
	

Derusbi (Server Variant) Analysis
Overview
There are two types of Derusbi malware: a client-server model and a server-client model. Both
types provide basic RAT functionality with the distinction between the two being largely the
directionality of the communication. This report will focus on the server-client variant (or simply,
the “server variant”) of Derusbi, which acts as a server on a victim’s machine and waits for
commands from a controlling client.

In and of itself, the Derusbi server variant is a largely unremarkable RAT when viewed from the
perspective of functional capabilities. The server variant supports basic RAT functionality such
as file management (uploading and downloading), network tunneling and remote command
shell. What makes the server variant interesting is the device driver that the variant installs.

The server variant utilizes a device driver in order to hook into the Windows firewall by either
using largely undocumented Windows Firewall hooking techniques found in Windows XP and
older or by using the documented Windows Filtering Platform found in Windows Vista and later.
The driver, after hooking the firewall using either of the two mentioned interfaces, will inspect
incoming network packets. If a specific handshake occurs between the client and the server
variant, the remainder of the communication session for the established session will be
redirected to the server variant. If the driver does not detect the appropriate handshake, then
the network traffic is allowed to pass unobstructed. This allows an attacker to hide their
communication within a cluster of network sessions originating from a single IP such as would
be the case for a client performing multiple HTTP requests against a web server.

Startup Sequence
The server variant runs as a svchost dependent service. While the server variant binary does
have exports related to the standard service DLL (e.g. ServiceMain, DllRegisterService,
etc.), the startup sequence truly begins in the DllEntryPoint function.

When loaded into memory via a LoadLibrary or equivalent function call, the server variant will
determine the name of the host binary (presumably svchost.exe) as well as its own DLL’s
name. The binary then spawns a new thread that contains the main server variant code in order
to allow the DllEntryPoint routine to return to the calling function.

Within the main server variant function (dubbed mainThread), the server variant loads a
pointer to the API function GetCommandLineW, locates the pointer in memory to the command
line string, and then locates the first space within the command line string and terminates the
string by placing a NULL character at the location.

The server variant then attempts to determine if it has suitable access rights within the system in
order to operation. The check for access rights effectively checks to see if the server variant
process is running under the NT Authority. If the check is unsuccessful, then the server
variant terminates.

With the command line patched and authority verified, the server variant sleeps for 5 seconds
before verifying that the fShutdown flag is not set. The fShutdown flag can become set by the

process loading the server variant calling the DllRegisterServer export. The
DllRegisterServer function, among other tasks, will attempt to install the server variant as a
server on the victim’s machine. Therefore, by waiting 5 seconds before continuing the
mainThread functionality, the server variant is giving the DllRegisterServer time to
activate and perform the necessary operations to ensure that the server variant is properly
installed and activated as a service.

The mainThread calls the mainLoop function of the server variant. The mainLoop function
begins by loading the unique infection ID for the victim’s machine from the registry (under the
key value located at HKLM\SOFTWARE\Microsoft\Rpc\Security). The infection ID, if
present, must be decoded by XOR’ing each byte of the string with a static byte value (typically
0x5F). If the infection ID does not exist within the registry, the server variant will attempt to load
the configuration from an encoded buffer located immediately after the static string
XXXXXXXXXXXXXXX, decode the buffer by starting at the last byte and XORing each previous
byte by the current byte value in reverse order; the server variant will then use a specific portion
of the configuration blob as the infection ID’s base. Next, the server variant will append a
hyphen and a four digit value to the end of the infection ID to generate the unique infection ID
for the victim’s machine. The newly generated infection ID is then saved to the registry location
stated previously.

The mainLoop attempts to get the privileges for SeDebugPrivilege,
SeLoadDriverPrivilege, SeShutdownPrivilege, and SeTcbPrivilege in order to
perform the necessary operations to load the driver portion of the server variant. The mainLoop
will attempt to open a handle to the driver (if it is already installed) by calling CreateFile with
the filename of \Device\{93144EB0-8E3E-4591-B307-8EEBFE7DB28F}. Failing this, the
mainLoop determines if the victim’s machine is running the 360 antivirus product by looking for
a process with the name ZhuDongFangYu.exe. If the process is running, the driver is not
installed but the mainLoop continues regardless. If the process is not found, however, the
mainLoop will extract the driver binary from an encoded buffer within itself, decode the file in
memory (using a rotating 4-byte XOR key), and install the driver on the victim’s machine as
%SYSDIR%\Drivers\{93144EB0-8E3E-4591-B307-8EEBFE7DB28F}.sys.

With the driver present (or recently installed), the mainLoop spawns another thread (dubbed
DerusbiThread::DerusbiThread) that acts as the primary communication loop.
DerusbiThread::DerusbiThread begins by generating a PCC_SOCK object. PCC_SOCK is
an abstraction for the communication subsystem. The prototype for PCC_SOCK appears in
Figure 1.

class BD_SOCK
{
 // members
 ~BD_SOCK(); // destructor
 BD_SOCK* Copy(bool fCopySocket); // duplicate object

 // member variables
 DWORD dwLastError;
 char szHostName[256];
 DWORD dwListeningPortNumber;
 SOCKET sktRemoteEndpoint;
 SOCKET hListeningSocket;
 };

class PCC_SOCK: BD_SOCK
{
 ~PCC_SOCK(); // destructor

 // virtual members
 PCC_SOCK * Copy(bool fCopyListeningSocket);
 SOCKET ConnectToRemoteEndpointByNameAndAttemptChannelByPOSTOrHandshake(int
a2, int a3, int a4, int a5, char *pszHostname, int wHostPort);
 SOCKET ConnectToRemoteEndpointByNameAndHandshake(char *pszHostname, int
wHostPort);
 SOCKET ConnectToRemoteEndpointByNameAndPerformPOSTLogin(char *pszHostname,
int wHostPort);
 SOCKET WaitForClient();
 int SendEncodedData(int dwPktType, void *payload, size_t dwPayloadSize);
 int RecvEncodeData(DWORD *pdwPktType, char **pvPayload, DWORD
*pdwPayloadSize);
 void freeMemory(void *pMemory);

 // member functions
 int SendVictimInfo();
 int WaitForReadEvent(int dwTimeout);
 int SOCKSConnectWithRandomLocalPort(int dwEndPointIP, u_short hostshort);
 int BindToRandomPort(SOCKET s);
 int SendBuffer(SOCKET s, char *buf, int len);
 SOCKET AcceptIncomingConnection();
 SOCKET ConnectToRemoteEndpointByName(char *szHostName, int hostshort);
 SOCKET ConnectToRemoteEndpoint(int dwIP, u_short wPort);
 int ReadFromRemoteEndpoint(char *buf, int len);
 SOCKET NewSocket();
 int BindSocket(SOCKET s, int dwLowPort, int dwHighPort);
 int SendAuthenicationResponse(void *pvResponse);
 int SendHTTP200ResponseIfViaHeaderFound (char *Str);

 // member variables
 char compressionBuffer[65536];

};
Figure 1: PCC_SOCK Declaration in Pseudo-C++

With a new PCC_SOCK object allocates, DerusbiThread::DerusbiThread selects a port
between 40,000 and 45,000 to use as a listening port. The port number is sent to the driver (via
IOCTL 0x220200) in order to inform the driver where to redirect incoming traffic. The “Windows

Device Driver (Firewall Hook)” section explains the functionality of the driver in greater detail.
DerusbiThread::DerusbiThread binds to the specified port and opens the port as a
listener. At this point DerusbiThread::DerusbiThread enters an infinite loop of waiting for
new connections to the listening socket and dispatching a new thread (dubbed CommLoop) to
handle the traffic for the socket until fShutdown is set. At this point, the startup sequence for
Derusbi is complete and the server variant moves into a communication and command dispatch
phase.

Windows Device Driver (Firewall Hook)
The communication between the controlling client and the Derusbi server variant depends on
the device driver being in place. The authors of the device driver designed the driver to work on
Windows 2000 and later versions of the Windows operating system. Depending on the version
of the victim’s OS, the driver will hook the Windows Firewall by either using the surprisingly
undocumented IOCTL_IP_SET_FIREWALL_HOOK	 command of the \\Device\IP device for
Windows XP or older machines or by using the documented Windows Filtering Platform (WFP)
found in Windows Vista and later. The device driver inspects incoming network traffic from any
client connecting to the victim machine, determines if an appropriate handshake packet occurs
at the beginning of a new TCP session, and then makes the decision to reroute the network
traffic to the Derusbi malware or let the traffic continue unaltered to its original service.

Figure 2: Device Driver Traffic Redirection

Once a session has been established by means of a valid handshake, any subsequent packets
from the client for the given TCP session will automatically be directed by the device driver to
the Derusbi server variant. The device driver does not capture or store any network traffic
outside of the initial handshake inspection.	 	

Communication and Command Dispatch
The Derusbi server variant will select an available, random port between the range of 40,000
and 45,000 on the victim’s machine upon which to listen. After selecting the port, the server
variant will wait for incoming connections and instruct the driver to redirect appropriate TCP
sessions to the listening port.

In order to establish a valid communication channel between the server variant and a controlling
client, a specific handshake is required. The handshake between a client and the server variant
is well defined and consisting of 64 bytes, the data within the handshake is entirely random with
the exception of the 3rd and 8th DWORD. The handshake begins when the client sends a 64
byte random buffer with the 3rd (offset 12) and 8th (offset 32) DWORDs defined as:

DWORD3 == ~DWORD0
DWORD8 == ROR(DWORD0, 7)

The server will acknowledge the handshake by sending a 64 byte random buffer with the same
pattern for the 3rd and 8th DWORDs based on the new, randomly generated 1st DWORD (offset
0). It is the client’s handshake that the driver for the server variant triggers off of.

Some older versions of the server variant use a different set of DWORDs to validate the
handshake, also the tests are the same. These other versions have been observed to use the
following DWORDs:

DWORD1 == ~DWORD0
DWORD2 == ROR(DWORD0, 7)

If the handshake fails, the server variant provides a secondary means to authenticate a client.
Presumably a failsafe if the driver is unable to load, the secondary method requires the client to
send a POST request with the following form:

POST /forum/login.cgi HTTP/1.1\r\n

In addition, the POST request must contain a Via field. If the request and the Via field exist,
the server variant authenticates the client and responds with

HTTP/1.0 200
Server: Apache/2.2.3 (Red Hat)
Accept-Ranges: bytes
Content-Type: text/html
Proxy-Connection: keep-alive

If the client’s request does not meet the appropriate authentication criteria, the server variant
sends:

HTTP/1.0 400 Bad Request
Server: Apache/2.2.3 (Red Hat)
Connection: close

With a communication channel between the server variant and the client established, the server
sends information about the victim’s computer. Consisting of a 180 byte data structure (Figure
3), the server variant provides the client with a variety of details about the victim’s machine. The
VictimInfoPacket has an identifier of 2 (see the dwPktType explanation below). The
communication between the server and the client at this point, and for the remainder of the
session, is encrypted.

#pragma pack(push, 1)
struct VictimInfoPacket
{
 int magicValue;
 char szInfectionID[64];
 char szComputerName[64];
 char szSelfIP[16];
 char unknownArray[16];
 int dwOSandSPVersionInfo;
 int dwBuildNumber;
 char unknownValue;
 char OemId;
 __int16 unused_align2;
 int fCampaignCodeMatch;
};
#pragma pack(pop)

Figure 3: VictimInfoPacket Structure Definition

Communication between the client and the server variant exists in the form of a sequence of
encrypted datagrams. Each datagram consists of a 24 byte header followed by an optional
payload section. The header is not encrypted but if the optional payload is attached, the payload
is encrypted using a DWORD XOR. The format of the header is as follows:

struct PacketHeader
{

DWORD dwTotalPacketSize;
DWORD dwPktType;
DWORD dwChecksum;
DWORD dwEncryptionKey;
DWORD fCompressedPayload;
DWORD dwDecompressedSize;

};

The dwTotalPacketSize	 field defines the total size of the datagram including both the size of
the header and the size of the optional payload. The	 dwPktType	 field correlates to the module
ID which allows the server variant to route the datagram to the appropriate module without
further inspection of the payload data. The	 dwChecksum	 value is sum of all of the bytes within
the optional header (the field is ignored, but present, if there is no payload section). The	
dwEncryptionKey is the 32-bit XOR encryption key for the payload section. If the
fCompressedPayload	 field is non-zero, then the data within the payload is compressed using
LZO compression (prior to XOR encoding) and the dwDecompressedSize	 field represents the
final size of the payload data after decompression. The payload section can have up to three
different presentations depending on if compression is used. The first presentation is the original
payload data as generated by the client or server, the second presentation is the LZO
compressed form, and the final presentation (the presentation that exists going across the
network) is the 32-bit XOR encoded data blob. Figure 4 provides a graphical representation of
the presentation types of the payload section.

Figure 4: Possible Presentations of the Payload Section of a Derusbi Server Variant's Datagram

After sending the server information via the VictimInfoPacket, the server variant spins off a
CommLoop thread for the connection and returns to waiting for new connections from clients to
appear.

The CommLoop thread begins by establishing the set of internal command handlers available to
the server variant. With the exception of the administrative command handler (which is built into
the CommLoop), each of the internal commands consists of an object derived from a base object
PCC_BASEMOD.

class PCC_BASEMOD
{
 ~PCC_BASEMOD(); // destructor

 // virtual member functions
 void *return1(); // always returns 1
 void Cleanup(void);
 void ProcessPacket(void *pkt, DWORD dwPktSize);
 int ReadWaitingData(void **pPacket, DWORD *dwPktSize);
 int MallocWithClear(size_t Size);
 int Free(void *Memory);

 // member variables
 DWORD dwPacketIdentifierCode;
};
Figure 5: PCC_BASEMOD Pseudo-C++ Declaration

The server variant appears to have a modular design allowing an attacker to compile only the
components that are necessary for any given operation. The malware supports up to 8 different
modules per sample with each module designating its own ID code. Novetta has observed the
following modules:

ID Class Name Module Description
0x81 PCC_CMD Remote command shell
0x82 PCC_PROXY Network tunneling
0x84 PCC_FILE File management
0xF0 n/a Derusbi administrative [built-in module that does not count

against the maximum of 8 modules per variant sample]

Given the spacing in ID numbers (as noted in the gap between 0x82 and 0x84 in an otherwise
sequential ID scheme), it is conceivable that additional modules exist.

After establishing the tools, an infinite loop (CommLoop) is entered in which the server variant
will wait for up to 1/100 of a second for input from the network; if such input arrives, the server
routes the packet to the appropriate handler. If the network input does not arrive, the CommLoop
queries each of the command handlers for any packets they may have queued (by calling each
command handler’s ReadWaitingData function) and transmits the packets the handlers have
generated. Additionally, if more than 60 seconds passes between network inputs from the client
or network outputs from the server variant, the CommLoop will send out a beacon packet
(dwPktType = 4).

CommLoop routes packets to the appropriate command handler object by locating the
dwPacketIdentifierCode within each of the registered command handlers that matches the
incoming packets dwPktType. When the appropriate command handler is found,
CommLoop passes the payload of portion of the packet to the command handler’s
ProcessPacket function.

PCC_CMD
The PCC_CMD object contains the remote shell functionality of the server variant along with the
ability to execute arbitrary programs. Derived from the PCC_BASEMOD class, the PCC_CMD

class’s operations are focused largely in the ProcessPacket and ReadWaitingData
functions. The PCC_CMD::ProcessPacket function works as a stub function that merely
passes the packet’s payload data (pkt) data to PCC_CMD::ProcessPacketEx while ignoring
the dwPktSize parameter. The packet’s payload data is, in and of itself, another datagram with
a header and optional payload section. The payload of each PCC_CMD destined packet contains
the following header:

struct PCCCMDPacketHeader
{
 DWORD dwPacketSize;
 DWORD field_4; // purpose unknown, seemingly unused.
 DWORD dwCommandType;
 DWORD dwLastError;
};

The dwCommandType field specifies the specific PCC_CMD command that the client is
requesting the server variant perform. There are four commands that PCC_CMD supports:

dwCommandType Functionality
0x04 Activate the remote shell
0x08 Execute the specified file
0x0C Send input to remote shell
0x10 Terminate the remote shell

For each of the commands, any output from or acknowledgement of the commands comes in
the form of another packet consisting of a PacketHeader followed by a
PCCCMDPacketHeader and any optional payload data. The dwCommandType of the newly
constructed packet matches the command’s original dwCommandType value (e.g. responses
from 0x04 commands will reply with dwCommandType set to 0x04).
PCC_CMD::ProcessPacketEx will queue the response packets in an internal buffer.

The PCC_CMD::ReadWaitingData member function is responsible for transmitting any of the
previously queued packets from PCC_CMD::ProcessPacketEx. If there are no queued
packets, PCC_CMD::ReadWaitingData will perform a queue of the console output pipe for the
remote shell process (if it is active); the function will also attempt to read the entirety of the
waiting data, which then becomes the payload of a PacketHeader/PCCCMDPacketHeader
based packet with the dwCommandType set to 0x0C. If the read is unsuccessful, the function
returns a PacketHeader/PCCCMDPacketHeader based packet with the dwCommandType set
to 0x10 indicating an error and terminating the remote shell session.

PCC_FILE
The PCC_FILE object provides a large range of file system administration functions.
PCC_FILE is derived from the PCC_BASEMOD class meaning that the processing of commands
should be contained within the PCC_FILE::ProcessPacket member function with some
additional processing done in the PCC_FILE::ReadWaitingData member function. This is
not necessarily the case, however.

The PCC_FILE::ProcessPacket member function, much like PCC_CMD::ProcessPacket,
is little more than a stub function that passes only a copy of the payload data (pkt) to
PCC_FILE::ProcessPacketEx. PCC_FILE::ProcessPacketEx performs no file
management operations but instead adds any incoming command packets to a queue for
processing by PCC_FILE::ReadWaitingData if the packet is not already within the queue
(thus avoiding duplication of commands).

The PCC_FILE::ReadWaitingData member function is a stub function that calls
PCC_FILE::ProcessQueue and returns the resulting packet from the queue processing. This
means that file operations are surprisingly low priority, and potentially, high latency operations.

Each packet that arrives within the packet queue of PCC_FILE contains a standard header
followed by a (quasi-optional) payload data blob. The header for the PCC_FILE command
packets takes the following form:

struct PCCFilePacketHeader
{
 DWORD dwTotalPayloadSize;
 DWORD dwCommandType;
};

The dwCommandType field specifies the specific PCC_FILE command that the client is
requesting the server variant to perform. PCC_FILE supports 17 (of which 15 are unique)
commands. While the general form within the Derusbi server variant communication model is to
return a packet with the same dwCommandType as the original command, many of the
PCC_FILE commands return a status packet type (dwCommandType = 0x04).

dwCommandType Functionality Response
dwCommandType

0x0C Purge PCC_FILE Commands from Queue
Based on dwCommandType

(no response)

0x10 Enumerate Attached Drives 0x10
0x14 Get File Attributes 0x14
0x18 File Search 0x18
0x1C Rename File 0x04
0x20 Delete File 0x04	
0x24 Create Directory 0x04	
0x28 Upload File to Client 0x28 and 0x04	
0x2C Recursively Enumerate Directory 0x2C
0x30 Download File from Client 0x04	
0x34 Copy File 0x04	
0x38 Move File 0x04	
0x3C Duplicate File Timestamp 0x04	
0x40 Execute File 0x04	
0x44 Recursively Enumerate Directory 0x44	
0x48 Recursively Enumerate Directory 0x48	
0x4C Enumerate All Drives and Files 0x4C

Commands 0x2C, 0x44, and 0x48 all appear to be the exact same base command with only
slight variations in their response format. It is unclear why this particular command is included
three times in PCC_FILE.

PCC_PROXY
The PCC_PROXY object provides the platform for a tunneling network traffic to and from the
client to a specific endpoint (or endpoints if multiple tunnels are activated by the client). Derived
on the PCC_BASEMOD class, the PCC_PROXY class performs very little network tunneling within
the CommLoop interactive PCC_PROXY::ProcessPacket and
PCC_PROXY::ReadWaitingData member functions. The PCC_PROXY::ProcessPacket
member function queues incoming PCC_PROXY packets into a received queue while
PCC_PROXY::ReadWaitingData returns packets from a transmit queue, with the
directionality from the perspective of the server variant. The core of the PCC_PROXY’s network
tunneling comes from a spawned processing thread (PCC_PROXY::MainThread) that is
generated when the PCC_PROXY object is instantiated.

The PCC_PROXY::MainThread function consist an infinite loop that only terminates when the
PCC_PROXY::fShutdown flag is set. Otherwise, the loop will inspect another internal flag
(PCC_PROXY::fNetworkEnabled) to determine if the network tunneling is currently active. If
the PCC_PROXY::fNetworkEnabled flag is set to false, then tunneling is disabled but
command processing continues.

It is possible to have more than one tunnel active at any given time. In order to firewall tunnels
from each other over the backbone of the server variant’s command channel, each tunnel is
assigned a specific channel identifier. This allows the client to specify which specific tunnel data
is transmitted to as well as telling the client which tunnel is returning data. If the
PCC_PROXY::fNetworkEnabled flag is set to true, PRC_PROXY::MainThread will loop
through all active channels, perform a select on the socket connected to the endpoint and -- if
the select indicates that there is data waiting on a particular socket -- the data is read. A new
PCC_PROXY based packet is then generated and the packet is queued for delivery to the client.

After processing each of the channels for new data, PCC_PROXY::MainThread processes
incoming command packets from the client (an operation usually handled by the
PCC_BASEMOD::ProcessPacket function). Packets belonging to the PCC_PROXY subsystem
have a common header, much like the other PCC_BASEMOD derived classes. To this end, the
PCC_PROXY packets have the same packet header as the PCCFilePacketHeader packet
header.

The PCC_PROXY supports five commands:

dwCommandType Functionality
0x04 Connect to Specified Endpoint (Creates New Channel)
0x08 Send Data to Endpoint
0x0C Terminate Channel
0x10 Enable Network Tunneling (PCC_PROXY::fNetworkEnabled set

to true)
0x14 Disable Network Tunneling (PCC_PROXY::fNetworkEnabled set

to false)

Administrative Commands
The administrative commands are built-in to the server variant and are not derived from the
PCC_BASEMOD class. Each of the administrative command packets contains the same header
structure as the PCCFilePacketHeader structure followed by an optional payload data blob.

The administrative commands consist of the following five commands:

dwCommandType Functionality
0x08 Terminate the current network connection between the client and the

server variant.
0x10 Run the Cleanup member function of each of the registered

PCC_BASEMOD derived objects, effectively resetting the state of each of
the modules.

0x14 Write infection ID to the registry and immediately terminate the server
variant.

0x18 Shutdown the server variant (set fShutdown to true)
0x1C Drop a new DLL to %TEMP%\tmp1.dat, load the DLL into memory and

call DllRegisterServer to install a new server variant binary on the
victim’s system.

Detection
Given the encrypted, and potentially compressed, nature of Derusbi server variant network
traffic, detecting the traffic on a network can be problematic using traditional IDS signatures.
Using a heuristic approach, it would be possible to detect the handshake of a possible Derusbi
server variant session by looking for the following pattern:

Client Server
Exactly 64 bytes transmitted
 Exactly 64 bytes transmitted
First 8 bytes taking the pattern of 0x28 0x00 0x00
0x00 0x02 0x00 0x00 0x00

Detecting Derusbi server variants on disk is possible using the following YARA signature:

rule Derusbi_Server
{

 strings:
 $uuid = "{93144EB0-8E3E-4591-B307-8EEBFE7DB28F}" wide ascii
 $infectionID1 = "-%s-%03d"
 $infectionID2 = "-%03d"
 $other = "ZwLoadDriver"
 condition:
 $uuid or ($infectionID1 and $infectionID2 and $other)
}

