
Get Updates
Sign up to receive the latest news, cyber
threat intelligence and research from Unit
42. 

Business Email

Submit

Select a Category

Select a Month

Tweet

33

POSTED BY: Josh Grunzweig and Jen Miller-Osborn on February 4, 2016 1:00 PM

FILED IN: Malware, Threat Prevention, Unit 42 
TAGGED: Skype, T5000, T9000, Trojans

Most custom backdoors used by advanced attackers have limited functionality. They evade

detection by keeping their code simple and flying under the radar. But during a recent

investigation we found a backdoor that takes a very different approach. We refer to this

backdoor as T9000, which is a newer variant of the T5000 malware family, also known as Plat1.

In addition to the basic functionality all backdoors provide, T9000 allows the attacker to capture

encrypted data, take screenshots of specific applications and specifically target Skype users.

The malware goes to great lengths to identify a total of 24 potential security products that may

be running on a system and customizes its installation mechanism to specifically evade those

that are installed. It uses a multi-stage installation process with specific checks at each point to

identify if it is undergoing analysis by a security researcher.

The primary functionality of this tool is to gather information about the victim. In fact, the author

chose to store critical files dropped by the Trojan in a directory named “Intel.” T9000 is pre-

configured to automatically capture data about the infected system and steal files of specific

types stored on removable media.

We have observed T9000 used in multiple targeted attacks against organizations based in the

United States. However, the malware’s functionality indicates that the tool is intended for use

against a broad range of users. In this report, we share an analysis of each stage in T9000’s

execution flow. Stay tuned for a future report in which we will provide more detail on how this

tool has been used and the infrastructure we have identified as part of our analysis.

The entire execution flow of the malware is represented in the following diagram:

As this malware uses a multistage execution flow, we’ll discuss each stage individually.

The sample of T9000 used in this analysis was originally dropped via a RTF file that contained

exploits for both CVE-2012-1856 and CVE-2015-1641. When triggered, an initial shellcode

stage is run, which is responsible for locating and executing a secondary shellcode stub. The

second stage shellcode reads the initial RTF document and seeks to the end of the file, using

the last four bytes as the size of the embedded payload.

With the payload size confirmed, the shellcode will create a file in the %TEMP% folder using a

temporary filename. The shellcode will decrypt and subsequently load the embedded payload in

the RTF file. The decrypted payload is written to the temporary file and executed using

WinExec. The shellcode then attempts to decrypt an embedded decoy document with the same

algorithm used to decrypt the payload, which it will save to %TEMP%\~tmp.doc path. This file is

opened using the following command:

cmd /C %TEMP%\~tmp.doc

However, this particular sample did not contain a decoy document.

When this temporary file is initially executed, it will begin by creating the following mutex to

231

LikeLike

MORE →

Palo Alto Networks News of the
Week – May 14
posted by Anna Lough on May 14, 2016

Japan’s Cybersecurity Guidelines
for Business Leadership –
Changing the Japanese Business
Mindset and Potentially Raising the
Global Bar
posted by Mihoko Matsubara on May 13, 2016

A Word on Endpoint Security (For
Those In the Know)
posted by Sebastian Goodwin on May 13, 2016

Winning Together in the
Commercial Market
posted by Ron Myers on May 13, 2016

Palo Alto Networks Signs
Coordinated Vulnerability
Disclosure Manifesto, Showcasing
Industry’s Contributions to EU
Cybersecurity Efforts
posted by Rene Bonvanie on May 12, 2016

MORE →

    

English  1.866.320.4788 Support Resources Research Search

http://paloaltonetworks.com/
http://researchcenter.paloaltonetworks.com/
http://applipedia.paloaltonetworks.com/
http://researchcenter.paloaltonetworks.com/threat-vault/
https://www.paloaltonetworks.com/resources/research.html
http://researchcenter.paloaltonetworks.com/tools/
https://support.paloaltonetworks.com/
https://www.paloaltonetworks.com/resources.html
http://researchcenter.paloaltonetworks.com/
http://twitter.com/share
http://researchcenter.paloaltonetworks.com/author/josh-grunzweig/
http://researchcenter.paloaltonetworks.com/author/jen-miller-osborn/
http://researchcenter.paloaltonetworks.com/malware-2/
http://researchcenter.paloaltonetworks.com/threat-prevention-2/
http://researchcenter.paloaltonetworks.com/unit42/
http://researchcenter.paloaltonetworks.com/tag/skype/
http://researchcenter.paloaltonetworks.com/tag/t5000/
http://researchcenter.paloaltonetworks.com/tag/t9000/
http://researchcenter.paloaltonetworks.com/tag/trojans/
http://researchcenter.paloaltonetworks.com/wp-content/uploads/2016/02/T9000-1.png
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1856
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1641
http://researchcenter.paloaltonetworks.com/wp-content/uploads/2016/02/T9000-2.png
http://researchcenter.paloaltonetworks.com/wp-content/uploads/2016/02/T9000-3.png
http://researchcenter.paloaltonetworks.com/wp-content/uploads/2016/02/T9000-4.png
http://researchcenter.paloaltonetworks.com/wp-content/uploads/2016/02/T9000-5.png
http://researchcenter.paloaltonetworks.com/wp-content/uploads/2016/02/T9000-6.png
http://researchcenter.paloaltonetworks.com/wp-content/uploads/2016/02/T9000-7.png
http://researchcenter.paloaltonetworks.com/wp-content/uploads/2016/02/T9000-8.png
http://researchcenter.paloaltonetworks.com/wp-content/uploads/2016/02/T9000-9.png
http://researchcenter.paloaltonetworks.com/wp-content/uploads/2016/02/T9000-10.png
http://researchcenter.paloaltonetworks.com/wp-content/uploads/2016/02/T9000-11.png
/
/government
/partners
/unit42
/technical-documentation
/endpoint-2
http://www.addtoany.com/subscribe?linkname=Palo Alto Networks Blog&linkurl=http%3A%2F%2Fresearchcenter.paloaltonetworks.com%2Ffeed%2F
http://researchcenter.paloaltonetworks.com/archives/
http://researchcenter.paloaltonetworks.com/2016/05/palo-alto-networks-news-of-the-week-may-14/
http://researchcenter.paloaltonetworks.com/author/anna-lough/
http://researchcenter.paloaltonetworks.com/2016/05/japans-cybersecurity-guidelines-for-business-leadership-changing-the-japanese-business-mindset-and-potentially-raising-the-global-bar/
http://researchcenter.paloaltonetworks.com/author/mihoko-matsubara/
http://researchcenter.paloaltonetworks.com/2016/05/a-word-on-endpoint-security-for-those-in-the-know/
http://researchcenter.paloaltonetworks.com/author/sebastian-goodwin/
http://researchcenter.paloaltonetworks.com/2016/05/winning-together-in-the-commercial-market/
http://researchcenter.paloaltonetworks.com/author/ron-myers/
http://researchcenter.paloaltonetworks.com/2016/05/palo-alto-networks-signs-coordinated-vulnerability-disclosure-manifesto-showcasing-industrys-contributions-to-eu-cybersecurity-efforts/
http://researchcenter.paloaltonetworks.com/author/rene/
http://researchcenter.paloaltonetworks.com/archives/


ensure only one instance of the malware is running at a given time:

820C90CxxA1B084495866C6D95B2595xx1C3

It continues to perform a number of checks for installed security products on the victim machine.

The following security platforms are queried by checking entries within the HKLM\Software\

registry path:

Sophos

INCAInternet

DoctorWeb

Baidu

Comodo

TrustPortAntivirus

GData

AVG

BitDefender

VirusChaser

McAfee

Panda

Trend Micro

Kingsoft

Norton

Micropoint

Filseclab

AhnLab

JiangMin

Tencent

Avira

Kaspersky

Rising

360

These security products are represented by a value that is binary AND-ed with any other

products found. The following numbers represent each respective security product.

0x08000000 : Sophos

0x02000000 : INCAInternet

0x04000000 : DoctorWeb

0x00200000 : Baidu

0x00100000 : Comodo

0x00080000 : TrustPortAntivirus

0x00040000 : GData

0x00020000 : AVG

0x00010000 : BitDefender

0x00008000 : VirusChaser

0x00002000 : McAfee

0x00001000 : Panda

0x00000800 : Trend Micro

0x00000400 : Kingsoft

0x00000200 : Norton

0x00000100 : Micropoint

0x00000080 : Filseclab

0x00000040 : AhnLab

0x00000020 : JiangMin

0x00000010 : Tencent

0x00000004 : Avira

0x00000008 : Kaspersky

0x00000002 : Rising

0x00000001 : 360

So, for example, if both Trend Micro and Sophos were discovered on a victim machine, the

resulting value would be 0x08000800. This numerical value is written to the following file:

%APPDATA%\Intel\avinfo

The malware proceeds to drop the following files to the %APPDATA%\Intel directory:



Additionally, the following two files are written to the Data directory:

The following table provides a description of each file dropped:

File Name Description

~1 Debug information about files used by malware.

avinfo Installed security products on victim.

hccutils.dll Malicious DLL. Loads ResN32.dll.

hccutils.inf Malicious INF file. Points to hccutils.dll.

hjwe.dat Encrypted core of malware family.

igfxtray.exe Legitimate Microsoft executable. Loads hccutils.dll.

qhnj.dat Encrypted plugin. Hooks a number of functions and logs results.

QQMgr.dll Malicious DLL. Sets persistence via Run registry key.

QQMgr.inf Malicious INF file. Points to QQMgr.dll

ResN32.dat String pointing to path of encrypted core of malware.

ResN32.dll Malicious DLL. Decrypts, decompresses, and loads core malware.

tyeu.dat Encrypted plugin. Takes screenshots and collects Skype information.

vnkd.dat Encrypted plugin. Finds files on removable drives on victim machine.

dtl.dat Encrypted configuration information.

glp.uin Plugin configuration information.

You’ll notice that QQMgr* files are not listed in the original malware execution flow diagram. In

the event the victim is running any of the following operating system versions, as well as either

Kingsoft, Filseclab, or Tencent security products, the malware will be installed using an

alternative method.

Windows 2008 R2

Windows 7

Windows 2012

Windows 8

In such a situation, the malware will find and run the built-in Microsoft Windows

InfDefaultInstall.exe program, which will install a DLL via an INF file. Should Tencent be



installed, the malware will execute the InfDefaultInstall.exe program with an argument of

‘QQMgr.inf’. Otherwise, it will use ‘hccutils.inf’ as an argument.

QQMgr.inf will install the QQMgr.dll, while hccutils.inf will install the hccutils.dll library. QQMgr.dll

will set the following registry key:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\Eupdate –

%APPDATA%\Intel\ResN32.dll

The QQMgr.dll file has the following debug string found within it:

H:\WORK\PROJECT\InfInstallBypassUAC\Release\BypassUAC.pdb

The hccutils.dll file is described later within this post.

After the malware drops the required files, by default the malware will spawn

%APPDATA%\Intel\igfxtray.exe in a new process, which begins the second stage of the

malware’s execution.

The igfxtray.exe is a legitimate Microsoft Windows executable that sideloads the malicious

hccutils.dll DLL file. This DLL has the following debug string embedded within it:

D:\WORK\T9000\hccutils_M4\Release\hccutils.pdb

Upon loading this malicious DLL, the malware will initially perform the same queries for security

products that were witnessed in stage 1.

Three separate techniques for starting stage 3 are used depending on the properties of the

victim.

The first technique is used if the victim meets the following criteria:

Microsoft Windows 8 / Windows Server 2012 R2

DoctorWeb security product installed

For this situation, the following registry key is set:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\update – %SYSTEM%\rundll32.exe

%APPDATA\Intel\ResN32.dll Run

This ensures that the ResN32.dll library will be run using the ‘Run’ exported function whenever

the machine is rebooted.

The second technique is used if the victim meets any of the following sets of criteria:

Microsoft Windows 8 / Windows Server 2012 R2

Not running Kingsoft, Tencent, or DoctorWeb security products

Microsoft Windows XP or lower

No security products installed, or running any of the following:

Sophos

GData

TrendMicro

AhnLab

Kaspersky

In these situations, the following persistence technique is used.

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs –

%APPDATA%\Intel\ResN32.dll

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\LoadAppInit_DLLs – 0x1

Setting these registry keys both enables the AppInit_DLL functionality, and ensures that every

user mode process that is spawned will load the ResN32.dll library. More information about this

can be found here.

The third technique is used in any other situation. When this occurs, the malware will first

identify the explorer.exe process identifier. It proceeds to inject the ResN32.dll library into this

process.

At this point, the third stage of the malware family is loaded.

The third stage begins when the ResN32.dll file begins operating. This file contains the

following debug string:

https://attack.mitre.org/wiki/DLL_side-loading
https://msdn.microsoft.com/en-us/library/windows/desktop/dd744762(v=vs.85).aspx


D:\WORK\T9000\ResN_M2\Release\ResN32.pdb

The ResN32.dll library begins by spawning a new thread that is responsible for the majority of

the capabilities built into this sample. This thread begins by checking the operating system

version, and once again runs a query on the various security products installed on the victim

machine.

Under certain conditions, the following registry key is set, ensuring persistence across reboots:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\update –

c:\windows\system32\rundll32.exe %APPDATA\Intel\ResN32.dll Run

Following this, a new thread is created that is responsible for deleting previously written files.

This thread creates the following mutex:

Global\\deletethread

It proceeds to attempt to delete the following files in an infinite loop until said files have been

deleted:

%STARTUP%\hccutils.dll

%STARTUP%\hccutil.dll

%STARTUP%\igfxtray.exe

The ResN32.dll malware proceeds to read in the ResN32.dat file that was previously written to

disk. This file contains a path to the hjwe.dat file, which is subsequently read in.

The data within the hjwe.dat file is decrypted using the RC4 algorithm, and subsequently

decompressed using the LZMA algorithm. The following script can be used to decrypt the

hjwe.dat file, along with the plugins that will be discussed later.

After this file has been decrypted and decompressed, it is written to a file in the %TEMP%

directory with a file prefix of ‘____RES’. This file, which contains a Windows DLL, is then loaded

into the current process. After the malicious library has been loaded, the previously written

temporary file is deleted. This begins the last stage of the malware, which will load the core of

the malware family.

Once the decrypted and decompressed hjwe.dat file is loaded, it begins by checking its parent

process against the following list. If the parent process matches the following blacklist, the

malicious DLL will exit without performing any malicious activities.

winlogon.exe

csrss.exe

logonui.exe

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

import sys, pylzma
from base64 import *
from binascii import *
from struct import *
 
def rc4( data , key ):
  S = range(256)
  j = 0
  out = []
  for i in range(256):
    j = (j + S[i] + ord( key[i % len(key)] )) % 256
    S[i] , S[j] = S[j] , S[i]
  i = j = 0
  for char in data:
    i = ( i + 1 ) % 256
    j = ( j + S[i] ) % 256
    S[i] , S[j] = S[j] , S[i]
    out.append(chr(ord(char) ^ S[(S[i] + S[j]) % 256]))
  return ''.join(out)
 
f = open(sys.argv[1], 'rb')
fd = f.read()
f.close()
 
bytes_0_4, bytes_4_8, bytes_8_12, bytes_12_16 = unpack("<IIII", fd[
if bytes_0_4 == 0xf7e4aa65:
  length = bytes_8_12
  if len(fd)-16 != length:
    print "[*] Possible error reading in length of data."
  key_size = 260
  key = fd[16:16+key_size]
  data = fd[16+key_size:]
  decrypted = rc4(data, key)
  decompressed = pylzma.decompress_compat(decrypted)
  f1 = open(sys.argv[1]+".decompressed", 'wb')
  f1.write(decompressed)
  f1.close
  print "[+] Wrote %s" % (sys.argv[1]+".decompressed")



ctfmon.exe

drwtsn32.exe

logonui.exe

explore.exe

System

Dbgview.exe

userinit.exe

lsass.exe

wmiprvse.exe

services.exe

inetinfo.exe

avp.exe

Rtvscan.exe

The malware proceeds to collect the username of the victim, as well as the operating system

version. It then compares its parent process against the following list of executables:

winlogon.exe

csrss.exe

logonui.exe

ctfmon.exe

drwtsn32.exe

logonui.exe

System

Dwm.exe

QQPCRTP.exe

Tasking.exe

Taskhost.exe

Taskmgr.exe

Dbgview.exe

suerinit.exe

lsass.exe

wmiprvse.exe

services.exe

inetinfo.exe

avp.exe

Rtvscan.exe

Notice the repeated check for the ‘logonui.exe’, as well as the overlap with the previous parent

executable check, which implies sloppiness by the malware author.

After these checks are performed, the following mutex is created.

Global\\{A59CF429-D0DD-4207-88A1-04090680F714}

The following folders are then created:

utd_CE31

XOLOADER

Update

The path of these folders is determined by the version of Microsoft Windows running. The

following possibilities exist:

%ALLUSERSPROFILE%\Documents\My Document\

%PUBLIC%\Downloads\Update\

At this point, the malware will read in the dtl.dat file, which contains configuration data. Data

contained with this file starting at offset 0x20 is xor-encrypted using a single-byte key of 0x5F.

The following script can be used to extract the IP address and port for the C2 server from this

file.



The malware will then read in and parse the included plugin configuration information, which is

found within the glp.uin file that was previously dropped. These included plugins are encrypted

and compressed using the same method witnessed by the hjwe.dat file previously. The

previously included script can be used to decrypt and decompress the following three plugin

files:

tyeu.dat

vnkd.dat

qhnj.dat

These three plugins are subsequently loaded after being decrypted and decompressed. An

overview of these plugins can be found later in this post.

The malware proceeds to create the following event:

Global\\{34748A26-4EAD-4331-B039-673612E8A5FC}

Additionally, the following three mutexes are created:

Global\\{3C6FB3CA-69B1-454f-8B2F-BD157762810E}

Global\\{43EE34A9-9063-4d2c-AACD-F5C62B849089}

Global\\{A8859547-C62D-4e8b-A82D-BE1479C684C9}

The malware will spawn a new thread to handle network communication. The following event is

created prior to this communication occurring:

Global\\{EED5CA6C-9958-4611-B7A7-1238F2E1B17E}

The malware includes proxy support in the event that the victim is behind a web proxy. Network

traffic occurs over a binary protocol on the port specified within the configuration. Traffic is xor-

encrypted with a single-byte key of 0x55 in an attempt to bypass any network security products

that may be in place. Once decrypted, the following traffic is sent by the malware.

Figure 1: Decrypted data sent by malware

As we can see from the above image, the malware will send out an initial beacon, followed by

various collected information from the victim machine. The following information is exfiltrated:

Installed security products

System time

Build Number

CPU Architecture (32-bit/64-bit)

MAC Address

IP Address

Hostname

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

from struct import *
import sys, socket
 
def int2ip(addr):                                                              
  return socket.inet_ntoa(pack("!I", addr))       
 
config_file = sys.argv[1]
f = open(config_file, 'rb')
fd = f.read()
f.close()
 
decrypted = ""
for x in fd[32:]:
  decrypted += chr(ord(x) ^ 0x5f)
 
port = unpack("<I", decrypted[4:8])[0]
ip = int2ip(unpack(">I", decrypted[8:12])[0])
 
print "IP Address : %s" % ip
print "Port       : %d" % port



Username

Parent executable name

Plugin configuration information

The malware is configured to receive a number of commands. The following command

functionalities have been identified.

Command Description

DIR Directory listing

LIR Drive listing

RUN Execute command (Either interactively or not)

CIT Send command to interactively spawned command

CFI Kill interactively spawned process

DOW Download file

UPL Upload file

DEL Delete file

DTK Retrieve statistics for file

ERR Null command

Additionally, the following commands have been identified, however, their functionalities have

yet to be fully discovered.

PNG

PLI

PLD

FDL

OSC

OSF

SDA

QDA

TFD

SDS

SCP

FMT

STK

CRP

When this plugin is called with the default exported function, it will create the following mutex:

{CE2100CF-3418-4f9a-9D5D-CC7B58C5AC62}

When called with the SetCallbackInterface function export, the malicious capabilities of the

plugin begin. The plugin begins by collecting the username of the running process, and

determining if it is running under the SYSTEM account. If running as SYSTEM, the plugin will

associate the active desktop with the plugin’s thread.

The plugin proceeds to create the following named event:

Global\\{EED5CA6C-9958-4611-B7A7-1238F2E1B17E}

Multiple threads are then spawned to handle various actions. The first thread is responsible for

taking a screenshot of the desktop of the victim machine. This screenshot data is both

compressed and encrypted using a single-byte xor key of 0x5F. This data is written to one of the

following files:

%PUBLIC%\Downloads\Update\S[random].dat

%ALLUSERSPROFILE%\Documents\My Document\S[random].dat

The random data is generated via the current system time. Additionally, when a screenshot is

written, one of the following log files has data appended to it:

%PUBLIC%\Downloads\Update\Log.txt

%ALLUSERSPROFILE%\Documents\My Document\Log.txt



Figure 2: Example data found within Log.txt file

A second thread is responsible for monitoring the foreground window every 20 seconds. The

thread will target the window names set within the plugin configuration. In this particular

instance, the malware will target the ‘notepad’ process.

When this process is discovered to be running in the foreground window, the malware will take a

screenshot of this window. The data is compressed and encrypted using a single-byte xor key of

0x5F. This data is written to one of the following files:

%PUBLIC%\Downloads\Update\W[random].dat

%ALLUSERSPROFILE%\Documents\My Document\W[random].dat

Like the previous thread, this one attempts to write another log file to the disk. However, due to a

bug within the code of this plugin, the malware author attempts to append the

‘C:\\Windows\\Temp\\Log.txt’ string to the path, resulting in an inaccessible file path. In the event

this bug did not exist, the following example data would be written:

08:37:49 2000 [4] PrintKeyTitleWnd: ===>> Process ID : 2000

The third and final thread spawned by this plugin is responsible for collecting information from

the Skype program. The malware will use the built-in Skype API to accomplish this. This only

takes places if both Skype is running and the victim is logged into Skype. It makes calls to the

following functions:

SkypeControlAPIDiscover

SkypeControlAPIAttach

When hooking into the Skype API, the victim is presented with the following dialog:

Figure 3: Skype API access request

The victim must explicitly allow the malware to access Skype for this particular functionality to

work. However, since a legitimate process is requesting access, the user may find him- or

herself allowing this access without realizing what is actually happening.

Once enabled, the malware will record video calls, audio calls, and chat messages. Audio and

video files are stored in the following folder:

%APPDATA%\Intel\Skype

Temporary audio and video files are stored within the audio and video sub-folders respectively.

After a call is finished, this data is compressed and encrypted using the same techniques

previously witnessed. These files are stored in randomly named .dat files within the Skype

folder.

When decrypted, we can see that the malware periodically takes images of the video calls.

Audio calls are stored as .wav files.



Figure 4: A lonely malware reverser is captured on video by the malicious plugin

The original name for this plugin is ‘CaptureDLL.dll’. This is aptly named, as we see that this

plugin has the following functionality:

Capture full desktop screenshots

Capture window screenshots of targeted processes

Capture Skype audio, video, and chat messages

The vnkd.dat plugin has the following debug path, leading us to believe that the original name

for this plugin is ‘FlashDiskThief’:

e:\WORK\Project\T9000\Windows\Target\FlashDiskThief.pdb

When loaded with the default DllEntryPoint exported function, it will create the following mutex:

Global\\{6BB1120C-16E9-4c91-96D5-04B42D1611B4}

Like the other plugins associated with this malware, the majority of the functionality for this

malware resides within the SetCallbackInterface exported function. This function spawns a new

thread that begins by registering a new window with a class name and window name of ‘xx’.

The plugin proceeds to iterate through all connected drives on the system, looking for

removable drives.

Figure 5. Plugin check for removable drives

Should a removable drive be discovered, the plugin will seek any files residing on this device

based on the plugin’s configured list. In this particular instance, the malware will seek out the

following file types:

*.doc

*.ppt

*.xls

*.docx

*.pptx

*.xlsx

If one of these file types is found, the malware will create a copy of the file in one of the

following paths:

%PUBLIC%\Downloads\Update\D[random].tmp

%ALLUSERSPROFILE%\Documents\My Document\D[random].tmp

The data found within this file is encrypted using a single-byte xor key of 0x41. The file header

structure, with the underlying data still encrypted, can be seen below.



Figure 6: File structure prior to decryption

Figure 7: File structure post decryption

This concludes the functionality of the vnkd.dat plugin, or FlaskDiskThief as it’s known by the

malware’s author. While specific in nature, this plugin allows attackers to collect files being

passed around from one machine to another via removable drives.

This particular plugin appears to have an original filename of ‘kplugin.dll’ due to debugging

information found within the file. The qhnj.dat plugin is responsible for hooking a number of

common Microsoft Windows API calls, and logging the results.

The following functions are hooked by this plugin:

ImmGetCompositionStringA

ImmGetCompositionStringW

CreateFileW

DeleteFileW

CopyFileExW

MoveFileWithProgressW

CreateDirectoryW

CreateDirectoryExW

RemoveDirectoryW

GetClipboardData

CryptEncrypt

CryptDecrypt

The plugin is most likely hooking the ImmGetCompositionString* functions in order to collect

information about Unicode characters on the victim machine, such as Chinese, Japanese, and

Korean.

Hooking the various file and directory operations allows the malware to log what file changes

are occurring on the system. When a file is created, copied, moved, or deleted on the system,

the malware will check the directory of said file against the following blacklist:

\\\\.\\

:\\program files\\

\\AppData\\

\\temporary internet files\\

\\application data\\

\\Local Settings\\

\\cookies\\

\\temp\\

\\history\\

Additionally, the filename is compared against the ‘.tmp’ extension to ensure a temporary file is

ignored.

Should the file meet the required criteria, this data is logged. Additionally, all folder modifications



and clipboard data are logged as well.

The Crypt* functions allow the malware to collect sensitive encrypted data sent to and from the

victim machine. This is especially useful when viewing network traffic, allowing the attackers to

potentially gain access to remote systems used by the victim.

All of the data logged by the qhnj.dat plugin file is stored in one of the following file paths. Data

is encrypted using a single-byte XOR key of 0x79.

%PUBLIC%\Downloads\Update\uai[random].tmp

%ALLUSERSPROFILE%\Documents\My Document\uai[random].tmp

This last plugin allows the attackers to record important actions taken by the victim, which in turn

may allow them to gain additional access as well as insight into the victim’s actions.

T9000 appears to be the latest version of this Trojan, which has been partially exposed in

previous reports. In 2013, Cylance published a report on a group they named “Grand Theft Auto

Panda”, which includes some details on the T5000 version of this Trojan. FireEye researchers

also noted that the malware was used in an attack in 2014 using a lure related to the

disappearance of Malaysian flight MH370.

The author of this backdoor has gone to great lengths to avoid being detected and to evade the

scrutiny of the malware analysis community. We hope that sharing the details of how this tool

works as well as the indicators in the section below will help others defend themselves against

attacks using this tool.

In a future report, we will detail the infrastructure used by the variants of the malware we have

identified and discuss the methods attackers use to infect systems with it.

Palo Alto Networks customers are protected from T9000/T5000 attacks through our next-

generation security platform, including the following.

Threat Prevention signatures for the software vulnerabilities listed in this report are

available to detect the exploit files during delivery.

Traps is capable of preventing exploitation of the vulnerabilities exploited to install T9000.

WildFire classifies all of the malware described in this report as malicious.

Anti-malware signatures for the files listed in this report.

AutoFocus users can identify the malware discussed in this report with the T5000 tag

Hashes

RTF File, d5fa43be20aa94baf1737289c5034e2235f1393890fb6f4e8d4104565be52d8c

QQMGr.dll, bf1b00b7430899d33795ef3405142e880ef8dcbda8aab0b19d80875a14ed852f

QQMGR.inf, ace7e3535f2f1fe32e693920a9f411eea21682c87a8e6661d3b67330cd221a2a

ResN32.dat, aa28db689f73d77babd1c763c53b3e63950f6a15b7c1a974c7481a216dda9afd

ResN32.dll, 1cea4e49bd785378d8beb863bb8eb662042dffd18c85b8c14c74a0367071d9a7

hqwe.dat, bb73261072d2ef220b8f87c6bb7488ad2da736790898d61f33a5fb7747abf48b

hqwe.dat.decrypted,

7daf3c3dbecb60bee3d5eb3320b20f2648cf26bd9203564ce162c97dcb132569

hccutils.dll, 3dfc94605daf51ebd7bbccbb3a9049999f8d555db0999a6a7e6265a7e458cab9

hccutils.inf, f05cd0353817bf6c2cab396181464c31c352d6dea07e2d688def261dd6542b27

igfxtray.exe, 21a5818822a0b2d52a068d1e3339ed4c767f4d83b081bf17b837e9b6e112ee61

qhnj.dat, c61dbc7b51caab1d0353cbba9a8f51f65ef167459277c1c16f15eb6c7025cfe3

qhnj.dat.decrypted, 2b973adbb2addf62cf36cef9975cb0193a7ff0b960e2cff2c80560126bee6f37

tyeu.dat, e52b5ed63719a2798314a9c49c42c0ed4eb22a1ac4a2ad30e8bfc899edcea926

tyeu.dat.decrypted,

5fc3dc25276b01d6cb2fb821b83aa596f1d64ae8430c5576b953e3220a01d9aa

vnkd.dat, c22b40db7f9f8ebdbde4e5fc3a44e15449f75c40830c88932f9abd541cc78465

vnkd.dat.decrypted,

157e0a9323eaaa911b3847d64ca0d08be8cd26b2573687be461627e410cb1b3f

dtl.dat, 00add5c817f89b9ec490885be39398f878fa64a5c3564eaca679226cf73d929e

glp.uin, 3fa05f2f73a0c44a5f51f28319c4dc5b8198fb25e1cfcbea5327c9f1b3a871d4

Mutexes

820C90CxxA1B084495866C6D95B2595xx1C3

Global\\deletethread

Global\\{A59CF429-D0DD-4207-88A1-04090680F714}

Global\\{3C6FB3CA-69B1-454f-8B2F-BD157762810E}

Global\\{43EE34A9-9063-4d2c-AACD-F5C62B849089}

Global\\{A8859547-C62D-4e8b-A82D-BE1479C684C9}

http://blog.cylance.com/grand-theft-auto-panda
https://www.fireeye.com/blog/threat-research/2014/03/spear-phishing-the-news-cycle-apt-actors-leverage-interest-in-the-disappearance-of-malaysian-flight-mh-370.html
https://autofocus.paloaltonetworks.com/#/tag/Unit42.T5000


{CE2100CF-3418-4f9a-9D5D-CC7B58C5AC62}

Global\\{6BB1120C-16E9-4c91-96D5-04B42D1611B4}

Named Events

Global\\{34748A26-4EAD-4331-B039-673612E8A5FC}

Global\\{EED5CA6C-9958-4611-B7A7-1238F2E1B17E}

File Modifications

%TEMP%\~tmp.doc

%APPDATA%\Intel\avinfo

%APPDATA%\Intel\Data\dtl.dat

%APPDATA%\Intel\Data\glp.uin

%APPDATA%\Intel\Data\

%APPDATA%\Intel\~1

%APPDATA%\Intel\hccutils.dll

%APPDATA%\Intel\hccutils.inf

%APPDATA%\Intel\hjwe.dat

%APPDATA%\Intel\igfxtray.exe

%APPDATA%\Intel\qhnj.dat

%APPDATA%\Intel\QQMgr.dll

%APPDATA%\Intel\QQMgr.inf

%APPDATA%\Intel\ResN32.dll

%APPDATA%\Intel\ResN32.dat

%APPDATA%\Intel\tyeu.dat

%APPDATA%\Intel\vnkd.dat

%STARTUP%\hccutils.dll

%STARTUP%\hccutil.dll

%STARTUP%\igfxtray.exe

%ALLUSERSPROFILE%\Documents\My Document\utd_CE31

%ALLUSERSPROFILE%\Documents\My Document\XOLOADER

%ALLUSERSPROFILE%\Documents\My Document\update

%ALLUSERSPROFILE%\Documents\My Document\Log.txt

%PUBLIC%\Downloads\Update\utd_CE31

%PUBLIC%\Downloads\Update\XOLOADER

%PUBLIC%\Downloads\Update\update

%PUBLIC%\Downloads\Update\Log.txt

%APPDATA%\Intel\Skype

Registry Modifications

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\Eupdate –

%APPDATA%\Intel\ResN32.dll

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\update – %SYSTEM%\rundll32.exe

%APPDATA\Intel\ResN32.dll Run

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs –

%APPDATA%\Intel\ResN32.dll

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\LoadAppInit_DLLs – 0x1

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\update –

c:\windows\system32\rundll32.exe %APPDATA\Intel\ResN32.dll Run

Command and Control

 198.55.120[.]143:8080

February 13, 2016 9:34 AM

This Trojan Malware Might Be Recording Your Skype Conversations Sell Ur Shit |
Make Money Selling Your Shit online for Free | Sell Ur Shit | Make Money Selling
Your Shit online for Free

February 13, 2016 9:36 AM

This Trojan Malware Might Be Recording Your Skype Conversations |
Xnulleds.com

February 13, 2016 11:23 AM

Бэкдор для Skype похищает данные - itfm.pro

/#facebook
/#twitter
/#google_plus
https://www.addtoany.com/share_save
http://sellurshit.com/blog/2016/02/13/this-trojan-malware-might-be-recording-your-skype-conversations/
https://www.xnulleds.com/2016/02/13/this-trojan-malware-might-be-recording-your-skype-conversations/
http://itfm.pro/%d0%b1%d1%8d%d0%ba%d0%b4%d0%be%d1%80-%d0%b4%d0%bb%d1%8f-skype-%d0%bf%d0%be%d1%85%d0%b8%d1%89%d0%b0%d0%b5%d1%82-%d0%b4%d0%b0%d0%bd%d0%bd%d1%8b%d0%b5/


February 13, 2016 7:41 PM

This Trojan Malware Might Be Recording Your Skype Conversations – Tricks Here

February 13, 2016 9:59 PM

This Trojan Malware Might Be Recording Your Skype Conversations

February 13, 2016 10:46 PM

Sherman's Security Blog » T9000 Skype backdoor malware steals audio, video,
chats, screenshots, documents

February 14, 2016 10:41 AM

Бэкдор для Skype | Сфера интересов

February 14, 2016 9:06 PM

БЭКДОР ДЛЯ SKYPE ПОХИЩАЕТ ДАННЫЕ!!! – Defcon Azerbaijan

February 17, 2016 6:22 AM

T9000 backdoor, malware that spies on Skype users - HackRaw

February 18, 2016 4:55 PM

ReHWolution | T9000 – Il Malware che non viene rilevato dagli antivirus

February 21, 2016 7:33 AM

Trojaner T9000: Skype User werden ausgeschnüffelt - Datenschutz Agentur

March 15, 2016 9:03 AM

T9000 Trojan Can Compromise Skype and PC Security - Ophtek

Name *

Email *

Website

Post Comment

Privacy Policy  Legal Notices  Site Index  Subscriptions Copyright © 2007-2013 Palo Alto Networks

http://trickshere.cf/this-trojan-malware-might-be-recording-your-skype-conversations/
http://www.howcanvideo.com/tutorial/this-trojan-malware-might-be-recording-your-skype-conversations/
http://sherman-on-security.com/t9000-skype-backdoor-malware-steals-audio-video-chats-screenshots-documents/
https://grandross.wordpress.com/2016/02/14/%d0%b1%d1%8d%d0%ba%d0%b4%d0%be%d1%80-%d0%b4%d0%bb%d1%8f-skype/
http://www.defcon.az/2016/02/15/%d0%b1%d1%8d%d0%ba%d0%b4%d0%be%d1%80-%d0%b4%d0%bb%d1%8f-skype-%d0%bf%d0%be%d1%85%d0%b8%d1%89%d0%b0%d0%b5%d1%82-%d0%b4%d0%b0%d0%bd%d0%bd%d1%8b%d0%b5/
http://hackraw.com/2016/02/17/t9000-backdoor-a-sophisticated-malware-that-spies-on-skype-users/
http://www.rehwolution.it/news/83562/t9000-malware-che-non-viene-rilevato-dagli-antivirus/
https://datenschutz-agentur.de/trojaner-t9000-skype-user-werden-ausgeschnueffelt/
http://www.ophtek.com/t9000-trojan-can-compromise-skype-pc-security/
https://www.paloaltonetworks.com/legal/privacy.html
https://www.paloaltonetworks.com/legal.html
https://www.paloaltonetworks.com/site-index.html
https://www.paloaltonetworks.com/company/subscriptions.html

	T9000: Advanced Modular Backdoor Uses Complex Anti-Analysis Techniques
	SUBSCRIBE TO THE RESEARCH CENTER BLOG
	CATEGORIES & ARCHIVES
	T9000 Backdoor Analysis

	RECENT POSTS
	Initial Exploitation
	Stage 1
	Stage 2
	Stage 3
	Stage 4
	Plugin #1 – tyeu.dat
	Plugin #2 – vnkd.dat
	Plugin #3 – qhnj.dat
	Conclusion
	Indicators of Compromise


	12 Pingbacks & Trackbacks
	Post Your Comment


