
3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 1/16

ZLAB-YOROI February 26, 2019

The Arsenal Behind the Australian Parliament Hack
blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack

Introduction
In the past days, an infamous cyber attack targeted an high profile target on the APAC
area: the Australian Parliament House. As reported by the Australian prime minister there
was no evidence of any information theft and the attack has been promptly isolated and
contained by the Australian Cyber Security Centre (ACSC), however the attackers gained
access the ruling Liberal and National coalition parties networks as well as the opposition
Labor Party, just few months before the federal election. The first technical insight points
to sophisticate state sponsored threat actors operating in the Pacific region, but no official
statement has been been published and the speculation that China was behind the attack
is not confirmed in any way.

Contextually to the cyber incident disclosure to the public, the ACSC declassified some of
the samples involved in the parliament hack, so the Cybaze-Yoroi ZLab team decided to
investigate these artifacts to have an insight of Tools and Capabilities of part of this APT
cyber arsenal.

Technical analysis
All the analyzed files seem to be related to a post-exploitation phase, where the attacker
leveraged them to conduct data exfiltration and lateral movements. All the modules don’t
belong to an open-source post-exploitation framework, like Metasploit or Empire, but they
seem to be written from scratch using the high-level language C# on top of the .NET
Framework.

The LazyCat DLL

The firstly analyzed sample is known in the InfoSec community. The malware is named
LazyCat, mainly derived by the famous Mimikatz pentest tool.

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/
https://www.bbc.com/news/world-australia-47166590
https://cyber.gov.au/government/news/parliament-house-network-compromise/

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 2/16

Hash Sha256:
1c113dce265e4d744245a7c55dadc80199ae972a9e0ecbd0c5ced57067cf755b

Threat LazyCat

Descrip‐
tion

LazyCat DLL to perform local privilege escalation

Ssdeep 1536:kxnT6jqsSwI1ChVKt5QtkJBDbFw+IPpUuOE7qBp69bfeL:kxCpSz1CyIGrbgKuN‐
S69bA

Table 1: Information about LazyCat sample.

A first static analysis shows the library is written in .NET, with no heavy obfuscation, and
therefore easily revertable to its source-code like representation.

Figure 1: Static info about LazyCat sample.

Figure 2: Part of malware’s code.

An interesting function spotted in the code reveal its capability to inspect and gather the
contests of an arbitrary process memory, through the usage of the MiniDumpWriteDump
function belonging to DbgHelp library. The function’s result will be stored in a file just
created using “Output” string parameter as name (Figure 3).

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 3/16

Figure 3: DumpMemory function.

Moreover, the malware is able to start a “TcpRelay” service, probably with the intent of
create a route between the attacker’s network and the victim’s one and then to make the
lateral movements easier.

Figure 4: StartTcpRelay function.

Exploring source code, a particular module named “RottenPotato” emerges. It contains
some interesting functions, such as “findNTLMBytes” and “HandleMessageAuth”, related
to the post-exploitation phase in MS Windows environments. After a quick search, it is
possible to discover it is an open source tool publicly available on GitHub at
https://github.com/foxglovesec/RottenPotato.

https://github.com/foxglovesec/RottenPotato

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 4/16

Figure 5: findNTLMBytes function.

Making a diff analysis between the Github source code and the malware’s one, emerges
that some functions included into malware’s RottenPoteto are not present into public
source code. This indicates that the cyber attacker has further weaponized the code to
make it more effective for the malicious goal. At the same time, the usage of code publicly
available and open source tools makes more difficult a punctual attribution of the weapons
to a particular cyber group.

The LazyCat sample owns a specific module clerks to cover tracks, named “LogEraser”.

Figure 6: LazyCat.LogEraser module.

The main function of the module is “RemoveETWLog” which has the purpose of delete the
ETW (Event Tracing for Windows) files related to the malicious actions the attacker has
done.

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 5/16

Figure 7: Code to delete Windows log events.

As shown in the above figure, the malware scans all the records belonging to the Windows
Log and, if the record ID is equal to the given ID, it will be deleted.

At time of analysis, the sample had a middle-low detection rate, probably due to the
customization of open source code-snippets; the result of VirusTotal analysis is visible in
the following figure:

Figure 8: LazyCat detection.

The Powerkatz DLL

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 6/16

Hash Sha256: 08a85f5fe8714b4842180c12c4d192bd186500af01ee39825f6d5100a2019ebc

Threat Generic

De‐
scrip‐
tion

powerkatz DLL

Ssdeep 192:RPmh9ncu5qqTz3XQUOsnoGWX4L4Lzn066HVV1GfzacScaz/69ek4VUAVc:ucuqq‐
Tz3gUOsnoGWoL4Lz0661V1PcS5V

Table 2: key information about powerkatz (sample 2)

Hash Sha256: a95c9fe29a8ae0f618536fdf4874ede5412281e8dfb380bf1370a8d8794f787a

Threat Generic

De‐
scrip‐
tion

powerkatz DLL

Ssdeep 192:BPmh9ncu5qqTz3XQUOsnoGWX4L4Lan066HVV1GfzacScazu69ek4VUf:ecuqq‐
Tz3gUOsnoGWoL4L00661V1PcS57

Table 3: key information about powerkatz (sample 3)

Despite the different hashes, the malicious functionalities within the DLL are the
substantially the same, the attacker simply modified some strings and variables names,
probably to evade av detection. The similarity between the samples is shown in Figure 9,
where is possible to see the differences are minimal and they don’t impact the overall
behavior.

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 7/16

Figure 9: Diff analysis between the samples.

The decompiled source code of the main class also confirms this similarity, i.e. inside the
 AsyncTask class in Figure 10. For this reason we will reference a single sample in the
following paragraphs.

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 8/16

Figure 10: Comparison between AsyncTask class of both samples.

The sample is composed by few classes and functions, one of them seems a good
starting point for our analysis: the “StartNew”. As intended by its name, it is able to start a
new asynchronous task on the victim’s machine, executing the task object passed as _app
parameter. Once the task is started, the function waits its completion using repeated 1-sec
sleeps cycle, and then it returns a valid code status to the function caller. Probably this
module can be used in conjunction with some other functions, belonging to other pieces of
the implant, to perform malicious actions in background, making all more stealth.

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 9/16

Figure 11: Source code of the StartNew function.

The name of this sample, Powerkatz, reminds to a tool available on GitHub (
https://github.com/digipenguin/powerkatz) but even if the name is the same, the code is
different. As the previous sample, also the detection rate of this sample, 28 of 70, is not
high, as shown in Figure 11.

https://github.com/digipenguin/powerkatz

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 10/16

Figure 12: Samples detection rate.

The Recon Module

Hash Sha256:
b63ae455f3deaca297b616dd3356063112cfda6e6c5434c407781461ae69361f

Threat generic

Descrip‐
tion

port scanner DLL

Ssdeep 192:P4NjWnNsFM+5Ic8l5OG/i1/5gK0kbhdeODo3:P4NWnuf5Ic8l21iK0IhDS

Table 4: key information about port scanner sample

Like other samples, it is written C# programming language too. It has two main classes
named “PortScanner” and “ReconCommonFuncs”, providing a direct clue of the actions
enabled by this part of the implant.

Figure 13: Sample’s classes.

Reading the first one’s code, in fact, the “portScan” contains an Integer array listing few of
the well-known network ports, covering major local network services such as HTTP,
TELNET, RDP, POP, IMAP, SSH, SQL .. .

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 11/16

Figure 14: Array containing the port numbers to scan.

For each declared port, the function is able to perform a TCP scan, trying to connect to it.
If there is an available service behind the port, it responds with its own service banner,
which will be stored into a “StringBuilder” object. The malware concatenates the
responses from all the scanned ports and finally it writes the results in a file using the
“ReconCommonFuncs” class.

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 12/16

Figure 15: Code to perform port scan.

Figure 16: Usage of TcpClient C# class to perform scan.

The “ReconCommonFuncs” class, instead, provides some utility functions, such as
“Append” or “GZipAndBase64”, which are self-explanatory.

Figure 17: Functions belonging to ReconCommonFuncs class.

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 13/16

The Powershell Agent

Hash Sha256: 1087a214ebe61ded9f61de81999868f399a1105188467e4e44182c02ee264a19

Threat generic

De‐
scrip‐
tion

OfficeCommu DLL

Ssdeep 3072:JbMNa4pc+32UhnsZFM7iCHF6aZ4oFlSAsBycrxAqSPWy3it5r2py2jYN/IroVbpm:Jb‐
Wa4xmZcl9fFlSBtuZWQ6qp8DrhFJ

Table 5: key information about the sample

The last sample analyzed by Yoroi ZLab – Cybaze is called “OfficeCommu.dll”, probably
with the intent of being confused with the legit Office Communication module available on
most Windows machines.

Also this sample is a sort of utility, probably used in the post-exploitation phase, with the
 purpose of creating a “PowershellAgent”, a stager component of the implant able to parse
and execute Powershell commands.

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 14/16

Figure 18: PowershellAgent’s main function.

Conclusion
The analyzed samples show the attackers choose a multi-modular approach for the
development of their cyber-arsenal, realizing a complex implant leveraging an ecosystem
of libraries providing proper functionalities to conduct advanced, and offensive, cyber
operations.

Despite these functions and libraries does not appear to contain any zero-day exploit or
techniques, the detection of these modules within a high value perimeter such as the
Australian Parliament provides important indication on cyber arsenal development
strategies of this threat actor, revealing the abuse and the customization of open-source
PenTest tools and proof of concept is one of the preferred way the attackers used to build
their arsenal, possibly due to the lower the “time-to-market” and resources required to
write it, without impacting its effectiveness and dangerousness.

Showing also, how these supposedly “known” techniques and tools can be easily
repackaged in evasive and silent implants, capable to bypass the traditional kinds of
security boundaries.

Indicator of Compromise
Hashes

1c113dce265e4d744245a7c55dadc80199ae972a9e0ecbd0c5ced57067cf755b
08a85f5fe8714b4842180c12c4d192bd186500af01ee39825f6d5100a2019ebc
a95c9fe29a8ae0f618536fdf4874ede5412281e8dfb380bf1370a8d8794f787a
b63ae455f3deaca297b616dd3356063112cfda6e6c5434c407781461ae69361f
1087a214ebe61ded9f61de81999868f399a1105188467e4e44182c02ee264a19

Yara Rules

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 15/16

import "pe"
rule LazyCat_22_02_2019{

 meta:
 description = "Yara Rule for LazyCat"
 author = "Cybaze Zlab_Yoroi"
 last_updated = "2019_02_22"
 tlp = "white"
 category = "informational"

 strings:
 $a = "LazyCat"
 $b = {48 74 74 70 53 65 72 76 65 72 4C 6F}
 $c = {0A 58 73 9E 00 00 0A 2A 0F 00 28 B0}
 $d = {80 A1 4E CD 13 56 80 9F}

 condition:
 pe.number_of_sections == 3 and pe.machine == pe.MACHINE_I386 and
(($b and $c and $d) or ($a))
}

import "pe"
rule Powerkatz_22_02_2019{

 meta:
 description = "Yara Rule for Powerkatz"
 author = "Cybaze Zlab_Yoroi"
 last_updated = "2019_02_22"
 tlp = "white"
 category = "informational"

 strings:
 $a1 = {C7 E8 3F}
 $b1 = {7C 43 3D}
 $a2 = {A4 58 24 8A 3A 36 8D 4B 89 15 15 33 CE 1D 1D F2}
 $b2 = {A9 B5 2D 2A 00 47 AC 44 97 7A F5 D0 04 09 75 13}

 condition:
 pe.number_of_sections == 3 and pe.machine == pe.MACHINE_I386 and
(($a1 or $b1) and ($a2 or $b2))
}

import "pe"
rule Office_Commu_22_02_2019{

 meta:
 description = "Yara Rule for Office_Commu"
 author = "Cybaze Zlab_Yoroi"
 last_updated = "2019_02_22"
 tlp = "white"
 category = "informational"

 strings:
 $a = {61 E0 4B A1 1D C6 2F A7}
 $b = {8F D2 A9 E3 70 5A B4 D9 92 1D BA}
 $c = "Kill"
 $d = {DB 71 F5 4C B0 29 27 20 B8}
 $e = "get_IsAlive"

 condition:
 pe.number_of_sections == 3 and all of them

3/5/2019 The Arsenal Behind the Australian Parliament Hack – Yoroi Blog

https://blog.yoroi.company/research/the-arsenal-behind-the-australian-parliament-hack/ 16/16

}

import "pe"
rule eba_sample_22_02_2019{

 meta:
 description = "Yara Rule for 1eba_sample"
 author = "Cybaze Zlab_Yoroi"
 last_updated = "2019_02_22"
 tlp = "white"
 category = "informational"

 strings:
 $a = {4A 02 73 29 00 00 0A 7D}
 $b = {F8 01 7A 00 1B 00 54 28}
 $c = "portScan"
 $d = {C9 45 99 B9 AA AD C7 46}
 $e = "parseHost"

 condition:
 pe.number_of_sections == 3 and all of them
}

This blog post was authored by Davide Testa, Antonio Farina and Luca Mella of Cybaze-
Yoroi Z-LAB

