be89f‐
f5d217796bc68678d2508a0d7

0x56a80cc8 DEADEYE.AP‐
PEND

POISONPLUG

092ae9ce61f6575344c424967b‐
d79437

0x58b5ef5c DEADEYE.AP‐
PEND

LOWKEY.HTTP

37e100dd8b2ad8b301b130c2b‐
ca3f1ea

0xc25cff4c DEADEYE.AP‐
PEND

POISONPLUG

39fe65a46c03b930c‐
cf0d552ed3c17b1

0x24773b24 DEADEYE.AP‐
PEND

POISONPLUG



10/16/2019 LOWKEY: Hunting for the Missing Volume Serial ID | FireEye Inc

https://www.fireeye.com/blog/threat-research/2019/10/lowkey-hunting-for-the-missing-volume-serial-id.html 17/17

5322816c2567198ad3d‐
fc53d99567d6e

- DEADEYE.DOWN -

557ff68798c71652d‐
b8a85596a4bab72

0x4cebb6e9 DEADEYE.AP‐
PEND

POISONPLUG

64e09cf2894d6e5ac50207edf‐
f787ed7

0x64fd8753 DEADEYE.AP‐
PEND

POISONPLUG

650a3dce1380f9194361e0c7be9ff‐
b97

0xeaa61f82 DEADEYE.AP‐
PEND

POISONPLUG

7dc6bbc202e039d‐
d989e1e2a93d2ec2d

0xa8c5a006 DEADEYE.AP‐
PEND

LOWKEY

7f05d410dc0d1b0e7a3fcc6cdda7a2ff 0x9438158b DEADEYE.AP‐
PEND

LOWKEY

904bbe5ac0d53e74a6cefb14eb‐
d58c0b

0xde82ce06 DEADEYE.AP‐
PEND

POISONPLUG

c11dd805de683822bf4922aecb9bfe‐
f5

0xcab011e1 DEADEYE.AP‐
PEND

LOWKEY.HTTP

d49c186b1bfd7c9233e5815c2572e‐
b98

0x4a23bd79 DEADEYE.AP‐
PEND

LOWKEY

e58d4072c56a5dd3c‐
c5cf768b8f37e5e

0x243e2562 None - encrypted
data

XMRIG

eb37c75369046fb1076450b3c34f‐
b8ab

0x00e5a39e DEADEYE.AP‐
PEND

LOWKEY

ee5b707249c562d‐
c916b125e32950c8d

0xdecb3d5d DEADEYE.AP‐
PEND

POISONPLUG

ff8d92dfbcda572ef97c142017eec658 0xde82ce06 DEADEYE.AP‐
PEND

POISONPLUG

ffd0f34739c1568797891b9961111464 0xde82ce06 DEADEYE.AP‐
PEND

POISONPLUG

Appendix 1: List of samples with RC5 encrypted payloads


