
11/15/21, 11:48 AM Analyzing a watering hole campaign using macOS exploits

https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/ 1/7

November 11, 2021

Analyzing a watering hole campaign using macOS
exploits

blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits

Threat Analysis Group

To protect our users, TAG routinely hunts for 0-day vulnerabilities exploited in-the-wild.
In late August 2021, TAG discovered watering hole attacks targeting visitors to Hong
Kong websites for a media outlet and a prominent pro-democracy labor and political
group. The watering hole served an XNU privilege escalation vulnerability (CVE-2021-
30869) unpatched in macOS Catalina, which led to the installation of a previously
unreported backdoor.

As is our policy, we quickly reported this 0-day to the vendor (Apple) and a patch was
released to protect users from these attacks.

Based on our findings, we believe this threat actor to be a well-resourced group, likely
state backed, with access to their own software engineering team based on the quality of
the payload code.

In this blog we analyze the technical details of the exploit chain and share IOCs to help
teams defend against similar style attacks.

Watering Hole

The websites leveraged for the attacks contained two iframes which served exploits from
an attacker-controlled server—one for iOS and the other for macOS.

iOS Exploits

The iOS exploit chain used a framework based on Ironsquirrel to encrypt exploits
delivered to the victim's browser. We did not manage to get a complete iOS chain this
time, just a partial one where CVE-2019-8506 was used to get code execution in Safari.

macOS Exploits

The macOS exploits did not use the same framework as iOS ones. The landing page
contained a simple HTML page loading two scripts—one for Capstone.js and another for
the exploit chain.

https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/
https://blog.google/threat-analysis-group/
https://blog.google/threat-analysis-group/how-we-protect-users-0-day-attacks/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30869
https://support.apple.com/en-us/HT212825
https://github.com/MRGEffitas/Ironsquirrel


11/15/21, 11:48 AM Analyzing a watering hole campaign using macOS exploits

https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/ 2/7

The parameter rid is a global counter which records the number of exploitation attempts.
This number was in the 200s when we obtained the exploit chain.

While the javascript starting the exploit chain checks whether visitors were running
macOS Mojave (10.14) or Catalina (10.15) before proceeding to run the exploits, we only
observed remnants of an exploit when visiting the site with Mojave but received the full
non-encrypted exploit chain when browsing the site with Catalina.

The exploit chain combined an RCE in WebKit exploiting CVE-2021-1789 which was
patched on Jan 5, 2021 before discovery of this campaign and a 0-day local privilege
escalation in XNU (CVE-2021-30869) patched on Sept 23, 2021.

Remote Code Execution (RCE)

Loading a page with the WebKit RCE on the latest version of Safari (14.1), we learned the
RCE was an n-day since it did not successfully trigger the exploit. To verify this
hypothesis, we ran git bisect and determined it was fixed in this commit.

Sandbox Escape and Local Privilege Escalation (LPE)

Capstone.js

It was interesting to see the use of Capstone.js, a port of the Capstone disassembly
framework, in an exploit chain as Capstone is typically used for binary analysis. The
exploit authors primarily used it to search for the addresses of dlopen and dlsym in
memory. Once the embedded Mach-O is loaded, the dlopen and dlsym addresses found
using Capstone.js are used to patch the Mach-O loaded in memory.

With the Capstone.js configured for X86-64 and not ARM, we can also derive the target
hardware is Intel-based Macs.

https://github.com/WebKit/WebKit/commit/f4e35a4796f9570c860d39f2701b2a8213f2e10a#diff-cc796f83ce6dd05d2337dcccb59527826a3bdf8cfa3faa686af7b67a1af9bd39
https://support.apple.com/en-us/HT212825
https://github.com/WebKit/WebKit/commit/f4e35a4796f9570c860d39f2701b2a8213f2e10a#diff-cc796f83ce6dd05d2337dcccb59527826a3bdf8cfa3faa686af7b67a1af9bd39
https://alexaltea.github.io/capstone.js/
https://www.capstone-engine.org/


11/15/21, 11:48 AM Analyzing a watering hole campaign using macOS exploits

https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/ 3/7

Embedded Mach-O

After the WebKit RCE succeeds, an embedded Mach-O binary is loaded into memory,
patched, and run. Upon analysis, we realized this binary contained code which could
escape the Safari sandbox, elevate privileges, and download a second stage from the C2.

Analyzing the Mach-O was reminiscent of a CTF reverse engineering challenge. It had to
be extracted and converted into binary from a Uint32Array.

Then the extracted binary was heavily obfuscated with a relatively tedious encoding
mechanism--each string is XOR encoded with a different key. Fully decoding the Mach-O
was necessary to obtain all the strings representing the dynamically loaded functions used
in the binary. There were a lot of strings and decoding them manually would have taken a
long time so we wrote a short Python script to make quick work of the obfuscation. The
script parsed the Mach-O at each section where the strings were located, then decoded the
strings with their respective XOR keys, and patched the binary with the resulting strings.

Once we had all of the strings decoded, it was time to figure out what capabilities the
binary had. There was code to download a file from a C2 but we did not come across any
URL strings in the Mach-O so we checked the javascript and saw there were two
arguments passed when the binary is run–the url for the payload and its size.



11/15/21, 11:48 AM Analyzing a watering hole campaign using macOS exploits

https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/ 4/7

After downloading the payload, it removes the quarantine attribute of the file to bypass
Gatekeeper. It then elevated privileges to install the payload.

N-day or 0-day?

Before further analyzing how the exploit elevated privileges, we needed to figure out if we
were dealing with an N-day or a 0-day vulnerability. An N-day is a known vulnerability
with a publicly available patch. Threat actors have used N-days shortly after a patch is
released to capitalize on the patching delay of their targets. In contrast, a 0-day is a
vulnerability with no available patch which makes it harder to defend against.

Despite the exploit being an executable instead of shellcode, it was not a standalone
binary we could run in our virtual environment. It needed the address of dlopen and
dlsym patched after the binary was loaded into memory. These two functions are used in
conjunction to dynamically load a shared object into memory and retrieve the address of
a symbol from it. They are the equivalent of LoadLibrary and GetProcAddress in
Windows.

To run the exploit in our virtual environment, we decided to write a loader in Python
which did the following:

load the Mach-O in memory
find the address of dlopen and dlsym
patch the loaded Mach-O in memory with the address of dlopen and dlsym
pass our payload url as a parameter when running the Mach-O

For our payload, we wrote a simple bash script which runs id and pipes the result to a file
in /tmp. The result of the id command would tell us whether our script was run as a
regular user or as root.

Having a loader and a payload ready, we set out to test the exploit on a fresh install of
Catalina (10.15) since it was the version in which we were served the full exploit chain.
The exploit worked and ran our bash script as root. We updated our operating system
with the latest patch at the time (2021-004) and tried the exploit again. It still worked.
We then decided to try it on Big Sur (11.4) where it crashed and gave us the following
exception.



11/15/21, 11:48 AM Analyzing a watering hole campaign using macOS exploits

https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/ 5/7

The exception indicates that Apple added generic protections in Big Sur which rendered
this exploit useless. Since Apple still supports Catalina and pushes security updates for it,
we decided to take a deeper look into this exploit.

Elevating Privileges to Root

The Mach-O was calling a lot of undocumented functions as well as XPC calls to
mach_msg with a MACH_SEND_SYNC_OVERRIDE flag. This looked similar to an
earlier in-the-wild iOS vulnerability analyzed by Ian Beer of Google Project Zero. Beer
was able to quickly recognize this exploit as a variant of an earlier port type confusion
vulnerability he analyzed in the XNU kernel (CVE-2020-27932). Furthermore, it seems
this exact exploit was presented by Pangu Lab in a public talk at zer0con21 in April 2021
and Mobile Security Conference (MOSEC) in July 2021.

In exploiting this port type confusion vulnerability, the exploit authors were able to
change the mach port type from IKOT_NAMED_ENTRY to a more privileged port type
like IKOT_HOST_SECURITY allowing them to forge their own sec_token and
audit_token, and IKOT_HOST_PRIV enabling them to spoof messages to kuncd.

MACMA Payload

After gaining root, the downloaded payload is loaded and run in the background on the
victim's machine via launchtl. The payload seems to be a product of extensive software
engineering. It uses a publish-subscribe model via a Data Distribution Service (DDS)
framework for communicating with the C2. It also has several components, some of which
appear to be configured as modules. For example, the payload we obtained contained a
kernel module for capturing keystrokes. There are also other functionalities built-in to the
components which were not directly accessed from the binaries included in the payload
but may be used by additional stages which can be downloaded onto the victim's machine.

Notable features for this backdoor include:

victim device fingerprinting
screen capture
file download/upload
executing terminal commands
audio recording
keylogging

Conclusion

Our team is constantly working to secure our users and keep them safe from targeted
attacks like this one. We continue to collaborate with internal teams like Google Safe
Browsing to block domains and IPs used for exploit delivery and industry partners like
Apple to mitigate vulnerabilities. We are appreciative of Apple’s quick response and
patching of this critical vulnerability.

https://bugs.chromium.org/p/project-zero/issues/detail?id=2107&q=MACH_SEND_SYNC_OVERRIDE&can=1
https://github.com/wangtielei/Slides/blob/main/zer0con21.pdf
https://en.wikipedia.org/wiki/Data_Distribution_Service
https://safebrowsing.google.com/


11/15/21, 11:48 AM Analyzing a watering hole campaign using macOS exploits

https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/ 6/7

For those interested in following our in-the-wild work, we will soon publish details
surrounding another, unrelated campaign we discovered using two Chrome 0-days (CVE-
2021-37973 and CVE-2021-37976). That campaign is not connected to the one described
in today’s post.

Related IOCs

Delivery URLs

http://103[.]255[.]44[.]56:8372/6nE5dJzUM2wV.html
http://103[.]255[.]44[.]56:8371/00AnW8Lt0NEM.html
http://103[.]255[.]44[.]56:8371/SxYm5vpo2mGJ?rid=<redacted>
http://103[.]255[.]44[.]56:8371/iWBveXrdvQYQ?rid=?rid=<redacted>
https://appleid-server[.]com/EvgSOu39KPfT.html
https://www[.]apple-webservice[.]com/7pvWM74VUSn2.html
https://appleid-server[.]com/server.enc
https://amnestyhk[.]org/ss/defaultaa.html
https://amnestyhk[.]org/ss/4ba29d5b72266b28.html
https://amnestyhk[.]org/ss/mac.js

Javascript

cbbfd767774de9fecc4f8d2bdc4c23595c804113a3f6246ec4dfe2b47cb4d34c
(capstone.js)
bc6e488e297241864417ada3c2ab9e21539161b03391fc567b3f1e47eb5cfef9 (mac.js)
9d9695f5bb10a11056bf143ab79b496b1a138fbeb56db30f14636eed62e766f8

Sandbox escape / LPE

8fae0d5860aa44b5c7260ef7a0b277bcddae8c02cea7d3a9c19f1a40388c223f
df5b588f555cccdf4bbf695158b10b5d3a5f463da7e36d26bdf8b7ba0f8ed144

Backdoor

cf5edcff4053e29cb236d3ed1fe06ca93ae6f64f26e25117d68ee130b9bc60c8 (2021
sample)
f0b12413c9d291e3b9edd1ed1496af7712184a63c066e1d5b2bb528376d66ebc (2019
sample)

C2

123.1.170.152
207.148.102.208

POSTED IN:
Threat Analysis Group

https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop_24.html
https://chromereleases.googleblog.com/2021/09/stable-channel-update-for-desktop_30.html
https://blog.google/threat-analysis-group/


11/15/21, 11:48 AM Analyzing a watering hole campaign using macOS exploits

https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/ 7/7







