
r du s

u r

r rs

s ur s

s s

d w r s
s d r 21 2016 Joseph Landry

Attackers have been successfully deploying RATs for years to remotely control users systems - giving
them full access to the victim’s files or resources such as cameras, recording key strokes, or�
downloading further malware. Traditionally RATs have been deployed when a user opens an email
attachment, or downloads a file from a website or peer-to-peer network. In both cases, these vectors�
involve use of files to deliver the payload - which are easier to detect.�

Recently we detected a more sophisticated technique that a handful of countries across Asia are
actively using to infect systems with RATs. This new technique ensures that the payload/file remains in�
memory through its execution, never touching the disk in a de-encrypted state. In doing so, the
attacker can remain out of view from antivirus technologies, and even ‘next-generation’ technologies
that only focus on file-based threat vectors. Also, the samples analyzed have the ability detect the�
presence of a virtual machine to ensure it’s not being analyzed in a network sandbox.

And finally it’s important to highlight that the RAT itself is not new. In fact this technique can be used to�
deliver any “known” RAT to a victim’s system. We analyzed this sample against our SentinelOne EPP
to confirm is does not evade our behavior-based detection mechanisms. This is due to the fact that�
we’re monitoring all processes at the user-space/kernel-space interface - and because all
communication between the application and the kernel must be unencrypted, we detect the sample at
both process-injection points.

https://www.sentinelone.com/support/
https://www.sentinelone.com/partners/
https://www.sentinelone.com/resources/
https://www.sentinelone.com/blog/
https://www.sentinelone.com
https://www.sentinelone.com/blog/
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture11.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture21.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture31.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture41.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture51.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture61.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture71.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture81.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture9.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture10.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture111.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture12.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture13.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture14.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture15.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture16.png

Samples Analyzed

Main Sample

r 32 E NE 2 0
H 256 su

9551 15319 068 966 8 9 563 522 d9 1 2d19 122 8 018 8
H 1 su 3 1 5 3509281 d 0 61 1 8 6 d3 393 55

5 su 65 52 2d6 3d121 826 65d 9
s z 32102 s 32

Unpacked Samples

◦ e5c71180f117270538487cd9b9b1b6d8 - Packed "Benchmark" DLL ▪
9e05fb115bd4e85cfc0e32c72aa721be - Monitor (PerfWatson.exe) ◦
d740ed3f33ca4cef3a6aa717f94bf52a - NanoCore RAT dumped from memory

Behavioral Analysis

When run, the binary will copy itself to
%APPDATA%\Microsoft\Blend\14.0\FeedCache\nvSCPAPISrv.exe and extracts a second binary
named PerfWatson.exe

It then executes both binaries.

For persistence, a registry key is created at HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\Windows\Load pointing to the PerfWatson.exe binary.

Finally, the RAT tries connecting back to its control server:

z 2015 r 161
z r 161

chickenkiller.com is owned by a free dynamic DNS service.

At the time of this writing, the DNS records still exist, but the address they resolve to appears to be
down.

Unpacking

"Benchmark" .NET DLL

The main executable contains an XOR encrypted .NET DLL in its .NET managed resources and the
logic to unpack it. This DLL contains the logic to unpack and inject the RAT as well as monitor the
application, PerfWatson.exe. This DLL is referred to as "Benchmark" because that is the .NET
namespace it uses.

After decrypting the resource, it is linked into the process using
System.Reflection.Assembly.Load(byte[]). This method is documented on �MSDN here. Using this
method, the DLL will never be written to the filesystem. This technique could have been chosen by the�
developers to evade antivirus detection.

https://msdn.microsoft.com/en-us/library/h538bck7%28v=vs.110%29.aspx

Under the hood, Assembly.Load(), uses a call to the win32 api call CreateFileMappingW() with the hFile
parameter set to INVALID_HANDLE_VALUE. According to MSDN, this will create a mapped file that is�
backed by the paging filesystem, not the standard filesystem. A layer below CreateFileMapping, the��
system call NtCreateSection is invoked.

After the empty file is created, it is mapped into memory using the Win32 API call MapViewOfFileEx.�
The layer below this invokes the system call NtMapViewOfSection.

Now, a call to memcpy() is used to copy the decrypted DLL into the newly allocated address range.

Unpacking Settings and NanoCore

The settings for "Benchmark" and the NanoCore executable are serialized, DES encrypted, spliced,
and stored across multiple PNG files as pixel data. The PNG files are concatenated and stored in the��
.NET managed resources of the main executable.

Some of the settings that can be configured are:�

E r u s d d
s d s s r r s d N r

s ss us r
Id r r r s r N

w d r d r I r d r d ru
r I d r ss

After viewing one of these images, it is obvious they are not used to conveying visual information to a
human eye.

After writing a short python script, I was able to extract all 19 PNG files. If you have robot eyes, you can�
see a cat.

Here is a C# decompilation of the method used to extract the information out of the pixel data.

Once everything is decrypted, the set options are executed, and the NanoCore RAT payload is injected
into a new child process. The method of injection is discussed later.

Unpacking PerfWatson.exe

Now that "Benchmark" is loaded into memory, it is tasked with copying the main executable and
extracting PerfWatson.exe to %APPDATA%\\Microsoft\Blend\14.0\FeedCache\.

PerfWatson.exe is stored inside Benchmark as a base64 encoded string. There is no encryption or
obfuscation outside of the base64 encoding.

Inside the .NET assembly, the string is stored as a DefaultSettingValue string. The developers might
have used this as a way to conceal the meaning of this long string.

Once the string is decoded, it is written to disk and executed.

Injecting the Payload

The NanoCore RAT payload is never written to disk to avoid detection. Instead, it is injected into a new
process. The injection routine can be summarized by these Win32 API and system calls:

r r ss E E EN r d r ss sus d d
N r d s d d E d u d EI r s r

d r ss r ds E I s ddr ss d
N w s ru s w r s r d d
0 00000
r u E s d s r

N r r u r
0 00 00000 E H d r
0 00 02000
0 00 36000 rsr
0 00 3 000 r
E I s ddr ss d s s ddr ss 0 00000
N r d d s EI r s r r d
N r su r d us s d r ss sus d d d
ru r ss s sus d d

N r d s r d r d r ss

https://www.sentinelone.com/wp-content/uploads/2016/04/Picture17.png

r r d ddr ss E s w w d s r d

ddr ss r r d s w d

https://www.sentinelone.com/wp-content/uploads/2016/04/Picture18.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture19.png

d w s r s N r r u r d u d
E I s ddr ss

N r d s d u d EI r s r s u

https://www.sentinelone.com/wp-content/uploads/2016/04/Picture20.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture211.png

u s s r d w N r su r d

du r ss d s w s d r ss s us N r

https://www.sentinelone.com/wp-content/uploads/2016/04/Picture22.png
https://www.sentinelone.com/wp-content/uploads/2016/04/Picture23.png

r 2016 s s r d r r s s

For more information on how SentinelOne protects against attacks such as these, visit our resources
page at sentinelone.com/resources

Products Support Partners Resources Blog Events Company

https://www.sentinelone.com/wp-content/uploads/2016/04/Picture24.png
https://www.sentinelone.com/resources
http://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.sentinelone.com%2Fblogs%2Fteaching-an-old-rat-new-tricks%2F&t=Teaching+an+old+RAT+new+tricks
http://twitter.com/share?text=Teaching+an+old+RAT+new+tricks&url=https%3A%2F%2Fwww.sentinelone.com%2Fblogs%2Fteaching-an-old-rat-new-tricks%2F
http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.sentinelone.com%2Fblogs%2Fteaching-an-old-rat-new-tricks%2F&title=Teaching+an+old+RAT+new+tricks&source=https://www.sentinelone.com/
https://www.sentinelone.com/products-features/platform-specifications/
https://www.sentinelone.com/support/
https://www.sentinelone.com/partners/
https://www.sentinelone.com/resources/
https://www.sentinelone.com/blog/
https://www.sentinelone.com/events/
https://www.sentinelone.com/leadership-team/
https://www.sentinelone.com/privacy-policy/
https://www.sentinelone.com/terms-of-services/

	Teaching an old RAT new tricks
	Posted on April 21, 2016 by Joseph Landry

