
3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 1/23

February 25, 2019

carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware

February 25, 2019 /
 Takahiro Haruyama

Summary
The Carbon Black Threat Analysis Unit (TAU) recently analyzed a series of malware
samples that utilized compiler-level obfuscations. For example, opaque predicates were
applied to Turla mosquito and APT10 ANEL. Another obfuscation, control flow flattening,
was applied to APT10 ANEL and Dharma ransomware packer.

ANEL (also referred to as UpperCut) is a RAT program used by APT10 and observed in
Japan uniquely. According to SecureWorks, all ANEL samples whose version is 5.3.0 or
later are obfuscated with opaque predicates and control flow flattening.

Opaque predicate is a programming term that refers to decision making where there is
actually only one path. For example, this can be seen as calculating a value that will
always return True. Control flow flattening is an obfuscation method where programs do
not cleanly flow from beginning to end. Instead, a switch statement is called in an infinite
loop having multiple code blocks each performing operations, as detailed later in this
paper in Figure 10.

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/
https://www.welivesecurity.com/wp-content/uploads/2018/01/ESET_Turla_Mosquito.pdf
https://jsac.jpcert.or.jp/archive/2019/pdf/JSAC2019_6_tamada_jp.pdf


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 2/23

The obfuscations looked similar to the ones explained in Hex-Rays blog, but the
introduced IDA Pro plugin HexRaysDeob didn’t work for one of the obfuscated ANEL
samples because the tool was made for another variant of the obfuscation.

TAU investigated the ANEL obfuscation algorithms then modified the HexRaysDeob code
to defeat the obfuscations. After the modification, TAU was able to recover the original
code.

The below image depicts, an example of an obfuscated function:

Figure 1: obfuscated function example (all codes cannot be displayed in a screen)

The image below shows the same function once it has been deobfuscated:

http://www.hexblog.com/?p=1248
https://github.com/RolfRolles/HexRaysDeob
https://www.carbonblack.com/wp-content/uploads/2019/02/fig1_fn_blowfish_init_before_trim.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 3/23

 

Figure 2: de-obfuscated result of the same function

Details
HexRaysDeob is an IDA Pro plugin written by Rolf Rolles to address obfuscation seen in
binaries. In order to perform the deobfuscation, the plugin manipulates the IDA
intermediate language called microcode. If you aren’t familiar with those structures (e.g,
microcode data structures, maturity level, Microcode Explorer and so on), you should read
his blog post. Rolles also provides an overview of each obfuscation technique in the same
post.

HexRaysDeob installs two callbacks when loading:

optinsn_t for defeating opaque predicates (defined as ObfCompilerOptimizer)
optblock_t for defeating control flow flattening (defined as CFUnflattener)

Opaque Predicates
Before continuing, it is important to understand Hex-Rays maturity levels. When a binary is
loaded into IDA Pro, the application will perform distinct layers of code analysis and
optimization, referred to as maturity levels. One layer will detect shellcode, another
optimizes it into blocks, another determines global variables, and so forth. The
optinsn_t::func callback function is called in maturity levels from MMAT_ZERO (microcode
does not exist) to MMAT_GLBOPT2 (most global optimizations completed). During the
callback, opaque predicates pattern matching functions are called. If the code pattern is
matched with the definitions, it is replaced with another expression for the deobfuscation.
This is important to perform in each maturity level as the obfuscated code could be
modified or removed as the code becomes more optimized. We defined two patterns for
analysis of the ANEL sample.

https://www.carbonblack.com/wp-content/uploads/2019/02/fig2_fn_blowfish_init_after_trimmed.png
http://www.hexblog.com/?p=1248


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 4/23

 

Figure 3: opaque predicates pattern matching functions switch

Pattern 1: ~(x * (x – 1)) | -2

Below is an example of one of the opaque predicates patterns used by ANEL:

 

Figure 4: opaque predicates pattern 1

https://www.carbonblack.com/wp-content/uploads/2019/02/fig3_Optimize.png
https://www.carbonblack.com/wp-content/uploads/2019/02/fig4_opaque_predicates_pat1.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 5/23

The global variable value dword_745BB58C is either even or odd, so dword_745BB58C
* (dword_745BB58C – 1) is always even. This results in  the lowest bit of the negated
value becoming 1. Thus, OR by -2 (0xFFFFFFFE) will always produce the value -1.

In this case, the pattern matching function replaces dword_745BB58C *
(dword_745BB58C – 1) with 2.

Pattern 2: read-only global variable >= 10 or < 10

Another pattern is the following:

 

Figure 5: opaque predicates pattern 2

The global variable value dword_72DBB588 is always 0 because the value is not
initialized (we can check it by is_loaded API) and has only read accesses. So the pattern
matching function replaces the global variable with 0.

There are some variants with this pattern (e.g., the variable – 10 < 0), where the
immediate constant can be different, like 9.

Data-flow tracking for the patterns

We also observed a pattern that was also using an 8-bit portion of the register. In the
following example, the variable v5 in pseudocode is a register operand (cl) in microcode.
We need to check if the value comes from the result of x * (x – 1).

 

Figure 6: register operand (pseudocode) in pattern 1

https://www.carbonblack.com/wp-content/uploads/2019/02/fig5_opaque_predicates_pat2.png
https://www.carbonblack.com/wp-content/uploads/2019/02/fig6_dataflow_pseudo_pat1.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 6/23

 

Figure 7: register operand (microcode) in pattern 1

In another example, the variable v2 in pseudocode is a register operand (ecx) in
microcode. We have to validate if a global variable with above-mentioned conditions is
assigned to the register.

 

Figure 8: register operand (pseudocode) in pattern 2

https://www.carbonblack.com/wp-content/uploads/2019/02/fig7_dataflow_microinsn_pat1.png
https://www.carbonblack.com/wp-content/uploads/2019/02/fig8_dataflow_pseudo_pat2.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 7/23

 

Figure 9: register operand (microcode) in pattern 2

Data-flow tracking code was added to detect these use-cases. The added code requires
that the mblock_t pointer information is passed from the argument of optinsn_t::func to
trace back previous instructions using the mblock_t linked list.  However, the callback
returns NULL from the mblock_t pointer if the instruction is not a top-level one. For
example, Figure 9 shows jnz (m_jnz) is a top-level instruction and setl (m_setl) is a sub-
instruction. If the setl is always sub-instruction during the optimization, we never get the
pointer. To handle this type of scenario, the code was modified to catch and pass the
mblock_t of the jnz instruction to the sub-instruction.

Control Flow Flattening
The original implementation calls the optblock_t::func callback function in
MMAT_LOCOPT (local optimization and graphing are complete) maturity level. Rolles
previously explained the unflattening algorithm in a Hex-Rays blog. For brevity I will
quickly cover some key points to understand the algorithm at a high level.

Normally the call flow graph (CFG) of a function obfuscated with control flow flattening has
a loop structure starting with yellow-colored “control flow dispatcher” like this, shown after
the First Block:

https://www.carbonblack.com/wp-content/uploads/2019/02/fig9_dataflow_microinsn_pat2.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 8/23

 

Figure 10: function obfuscated with control flow flattening

The original code is separated into the orange-colored “first block” and green-colored
flattened blocks. The analyst is then required to resolve the correct next block and modify
the destination accordingly.

The next portion of first block and each flattened block is decided by a “block comparison
variable” with an immediate value. The value of the variable is assigned to a specific
register in each block then compared in a control flow dispatcher and other condition
blocks.

 

Figure 11: block comparison variable example (blue-highlighted eax in this case)

If the variable registers for the comparison and assignment are different, the assignment
variable is called “block update variable” (which is further explained later).

The algorithm looks straightforward however some portions of the code had to be modified
in order to correctly deobfuscate the code.  This is further detailed below.

Unflattening in multiple maturity levels

https://www.carbonblack.com/wp-content/uploads/2019/02/fig10_cff_overview.png
https://www.carbonblack.com/wp-content/uploads/2019/02/fig11_cff_cmp_var.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 9/23

As previously detailed, the original implementation of the code only works in
MMAT_LOCOPT maturity level.  Rolles said this was to handle another obfuscation called
“Odd Stack Manipulations”, referred in his blog). However the unflattening of ANEL code
had to be performed in the later maturity level since the assignment of block comparison
variable heavily depends on opaque predicates.

As an example in the following obfuscated function, the v3 and v7 variables are assigned
to the block comparison variable (b_cmp). However the values are dependent on opaque
predicates results.

 

Figure 12: simple obfuscated function example

Once the opaque predicates are broken, the loop code becomes simpler:

https://www.carbonblack.com/wp-content/uploads/2019/02/fig12_cff_pseudo_op_cond_before.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 10/23

 

Figure 13: simple obfuscated function example (opaque predicates deleted)

Unflattening the code in later maturity levels like MMAT_GLBOPT1 and MMAT_GLBOPT2
(first and second pass of global optimization) caused additional problems. The unflattening
algorithm requires mapping information between block comparison variable and the actual
block number (mblock_t::serial) used in the microcode. In later maturity levels, some
blocks are deleted by the optimization after defeating opaque predicates, which removes
the mapping information.

In the example below, the blue-highlighted immediate value 0x4624F47C is assigned to
block comparison variable in the first block. The mapping can be created by checking the
conditional jump instruction (jnz) in MMAT_LOCOPT.

 

Figure 14: mapping between block comparison variable 0x4624F47C and block number 9

Additionally here is no mapping information in MMAT_GLBOPT2 because the condition
block that contains the variable has been deleted. So the next block of the first one in the
level can not be determined.

 

Figure 15: mapping failure

https://www.carbonblack.com/wp-content/uploads/2019/02/fig13_cff_pseudo_op_cond_after.png
https://www.carbonblack.com/wp-content/uploads/2019/02/fig14_cff_mapping_MMAT_LOCOPT.png
https://www.carbonblack.com/wp-content/uploads/2019/02/fig15_cff_mapping_MMAT_GLBOPT2.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 11/23

To resolve that issue, the code was written to link the block comparison variable and block
address in MMAT_LOCOPT, as the block number is changed in each maturity level. If the
code can’t determine the mapping in later maturity levels, it attempts to guess the next
block number based on the address, considering each block and instruction addresses.
The guessing is not 100% accurate however it works for the majority of obfuscated
functions tested.

 

Figure 16: the output log showing ea and block number translation

Figure 17: the result of deobfuscation in this case

Control flow handling with multiple dispatchers

Though the original implementation assumes an obfuscated function has only one control
flow dispatcher, some functions in the ANEL sample have multiple control dispatchers.
Originally the code called the optblock_t::func callback in MMAT_GLBOPT1 and
MMAT_GLBOPT2, as the result was not correct in MMAT_CALLS (detecting call
arguments). However, this did not work for functions with three or more dispatchers.
Additionally, Hex-Rays kernel doesn’t optimize some functions in MMAT_GLBOPT2 if it
judges the optimization within the level is not required. In this case, the callback is
executed just once in the implementation.

To handle multiple control flow dispatchers, a callback for decompiler events was
implemented. The code catches the “hxe_prealloc” event (according to Hex-Rays, this is
the final event for optimizations) then calls optblock_t::func callback. Typically this event
occurs a few times to several times, so the callback can deobfuscate multiple control flow

https://www.carbonblack.com/wp-content/uploads/2019/02/fig16_log_ea2number.png
https://www.carbonblack.com/wp-content/uploads/2019/02/fig17_fn_just_ret_the_value_result.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 12/23

flattenings. Other additional modifications were made to the code (e.g., writing a new
algorithm for finding control flow dispatcher and first block, validating a block comparison
variable, and so on).

After the modification, for example, the following functions with multiple control flow
dispatchers can be unflattened.

In the case of two control flow dispatchers:

 

Figure 18: example #1 with two control flow dispatchers (graph)

https://www.carbonblack.com/wp-content/uploads/2019/02/fig18_multi_dispatch1_graph.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 13/23

 

Figure 19: example #1 with two control flow dispatchers (before)

https://www.carbonblack.com/wp-content/uploads/2019/02/fig19_multi_dispatch1_before.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 14/23

 

Figure 20: example #1 with two control flow dispatchers (after)

In the case of three control flow dispatchers:

https://www.carbonblack.com/wp-content/uploads/2019/02/fig20_multi_dispatch1_after.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 15/23

 

Figure 21: example #2 with three control flow dispatchers (graph)

https://www.carbonblack.com/wp-content/uploads/2019/02/fig21_multi_dispatch2_graph.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 16/23

 

Figure 22: example #2 with three control flow dispatchers (before)

https://www.carbonblack.com/wp-content/uploads/2019/02/fig22_multi_dispatch2_before.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 17/23

 

Figure 23: example #2 with three control flow dispatchers (after)

Implementation for various conditional/unconditional jump cases

As shown in Figure 24, the original implementation supports the following two cases of
flattened blocks to find a block comparison variable for the next block (the cases are then
simplified). In the second case, block comparison variable is searched in each block of
endsWithJcc and nonJcc. If the next block is resolved, the CFG (specifically
mblock_t::predset and mblock_t::succset) and the destination of goto jump instruction are
updated.

https://www.carbonblack.com/wp-content/uploads/2019/02/fig23_multi_dispatch2_after.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 18/23

 

Figure 24: originally-supported two cases of blocks

I found and implemented three more cases in the ANEL sample. Of these, two cases are
shown below:

 

Figure 25: newly-supported two cases of blocks

The code tracks the block comparison variable in each predecessor and more (if any
conditional blocks before the predecessor) to identify each next block for unflattening.

https://www.carbonblack.com/wp-content/uploads/2019/02/fig24_original_support_case.png
https://www.carbonblack.com/wp-content/uploads/2019/02/fig25_new_support_case.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 19/23

And, in the third case that was implemented, the block comparison variables are not
assigned in the flattened blocks but rather the first blocks according to a condition. For
example, the following microcode graph shows edi is assigned to esi (the block
comparison variable in this case) in block number 7 but the edi value is assigned in block
number 1 and 2.

 

Figure 26: newly-supported case (assigned in first blocks)

If the immediate value for block comparison variable is not found in the flattened blocks,
the new code tries to trace the first blocks to obtain the value and reconnects block
number 1 and 2 as successors of block number 7, in addition to normal operations
mentioned in the original cases.

Another example function did the same processing twice:

 

Figure 27: newly-supported case (assigned in first blocks twice #1)

 

Figure 28: newly-supported case (assigned in first blocks twice #2)

In this case, the code parses the structure in first blocks then reconnects each conditional
blocks under the flattened blocks (#1 and #2 as successors of #13, #3 and #4 as
successors of #11).

https://www.carbonblack.com/wp-content/uploads/2019/02/fig26_new_support_case_first_block.png
https://www.carbonblack.com/wp-content/uploads/2019/02/fig27_new_support_case_first_block2_1.png
https://www.carbonblack.com/wp-content/uploads/2019/02/fig28_new_support_case_first_block2_2.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 20/23

Last, but not least, in all cases explained here, the tail instruction of the dispatcher
predecessor can be a conditional jump like jnz, not just goto. The modified code checks
the tail instruction and if the true case destination is a control flow dispatcher, it updates
the CFG and the destination of the instruction.

Other minor changes
The following changes are minor compared with above referenced ones.

Additional jump instructions are supported when collecting block comparison
variable candidates and mapping between the variable and ea or block number
(jnz/jle in JZCollector, jnz in JZMapper)
An entropy threshold adjustment due to check in high maturity level
Multiple block tracking for getting block comparison variable

And the last change that was introduced in regards to  the block update variable referred
in the overview. Some functions in the ANEL sample utilize this, however the assignment
is a little bit tricky:

 

Figure 29: block update variable usage with and instruction

By using the and instruction, the immediate values used in comparison look different from
assigned ones. The modified code will consider this.

Evaluation
The modified tool was tested with an ANEL 5.4.1 payload dropped from a malicious
document with the following hash (previously reported by FireEye):
3d2b3c9f50ed36bef90139e6dd250f140c373664984b97a97a5a70333387d18d

The code is able to deobfuscate 34 of 38 functions (89%). It should be noted every
function is not always obfuscated. The failure examples are:

Not yet implemented cases (e.g.,  a conditional jump of the dispatcher
predecessor’s tail instruction in goto N predecessors case, consecutive if-statement
flattened blocks)
An incorrect choice of control flow dispatcher and first block (algorithm error)

https://www.carbonblack.com/wp-content/uploads/2019/02/fig29_block_update_with_and.png
https://www.fireeye.com/blog/threat-research/2018/09/apt10-targeting-japanese-corporations-using-updated-ttps.html


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 21/23

These fixes will be prioritized for future releases.

Additionally there is a known issue with the result (e.g., the remaining loop or paradoxical
decompiled code), using the following IDAPython command in Output window:

idc.load_and_run_plugin(“HexRaysDeob”, 0xdead)

The command will instruct the code to execute only opaque predicates deobfuscation in
the current selected function.  This allows an analyst to quickly check if there are any lost
blocks by control flow unflattening. For instance, in one of the failure cases, the
pseudocode changes like this:

 

Figure 30: one failure case pseudocode (before)

https://www.carbonblack.com/wp-content/uploads/2019/02/fig30_command_before.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 22/23

 

Figure 31: one failure case pseudocode (after)

After the check, the original result can be restored by using the following command.

idc.load_and_run_plugin(“HexRaysDeob”, 0xf001)

Conclusion
The compiler-level obfuscations like opaque predicates and control flow flattening are
started to be observed in the wild by analyst and researchers. Currently malware with the
obfuscations is limited, however TAU expects not only APT10 but also other threat actors
will start to use them. Unfortunately, in order to break the techniques we have to
understand both of the obfuscation mechanisms and disassembler tool internals before we
can automate the process.

https://www.carbonblack.com/wp-content/uploads/2019/02/fig31_command_after.png


3/12/2019 Defeating Compiler-Level Obfuscations Used in APT10 Malware | Carbon Black

https://www.carbonblack.com/2019/02/25/defeating-compiler-level-obfuscations-used-in-apt10-malware/ 23/23

TAU modified the original HexRaysDeob to make it work for APT10 ANEL obfuscations.
The modified code is available publically here. The summary of the modifications is:

New patterns and data-flow tracking for opaque predicates
Analysis in multiple maturity levels, considering multiple control flow dispatchers and
various jump cases for control flow flattening

The tool can work for almost all obfuscated functions in the tested sample.   This
implementation will deobfuscate approximately 89% of encountered functions.  This
provides researchers and analyst broad tool to attack this type of obfuscation, and if it
adopted in other families.  In should be noted that the tool may not work for the updated
versions of ANEL if they are compiled with different options of the obfuscating compiler.
Testing in multiple versions is important, so TAU is looking for newer versions ANEL
samples. Please reach out to our unit if you have relevant samples or need assistance in
deobfuscating the codes.

It’s difficult to create a generic tool that can defeat every compiler-level obfuscated binary
but experience and knowledge about IDA microcode can be useful for additional new
tools.

TAGS: 
APT10

 / 
Carbon Black TAU

 / 
malware

 
 
 

https://github.com/carbonblack/HexRaysDeob

