SYGN/ZA

TG1021: “Praying Mantis”
DISSECTING AN ADVANCED
MEMORY-RESIDENT ATTACK

July 2021

Sygnia Incident Response Team

Contributors: Noam Lifshitz, Amitai Ben Shushan Ehrlich, Asaf Eitani, Amnon Kushnir, Gil Biton,
Martin Korman, Itay Shohat and Arie Zilberstein

Overview

The Sygnia Incident
Response team identified

an advanced and persistent
threat actor, operating
almost completely
in-memory. The operators
behind the activity targeted
Windows internet-facing
servers, using mostly
deserialization attacks, to
load a completely volatile,
custom malware platform
tailored for the Windows IIS
environment. Sygnia refers to
this threat actor as “Praying
Mantis”.

1 Copy-paste compromises

SYGN/A

During the past year, Sygnia’s Incident Response team has been
responding to a series of targeted cyber intrusion attacks,
performed by a highly capable and persistent threat actor -
TG1021: “Praying Mantis”. These attacks targeted prominent
organizations and compromised their networks by exploiting
internet facing servers.

The initial foothold within a network was obtained by leveraging
a variety of deserialization exploits targeting Windows IIS servers
and web applications. The activity observed suggests that the
threat actor is highly familiar with the Windows IIS platform, and
equipped with 0-day exploits.

TG1021 utiize a completely volatie and custom malware
framework tailor-made for IIS servers. The core component,
loaded on to internet facing lIS servers, intercepts and handles
any HTTP request received by the server. TG1021 also use an
additional stealthy backdoor and several post-exploitations
modules to perform network reconnaissance, elevate
privileges, and move laterally within networks.

The nature of the activity and general modus-operandi suggest
TG1021 to be an experienced stealthy actor, highly aware of
OPSEC (operations security). The malware used by TG1021
shows a significant effort to avoid detection, both by actively
interfering with logging mechanisms, successfully evading
commercial EDRs and by silently awaiting incoming
connections, rather than connecting back to a C2 channel and
continuously generating traffic. Furthermore, the threat actor
actively removed all disk-resident tools after using them,
effectively giving up on persistency in exchange for stealth.

The threat actor’s tactics, techniques, and procedures (TTPs)
strongly correlate with the ones described in an advisory
published by the Australian Cyber Security Centre (ACSC) -
“Copy-paste compromises”’!. The advisory, published in June
2020, details the activity of a sophisticated state-sponsored
actor which represents “the most significant, coordinated
cyber-targeting against Australian institutions the Australian
Government has ever observed.”

https://www.cyber.gov.au/sites/default/files/2020-06/ACSC-Advisory-2020-008-Copy-Paste-Compromises.pdf

Table of Contents

OVEBIVIBW ... bt a bbb e b b e b e e h b e b e S b e S h0 £ 0 e s h £ h e £ b0 £ He e Ha e S h e £ h e e h s e b e £ h e e E 2 £ h b oAb e o b e £ hE e 0 e b £ h e £ b E e hd e sa e h e e h e e b s e e e eh e e b e e b e e bbb 2
AWVl [oVVR IRRY=T A VTR VLT o WA o] o] Tox= N a0] I =314 o1 11 - J PRSP PPPUPTR 4
Checkbox Survey RCE EXPIOIt (CVE-2021-27852)cciutteituieiiiiteaiieeaietesitteesstteesasseeaasteesasetaastseesasetaastteesasseeeastsesasseeeastseeabseesasseeeasbeessseeesstsessanneenns 4
VIEWSTATE DESEIHAIZATION EXPIOITeiiiiiiiiieiieeitie ittt ettt ettt est e e sttt e st et e ettt e e oab et e e s ket e4ab et e 2a kb e a4 1he et ek e e e 1a b et e ea b e e e eabb e e ea bbb e e bt e e e saee e e es e e e snnneeenbnees 5
Altserialization INSECUIE DESEMAIIZALIONcuiiiiiiiii et b e s b e s e s b e e b e s e e e s aa e s ae e s e e e sae e seeesaessannsne e 6
Telerik-Ul EXplOit (CVE-2019-18935, CVE-2017-11317) ...cueitteerueateiteerteesieeaite et e steesseesseease e st e bt e ebeees st ee bt ea b e e ke e ebe e ah b e ea b e ek e e nheenaeesab e e bt e nbeesaeeanneenneeneene 7
Toolset Infrastructure & IIS PIAFONM IMAIWETE ..o s e bbb e bbb e b b b e b s be e e b b e be s e sa e b b e 7
NOAEIISWED MEIWATE ...t bbb b a bbb e oL b e b e b e e 0 b e b E e b e e e e E e b e e b e b e b e s b e s e e b e b e b e s e e e b b e 8
[gleTe) ([aTe 1Y/ [=Tod a =T o1l o o H T OO P PP PP OP P PUPPOE 9

(= 1Y [0 X=To IRST=T= o o OO TP PR 10

[\ oTe [N IIcRa{=Y (oY d 1)Y= Mo Y=o [o TSSOSO P T OT ROV PPPTPPROPROE 11
Nt o) =\ (o T=To I = =T o U] i o] o PO PP O U SUP TP PT PP PRUP 12

L 1T 2o ViVZ= Vo 113 o T PP OURR PR TTPRROE 12
NOAEIISWED REFIECHVE LOBAETS.........ooiiiiiiiiii i b oot b e bbb s b e e e e s b e b e e b s s e b e b e et e et s be st s 14
[RY={ =T 1AV =S o Y=o =T I OO PP PRI 14
[RaT=To L=t Y=Y TR = PP PP PR 15
SECONd StAgE MAIWATE - EXIDLL.AINottt ettt b e sh e a et b e bt oo h e e ae e o2 st e et e bt e b e eh bt ee bt ea bt ek e e ebbeeh bt en b e et e e nbeennnennne e 17
e [11 o g F= T 1Y T T 1F =TT 18
LSR8 T =T o PP 18
L2040 7= 1@ X o [PPSO 18

[0 = L0 T o | PSP T PR P RPN 19
= L OO OO OO SO OSSOSO TSRO POP PPN 19

(2o 1S foy o] o] 2= L] g I AN o 11V (1T PP UP RPN 19
(@3 (cTo =T ot r= Ul g P YAV =Ty 11T TSP RTPPRPPRN 19
LYo 0 gL T=TESts7= g o PP 20
(==t =TIV oY= g g =T oL TP P TP PR PR 20
Similarities t0 the COPY-PASE tNIEAL GICTOTiiiiiii ittt et h e a ettt oo bt oo he e o2 et e st e bt e b e e eh bt ea bt e b e et e e ebbeeabe e beenbeesanennneens 20
Defending AQAINST TGLO2L ATLACKS.iittiteetie ettt ettt ettt e et e s ettt b e e bt e eh st ea bt ea bt et e e eE e e ee bt ea b e e b e oAb oo 4 H et 4ot e e bt e ehe e e he e eab e e bt e bt e ebeees b e anbeebeenbeennne 20
Sealing .NET Deserialization EXPIOITS & BEST PraCHICES.uiiiiiiiiiiie ittt ettt et e ettt e e st e e ettt e e sttt e esbb e e s bt e e e bbee e asb e e e bbeeeanbaeeanbeeesnbbeesbeeean 21
[[aTe [ot=do] o] il 0] o] o] (o] 401l I N TP PP PP TPRPPRN 22
L= PP PP P RPN 22

FaXe Lo 111 o T o F=Y I [L TP PPN 23
MITRE ATT&CK BIEAKAOWN ...t b a e bbb e b e b e e bbb s b e £ e e b £ b e £ b e £ he e sa s b e e b e £ b s e e e s b e s E e e b b e b e e b s he e e e b s b e s b e e e e saesbe b e e ba s 24

SYGN/A 3

Windows IS Server & Web Application Exploits

During the past year Sygnia has been monitoring attacks conducted by TG1021. The actor leveraged a variety of
exploits targeting internet facing servers to gain initial access to target networks. These exploits abuse deserialization
mechanisms and known vulnerabilities in web applications and are used to execute a sophisticated memory-
resident malware that acts as a backdoor. This malware will be referred to as the “NodellSWeb” malware.

The threat actor uses an arsenal of web application exploits and is an expert in their execution. The swiftness and
versatility of operation combined with the sophistication of post-exploitation activities suggest an advanced and
highly skillful actor conducted the operations. The following four exploits were used by the threat actor to
compromise target systems.

Checkbox Survey RCE Exploit (CVE-2021-27852)

One of the vulnerabilities that the threat actor leveraged to exploit IIS servers is a 0-day vulnerability associated with
an insecure implementation of the deserialization mechanism within the “Checkbox Survey” web application, a
commercial survey platform. The vulnerability in the “Checkbox Survey” application enables remote code execution
(RCE) on the target resulting with the initial compromise of an IIS server. Analysis of the activity found the vulnerability
resides in an insecure implementation of the VIEWSTATE mechanism in .NET.

VIEWSTATE is a mechanism in .NET used to maintain and preserve web page session data between a client and a
server. When using this feature any client that browses an application receives a serialized .NET object that contains
the values of specific variables. When the client sends an HTTP request back to the web application, the VIEWSTATE
object is sent along with it, which in turn gets deserialized and processed on the server’s side setting the variables to
their previous values.

The vulnerability in “Checkbox Survey” was identified on a specific webpage in the application where the methods
originally used to handle the VIEWSTATE mechanism were replaced with an insecure and compressed version called
VSTATE. As illustrated in Figure 1, the new “LoadPageStateFromPersistenceMedium” method does not validate the
integrity of the data passed in the VSTATE variable, blindly triggering the deserialization process. Sending a crafted
VSTATE variable which exploits the “LosFormatter” deserialization process would allow a threat actor to execute code
remotely on the Checkbox application server.

SavePageStateToPersistenceMedium(object viewState)

ewStateString);

rt.ToBase64String(bytes));

Figure 1: Vulnerable code snippet found within Checkbox code?

2 Checkbox source code found on GitHub

SYGN/A 4

https://github.com/udalcse/Checkbox_CBE

The same exact VSTATE implementation was published in a blog post in 2005 as a solution for a compressed
implementation of VIEWSTATE. Some web applications have copied this piece of code into their own repository,
exposing the application to the vulnerability. This topic of VSTATE deserialization exploits was covered in the past by
Graa - Security Blog. The vulnerable piece of code was found in version 6 of the “Checkbox Survey” software and is
shown in Figure 1.

The flow of the VSTATE deserialization exploit used by the threat actor was executed in a single HTTP POST to the
Checkbox application server, and is illustrated in Figure 2 below:

1. The threat actor crafts and sends an HTTP POST request containing two main components — A crafted VSTATE
variable containing a reflective loader DLL and a VSTATEGENERATOR variable containing the NodellSWeb
malware.

2. The exploited deserialization process executes the reflective loader DLL contained in the VSTATE variable.

3. The reflective loader DLL reads, decodes, and decrypts the data passed in the “_VSTATEGENERATOR”
parameter.

4. Finally, the decrypted data (the NodellSWeb malware) is reflectively loaded and acts as a backdoor on the
compromised asset.

)
N H
o | -
Threat actor E;)SD?T Y
V State Parameter > Reflective
/ (__vstate__viewstate) Contains Loader DLL ™

Sends
POST request

HTTP POST reques! | n
Contains Reflectively

loads
v
L V“gfege”?m“’r BN\ GclisWeb.DLL
ClEmEEr Contains
0
\. /

Reads Decodes
& Decrypts

Figure 2: Threat actor VSTATE/VIEWSTATE exploit flow.

VIEWSTATE Deserialization Exploit

The threat actor also leveraged and exploited the standard VIEWSTATE deserialization process to regain access to
compromised machines. Newer versions of .NET enforce encryption and validation of the VIEWSTATE data and offers
protection against this kind of exploit. However, if the encryption and validation keys are stolen or leaked, they can
be used to bypass the integrity check mechanism and eventually execute malicious code on the IIS server.

SYGN/A 5

https://www.graa.nl/articles/2010.html

During one of Sygnia’s investigations, TG1021 leveraged stolen decryption and validation keys to exploit IIS web
servers. The flow of the VIEWSTATE deserialization exploit is almost identical to the VSTATE exploit explained above,
with the adjustment of encrypting and signing the VIEWSTATE data instead of compressing it.

This exploit was used several times by the threat actor to regain access to compromised machines, since they rely
on a volatile backdoor and tools. Additionally, it was used in order to move laterally between machines in a cluster.
This is possible because if a web application is set to run in a cluster, all the instances need to share same secret keys
otherwise the VIEWSTATE feature would not work.

Altserialization Insecure Deserialization

The threat actor leveraged a second vulnerability involving insecure deserialization to exploit IIS servers. This section
describes that process.

ASP.NET allows web applications to store user sessions to be used later once the user returns and interacts with the
application. This works by saving a serialized .NET session object to a MSSQL database and assigning it a unique
cookie which is given to the user when browsing the application. Once the user browses again with the cookie the
session state is loaded and deserialized. A crafted serialized object which is written to the database could lead to
remote code execution on a web application server once the implanted cookie is passed in an HTTP request.

This technique was used by TG1021 in order to move laterally between IIS servers within an environment. An initial IS
server was compromised using one of the deserialization vulnerabilities listed above. From there the threat actor was
able to conduct reconnaissance activities on a targeted ASP.NET session state MSSQL server and execute the exploit,
as illustrated below and in Figure 3:

1. After gathering information on the environment, a malicious serialized object was written to the database.
2. The threat actor sent an HTTP GET request using the crafted ASP.NET session state cookie.

3. The target IIS web server loaded and deserialized the matching session state object correlating to the planted
cookie.

4. The deserialization process is exploited by the crafted object in order to compile an in-memory web shell.

5. Immediately after the web shell was created the threat actor accessed it to reflectively load the malicious
NodellSWeb malware on the compromised asset.

SYGN/A 6

Write malicious
N object to MSSQL DB

| o | > &=

Threat actor :
V ASP.NET Session
SQL Server

Loads session state
E from database

Sends GET request containing v
malicious ASP.NET cookie

== ADv

Target IIS Web NodellSWeb
Application Server Malware
4 0
B Deserialization process
compiles a web shell
Access web shell fo V

deploy backdoor

> | < | -
Web Shell n

Loader Reflectively loads
main lIS backdoor

Figure 3: Altserialization exploit attack flow

Telerik-Ul Exploit (CVE-2019-18935, CVE-2017-11317)

Telerik is known for several products providing functionality to web application development. One of the products,
Telerik Ul for ASP.NET AJAX, is a widely used suite of Ul components for web applications. This product was found to
be vulnerable due to weak encryption, enabling a malicious actor to upload a file and/or to run malicious code.

The vulnerabilities were used by TG1021 to upload a web shell loader to IIS servers accessible from the internet. The
web shell was later used to upload additional modules and was deleted after a short period of time. Subsequent to
the initial use, the web shell was uploaded at the beginning of every following wave of threat actor activity.

Toolset Infrastructure & IS Platform Malware

TG1021 uses a custom-made malware framework, built around a common core, tailor-made for IS servers. The toolset
is completely volatile, reflectively loaded into an affected machine’s memory and leaves little-to-no trace on
infected targets.

SYGN/A 7

The framework consists of a two-stage toolset:

1.

The first consists of lightweight dynamic loaders in the form of DLLs and web shells, and the core component (The

NodellSWeb malware). These are the first stage tools used on compromised IIS webservers.

2. The second stage tools are more generic Windows-based tools which consist of a stealthy backdoor and a set of
post-exploitation modules loaded on demand to extend functionality.

. File Upload Code Execution
Exploif Explolt Explolt
v v
Loader Web Shell Loader DLL 7 DLLRefective
& Confroller My Loader
Controller l-.\ ,-l Hooking
Mode - “ Mode
First Stage ‘
Malware V]
A NodellSWeb
m Malware
Second Stage v
Malware N
DLL T
@ ExtDLL.All
Post-
Exploitation
Additional

Modules

Figure 4: Toolset Infrastructure Overview

NodellSWeb Malware

Overview

The NodellSWeb malware is a .NET DLL reflectively loaded module that is injected into the w3wp.exe process of
affected machines. It serves as the core component of the threat actor’s malware framework and acts as the main
backdoor on a compromised IIS server. It can operate in two different modes:

1. IS Hooking Mode

The malware hooks native IIS input validation functions in the injected w3wp.exe process, which provides access
to all incoming HTTP traffic. The requests are analyzed by the backdoor, allowing the operators to communicate
with it by sending crafted HTTP requests to any web page in the process context.

SYGN/A

2. Web Shell Controller Mode

The malware is executed and controlled using a custom web shell Loader. By sending specially crafted HTTP
requests to the web shell, the operators trigger the execution of the command input function of an instance
loaded to a w3wp.exe process. In this mode the NodellSWeb will execute without hooking the [IS validation
functions and can be controlled only through the specific web page where the web shell is located.

The NodellSWeb malware provides the threat actor with four different capabilities:

1. Run aset of basic functions - Such as gathering system information or accessing and manipulating the file system
on the machine.

2. Execute JScript payloads on the machine.
3. Dynamically load additional modules.

4. Perform several network related operations, including HTTP and SQL traffic forwarding and an implementation of
aTCP clientinstance. These capabilities enable active command and control of other backdoors deployed within
the network as well as control of the extension modules over the machine loopback interface.

To make analysis of the module more difficult, NodellSWeb is protected by a pubilic tool “CofuserCore” which packs
and obfuscates the binary.

The NodellSWeb malware bares similarity to the “js_eval” malware family described in the “Copy-Paste
Compromises” ACSC adyvisory. This will be further discussed in the section “Similarities to the Copy-Paste threat actor”.

Hooking Mechanism

To establish a command-and-control channel, the malware deploys an inline hook on a validation function within
the IIS request handling process. During this process, the malware will first attempt to obtain a pointer to the method
“ValidatelnputlfRequiredByConfig”, which is a default function used by ASP.NET HTTPRequest class to validate any
input within the request, if input validation is enabled in the web page configuration. If a pointer to the method is not
found, the malware will attempt to obtain a pointer to another default method called “Validatelnput”.

The final stage of the process is then initiated when a hook is performed using the malware’s built-in functionality
named “ManagedHook”. The hook swaps between the obtained method pointer and a malicious method created
by the threat actor named “_Validatelnput”. After the malicious method is executed, the “ManagedHook* instance
calls the original hooked function.

The hooking process is initiated by invoking one of the malware’s methods called “InitHook”. The method is invoked
with an additional string argument (will be referred to as “HOOK_KEY”). The “HOOK_KEY” string is crucial to the
malware’s operation, as it is used to search for threat actor payloads within incoming HTTP traffic. A reconstructed
version of the “InitHook” method code is shown in the following snippet:

fig", BindingFlags.Instance | BindingFlags.NonPublic);

Figure 5: 1IS validation function hooking performed by the “InitHook” method, reconstructed by Sygnia

SYGN/A o

Payload Search

The malicious function “_Validatelnput” is used to process incoming requests, searching for payloads in several
locations within the request. The following list describes the search order for payloads:

1.

2.

A file larger than 8 bytes which is attached to the request and has a name that matches the “HOOK_KEY”.

An HTTP POST request containing a parameter with a key name that matches the “HOOK_KEY” and value length
is greater than 8 bytes.

An HTTP cookie with a name that matches the “HOOK_KEY” and that its value’s length is over 10 bytes.

If no payload was found in the previous steps, the NodellSWeb will try to treat the whole request content as the
payload.

After identifying an incoming payload, the malware attempts to extract two variables from it — A “Command”
variable and a “Forward” variable. The parameters are extracted in the following procedure:

1.

3.

Key and IV Generation — A decryption key is generated by calculating the SHA256 value of the payload’s first 3
bytes concatenated to the “HOOK_KEY” string value. The malware then calculates the MD5 value of the key, the
16 bytes MD5 output is used as the IV for the decryption process.

Decryption — The payload (starting from the 3@ byte) is decrypted with a standard AES algorithm using the
generated key and IV from the previous step.

Decompression — After decryption, the payload is decompressed recursively using GZip.

Once the “Command” and “Forward” variables are extracted, they are used by the malware to launch the
requested built-in functionality. The first byte of the “Command” parameter (“Command ID”) is used to determine
which built-in function will be executed by the malware. In most cases, the “Forward” data will contain the arguments
for the requested function, but in some cases, the selected functionality will not require both variables and only the
“Command” variable is resolved. The built-in functionalities of the NodellSWeb malware can be seen in the following
table:

Command ID Description

0x00 Information gathering - Query domain membership, operation system information, process and

owner information of the current process, time zone, network interfaces information and status
and drives information.

0x01 Recursive directory listing.

0x02 File reading.

0x03 File writing.

0x04 Copying or moving files, or recursively copying directories.

0x05 files and recursive directories deletion.

0x06 Directory creation.

0x07 Custom reflective loading.

0x08 Traffic forwarding, either HTTP, SQL or TCP. used to communicate to additional backdoors

installed within the network, as well as to memory loaded payloads via loopback
communication.

0x09 Dynamic execution of JScript payloads.

C2 communication flow with the backdoor with full built-in capabilities

SYGN/A 10

Module Reflective Loading

One of the malware’s most interesting built-in function capabillities is reflective loading of custom DLLs. In order to
reflectively load a payload, the following 3-step procedure is performed using the “Command” and “Forward”
variables as arguments:

1. A random port is selected by the malware for future communications with the loaded module. The port’s
availability is checked by opening and closing a TCP socket over the loopback. After that, a target IP address is
extracted from the “Command” variable in the format of a 32 bit integer. The port and IP are concatenated to
form a struct which is later passed as an argument to the loaded module.

Loopback, @);

nt)tcplistener.LocalEndpoint).Port;

Figure 6: Random port generation before reflective DLL loading

A shellcode is extracted from the “Command” variable and loaded to memory. This shellcode reflectively loads
a DLL passed in the “Forward” variable and returns a pointer to an initial method. If a shellcode and DLL were
previously loaded, the NodellSWeb will use the previously exported method unless given a flag which forces a
reload and execution of the shellcode and DLL.

a. The custom shellcode that performs the necessary operations to enable execution of the loaded DLL, for
example relocations within the binary.

b. The shellcode returns a pointer to a specific exported function of the DLL by comparing the name of the
exported function to a hash value embedded within the shellcode. That way the threat actor controls which
function is returned by generating a custom shellcode for any needed function.

c. If no DLL was provided in the “Forward” variable - the shellcode is simply executed with a null-pointer as
argument, allowing execution of generic shellcodes.

J5C.Length, 64U, num3) }

reflectiveloader = (-) GetDelegateForFunctionPointer(intPtr,
if (D == | D.Length

obj = reflectiveloader{IntPtr.Z

pe.Pinned);

gchandle2.Free();

}
VirtualProtect(intPtr, (J5C.Length, num3, numd) ;
if (RT)
{
obj 1.GetDelegateForFunctionPointer({IntPtr)obj,
}
I
return obj;

Figure 7: Reconstructed InitLoader method - Execution of shellcode to reflectively load payload DLL

2. Finally, the exported method is invoked using the structure created in step 1 as an argument.

SYGN/A 1

| Command[1] == 1}

[Command.Length - 6];

v.Length);
.Initloader{array, Forward,

vad = gchand innedObject();
.rLoader(payload);

(intPtr.ToInt32()), @, 4);
t), 8, 4);

Figure 8: Reflective loading of payload DLL and invocation of the selected function

A sample shellcode was acquired alongside the malicious DLL that was loaded using that shellcode. The shellcode
which was found is a Position Independent Code (PIC) used to reflectively load “ExtDLL.dII” to memory by
allocating, writing and relocating any needed addresses to the appropriate allocated address. The exported
method returned by the shellcode is a method named “Hello” — which is the method used to execute the main
flow of “ExtDLL.dII".

JScript Payload Execution

The malware implements code execution by invoking in-memory Jscript code sent to the NodellSWeb malware.
This is done by loading the “Microsoft.Jscript.Eval” assembly to the current process and invoking the
“JscriptEvaluate” function with the given payload. The malware uses a custom hardcoded template script-block
for the Jscript code execution:

Figure 9: NodellSWeb hard coded Jscript evaluation code

.J5C1osure. GetType() . GetMethod(" -Invoke(.J5Closure,

.15Closure,

[1

TF8.GetString(Command, 1, Command.Length - 1),

Figure 10: Invocation of Jscript evaluation code

This method of implementation achieves a stealthy remote code execution method by avoiding spawning new
process on the machine.

Traffic Forwarding

The NodellSWeb malware enables three types of traffic forwarding:

1. TCP Tunneling — used as a C2 channel to other in-memory modules or additional NodellSWeb instances in an

SYGN/A 12

infected network.
2. HTTP forwarding
3. SQL forwarding

Both HTTP and SQL traffic forwarding commands are implemented with an additional XML formatted string
containing configuration instructions for crafting the relevant traffic. The different XML attributes allow for creation
of different HTTP and SQL requests. By default, the HTTP method is set to GET, unless additional data is passed to the
function through the matching “Data” variable. The following table summarizes each attribute role in an XML
describing an HTTP request:

XML Attribute Description

U Target URL

IM Windows user impersonation

TO Request timeout

AT Network credentials are to be used

AD Domain name (only applicable if “AT” is defined)

AU Username (only applicable if “AT” is defined)

AP User password (only applicable if “AT” is defined)

PX Web proxy is to be used and defined in “AD” attribute

PD Web proxy domain name (only applicable if “PX” and “PU” are defined)
PU Web proxy username (only applicable if “PX” is defined)

PP Web proxy password (only applicable if “PX” and “PU” are defined)

MT HTTP method

CT Content type

H Headers to be added to the request

K Header name contained under “H” attributes (only applicable if “H” defined)

A similar XML would be provided to craft an SQL query with the following attributes:

XML Attribute Description

S SQL connection string

T Windows user impersonation
Q SQL query
(@)

SQL command timeout

The functionality of traffic forwarding in the main NodellSWeb malware is a direct implementation of the
“Forward.dll” module with additions for the SQL traffic. This mechanism of traffic forwarding has some default values
which are used in the requests generated. These characteristics, such as a default user-agent, can be used to
detect malicious traffic.

SYGN/A 13

NodellSWeb Reflective Loaders

As a volatile tool, the NodellSWeb malware is used by the threat actor solely in-memory. To do so, the tool is loaded
dynamically into the process memory using one of the following ways:

1. When the threat actor had RCE capabilities on a target IIS server, a DLL acting as a dynamic loader was used
as an initial payload for the exploit. This DLL in turn dynamically loads the NodellSWeb malware calling the
“InitHook” method.

2. When the threat actor only had the ability to upload files to a target IIS server, an NodellSWeb web shell loader
and controller was deployed. The initial access to this web shell created an NodellSWeb instance on the
machine (without hooking the IIS validation methods), and further access would be made to control the
malware.

Both loaders are similar to one another in their functionality and basic safety measures, however there is a
significant difference in the operational mode and control over the malware.

Reflective Loader DLL

A lightweight .NET reflective loader designed to load malicious .NET DLLs to the IS process memory and execute a
selected function within it. This DLL was used in the VIEWSTATE/VSTATE deserialization exploit workflow to execute the
threat actors’ main implant — the NodellSWeb malware. In the instances observed, the threat actor invoked the
“InitHook” method to initialize an NodellSWeb malware instance and hook HTTP validation functions on the servers.
By doing so, the threat actor established the first foothold on the target server.

The DLL does not persist on the victim machine, which means it is uploaded as a payload in every exploit. Once the
DLL is loaded it checks if the request that it was sent with is above 4096 bytes in size. If so, it searches for the
“ _VSTATEGENERATOR" parameter and attempts to decode and decrypt it using a basic XOR operation.

The decoded payload consists of three main sections:
1. The first 2 bytes are used in the decryption process as XOR keys.

2. Bytes 2-32 are a string containing the .NET class name, function name within that class and argument supplied to
the function, all separated by pipe characters (*]").

3. The rest of the payload is a .NET DLL, containing the said .NET class.

The returned response contains the header "Pragma” with the value "no-cache", signaling a successful execution.

SYGN/A 1

Current.Request.ContentLength > 4896)

numl = @;

[1 numArray .FromBase645tring(Current.Request[

parame
. AddHeader(

nse Write(

rrent . Response.StatusCode =
rrent.Response.End();

Figure 11: A snippet of code from ReflectiveLoadForms.dll

Loader Web Shell

On some occasions, TG1021 deployed a web shell on IIS servers for a short period of time. In most cases, these web
shells were deleted shortly after they were dropped. The web shell functionality is almost identical to the Reflective
Loader DLL, as it used to load binaries and initialize a malware instance from within it, using an almost identical
decryption and decoding mechanism:

1. The first 2 bytes are used in the decryption process as XOR keys.
2. Bytes 2-32 represent an array of strings later used for invocation, separated by “]”.

3. All bytes starting from 32 are the malicious binary payload.

SYGN/A 15

try
I
L8

[1 Read = [Request.ContentLength];
Request.Input5Stream.Read(Read, @, Read.Length);

i ¢« Read.Length; i+=2)

2):
>
ization.Formatters.Binary
(stream);

[1]1}).CreateInstance(keys[1]);

Response.Redirect(

Figure 12: The NodellSWeb Loader & Controller web shell

The first object in the string array “keys” is placed in the web application HTTP cache under the value
“ CAPCACHE__CAPCACHE_". When the NodellSWeb malware instance is initialized without arguments, it looks for
the value stored in this key to be used as the “HOOK_KEY”.

ACHE_™

Current.Cache

current.Cache[text2].Tostring(), obj | 1 obj.Tostri .StartsWith("1"));

Figure 13: The lISNode class constructor

After initialization, a pointer to the malware instance is saved in the web application HTTP cache under the key
“ CAPCACHE_”. When the attacker revisits the specific webpage, the object’s “ToString” method is invoked which
in turn initiates the C2 logic of the malware. Without knowing what object is stored in the cache under the key
“ CAPCACHE_”, it might seem as a legitimate comparison between two string objects, when really the “ToString”

SYGN/A 16

method triggers the malware commands.

In a few cases the threat actor placed the controller in specific locations leveraging default IIS webpage naming.
The threat actor would locate a directory in the web application that did not contain a default webpage file and
place the controller in that directory using one of the default document namings. When the threat actor would
request the directory via HTTP without requesting a specific resource, the IS server would serve the first resource
matching one of the default values.

ument enabled="true

1 value="Default.htm
value="Default.asp
value="index.htm

add value="index.html
1 value="iisstart.htm
default.aspx

Figure 14: Default IIS configuration for “defaultDocument” files

Second Stage Malware - ExtDLL.AII

The threat actor uses a generic Windows-based malware for operating on compromised Windows machines as a
second stage for the NodellSWeb malware. The backdoor uses a passive C2 channel, listening for incoming TCP
connections, minimizing network traffic when it is not in use. The tool provides backdoor functionality, allowing the
threat actor to perform various actions on the affected host, for example:

File and directory manipulation (read, write, delete, copy, move)
System information gathering
Dynamic DLL loading and execution

Code injection, token manipulation and additional common attack technique functionalities

The malware also holds defense tampering capabillities to hide its activities by applying inline hooks on specific
security related functions on all the process’ threads:

1. AV scanning functions — The malware hooks the functions “AmsiScanBuffer” and “AmsiScanString” from the

“Amsi.dll” library with a simple function which returns AMSI_RESULT_CLEAN.

Event log reporting functions — The malware hooks the functions “ReportEventW” and “EventWriteTransfer” from
the “Advapi32.dll” library with a simple function which returns 1 (any non-zero value is considered as conformation
that the event was written). By doing so the malware disables the capability of event logging from the affected
process.

.NET code trust checks - The malware hooks the functions “WIldpQueryDynamicCodeTrust” and
“WldplsClassinApprovedList” functions from the “WIidp.dll” library. The purpose of those hooks is to bypass Device
Guard policy and execute malicious .NET code in memory. The hook leads to yet another simple function returning
S_OK value.

PowerShell related registry keys actions — The malware hooks the function “RegOpenKeyExW” from “Advapi32.dll”.
Any subkey under or including “Software\policies\microsoft\Windows\Powershell” will return an
ERROR_FILE_NOT_FOUND error.

SYGN/A 17

if (tFunc) if (ttargetFunc)
{

loaded_module_var = GetProcAddress(hModule, “AmsiScanBuffer™); loaded_module_var = GetProcAddress{loaded_module, “WldpQueryDynamicCodeTrust™);
func = loaded_module_uvar; targetFunc = loaded_module_var;

¥ H

if { t*scan_string_ptr) if (tqword_7FFBGGFB4DES)

{

<
scan_string ptr = GetProcAddress{hHodule, “AmsiScanString™}); quord_7FFB66FOUDES = GetProcAddress{loaded_module, "WldpIsClassInApprovedList™);
loaded_module_var = funcg loaded module var = targetFunc;

H

Figure 15: Hooking of Anti-Virus and .NET Device Guard functions

Although it seems that the malware performs the hooking only on the current injected process, it holds the capability
to perform this behavior on other user-land processes.

Additional Modules

The threat actor leveraged the NodellSWeb and ExtDLL.dIl malware to execute other modules, containing additional
capabilities. These modules are .NET modules, which were obfuscated using Confuser.Core 1.4.1 (build 5d92e25e43).

PSRunner.dll

“PSRunner.dll” provides the threat actor with the ability to run PowerShell script-blocks on a host without spawning a
PowerShell process and manage incoming PowerShell payloads. Some of the functionality of the module resembles
the functionality of an open-source tool named “UnmanagedPowerShell”3, which enables execution of PowerShell
script blocks from an unmanaged process. A snippet from PSRunner code is shown below.

CustomPSH
onState initial
onState.Authoriz.

ace = RunspaceFacto
.runspace. ThreadOptiol
.runspace.Open();

[1 Invoke(z [1 InBytes,

PSRunner.PSRunner psRunner = (PSRunner.PSRunner)
switch (InBytes[8])

)@, PSRunner.PSRunner.GetTasks());

Outhiull = (

BitConverter.ToInt32(InByt
mnad = Encoding.U Getstri Offse Jytes.Length - Offset - 4);
(PSRunner.PSRunner. R5Lock)

Figure 16: A snippet of code from PSRunner.dll

Forward.dll

“Forward.dll” enables the threat actor to forward HTTP traffic to a remote host based on a given set of parameters.
The DLL’s functionality is also implemented in the NodellSWeb malware and replicates its traffic forwarding
capabillities. The traffic forwarding is done by processing an XML formatted string containing instructions, and by
assembling a request with the given parameters — see Traffic Forwarding for the full list of parameter options.

3 https://github.com/leechristensen/UnmanagedPowerShell

SYGN/A 18

.TryParse{documentElement . GetAttribute("TH"), result1))

GZip | Decompres Methods .Deflate;

.TryParse(documentElement . GetAttribute resuli?))

documentElement .HasAttribute("UA™)} 18 P : documentElement.GetAttribute("L
-HasAttribute 1)

networkCredential MNe documentElement . GetAttribut documentElement . GetAttribute(”
cumentElement . HasAttribut
riCr: ial.Domain Cume; ttribute("PD");
webProxy .Credentials ial;

httplebRequest . Proxy (IWebProxy JwebProxy ;

Figure 17: A snippet of code from Forward.dll

PotatoEx.dll

“PotatoEx.dll” is a custom version of the Potato family tools, which is a common local privilege Escalation (PE) tool.
Consistent with the other tools in the threat actor’s arsenal, this is a .NET version of the Potato family, which also has
implementations of additional open-source tools such as “PingCastle” — also seen in “BadPotato”.

E.dll

“E.dII” is a lightweight .NET payload used by the threat actor to verify whether an exploit had successfully executed
on atarget IIS server. A successful exploit with “E.dll” as a payload would result in a HTTP response containing custom
fabricated headers, cookies, and content.

The name “E.dIlI” has a direct connection the “YSoSerial.Net” open-source tool used to generate payloads that
exploit insecure .NET object deserialization. During preparation of payloads using “YSoSerial.Net”, the deserialization
gadget searches for “e.dll” as the payload for the operation.

Post-exploitation Activities

The threat actor utilized the access provided using the IIS to conduct additional activity, including credential
harvesting, reconnaissance, and lateral movement.

Credential harvesting

The threat actor modified login webpages to record credentials and save them to a file in clear text format. The
modification is a short-embedded code-block at the beginning of the webpage file with a simple try-catch phrase
code:

SYGN/A 19

https://github.com/BeichenDream/BadPotato
https://github.com/pwntester/ysoserial.net

ame™] != 11 & Request.Form[’ - 11) {
System.I0.File.AppendAllText(Server.MapPath(" output path (redacted)

ing.Format(”{@}:{1}\n", Request.Form["], Request.Form["P

Figure 18: Credential tap code block modification

The short piece of code checks the “UserName” and “Password” attributes in a post-back form and if both are not
empty, they are stored in clear text to the designated output path. Once users would login to the website, credentials
would be stored there and the threat actor could easily access the file by browsing the relevant path. The name of
the output file chosen by TG1021 would resemble a native file in an existing directory with a different extension in
order to blend in with legitimate requests to the server.

Reconnaissance

As in many other cases, the threat actor used publicly available offensive security tools (OST) in order to perform
reconnaissance. For example, “SharpHound” was used to scan and map targets by loading it directly to infected
machines memory without writing the binary on the disk. Quickly after the execution, the threat actor retrieved the
output files and deleted them. In addition, “PowerSploit” was loaded and executed using the same technique.

Lateral Movement

After establishing foothold on an external IIS server, the threat actor access shared folders on internal web servers
over SMB using compromised domain credentials. On several occasions the threat actor dropped the NodellSWeb
web shell loader via SMB to compromise additional servers.

Additionally, the threat actor utilized the exploits mentioned above to move laterally between IIS servers.

Similarities to the Copy-Paste threat actor

The Tactics, Techniques and Procedures (TTPs) used by TG1021, bare various similarities to those of “Copy-Paste
Compromises” actor described by the Australian Cyber Security Centre (ACSC). The advisory, published in June 2020,
details the TTPs of a sophisticated state-sponsored actor targeting Australian public and private sector organizations.

Much like TG1021, the threat actor described in the advisory utilizes a variety of deserialization exploits and specifically
the Telerik Ul vulnerabilities and VIEWSTATE handling in Microsoft IIS servers. There are major overlaps in the toolsets
used by both actors, such as the usage of JScript payloads, Potato family malware and “Confuser” for obfuscation.
The “PowerHunter” malware described in the advisory provides extremely unique functionality, high similar to
“ExtDLL.dII” described in this report.

It is important to note the activity described in the advisory is wider and consists of additional tactics, techniques and
procedures that were not observed in the activities analyzed by Sygnia.

Defending Against TG1021 Attacks

As a volatile threat actor, defending against TG1021 attacks is a tough task. We recommend the following:
1. Patching .NET deserialization vulnerabilities
2. Searching for known indicators of compromise

3. Scanning internet facing IIS servers with a set of Yara rules designed to detect the tools discussed in this paper

SYGN/A 20

4. Actively hunt for suspicious activity on internet-facing IS environments

Sealing .NET Deserialization Exploits & Best Practices
1. Telerik Version Update —

If you are running a .NET web application that uses Telerik Ul for ASP.NET AJAX, make sure to use the newest version
that is not vulnerable to known CVEs.

2. Enforce VIEWSTATE MAC validation and Rotate Machine Keys Routinely -

VIEWSTATE deserialization attacks can easily lead to a network compromise due to a small misconfiguration.
Version 4.5 of .NET enforces the relevant security measures of validating VIEWSTATE messages before attempting
deserialization. Make sure the following configurations are in place:

e Ensure the “enableViewStateMac” variable in the IIS configuration is set to True.
e Ensure the “aspnet:AllowinsecureDeserialization” variable in the IIS configuration is set to False.

e Ensure the registry key “AspNetEnforceViewStateMac” under the path
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\<Version>" is set to 1.

In addition to these security measures, encryption and validation keys should be handled with care as sensitive
credentials. If possible, use auto-generated keys, otherwise routinely rotate the machine keys on your IIS servers
to make sure you would not be susceptible to attacks where keys were stolen or leaked.

3. Validate any usage of VSTATE in .NET applications —

If any of the .NET web applications running in your environment use the compressed version of VIEWSTATE (whether
homebrew or a third-party application), validate the implementation is done securely. Search for the following piece
of code in your applications, and make sure they are replaced:

tected override object LoadPageStateFromPersistenceMedium()

ormatter =
return formatter.Des .ToBasef4String(bytes));

Figure 19: Insecure implementation of compressed VIEWSTATE

4. Secure ASP.NET session DB —

If ASP.NET session state is used by your web applications make sure access to the database can only be done
from legitimate network locations. Separate session state MSSQL databases between different IIS servers / web
applications as much as possible or create different SQL users with proper minimal CRUD permissions.

5. Block any unnecessary communications from IIS servers —

Your IIS servers should only generate traffic matching the set of known rules, limit and block these activities to the
minimum possible.

6. Configure a suitable application pool identity to run the web application —

Make sure your .NET web applications are running with a designated application pool identity with the lowest
privileges possible. This would create an additional obstacle for TG1021.

SYGN/A 2

Indicators of Compromise

Files

Default.aspx (Loader web shell)

o f69d32157189945fa2bf47a690a8bd62

0 4f10e10050d3da0b369f6636edel8a4l8ecab3al

0 ea463bf8e502d0ff68736afa3dcbb59c969a6dc5776c0d7d10bb282ec3b62282
NodellSWeb.dll

0 del9eabe9cdf2ac5d22a00d24898532d

o0 0786eb857c20dedb578e181cafba81ef0a097205

o 562cfbab3cécd4dafl3a7f81412c77d5b70402c48aed3f49066cb758742b068afd
PSRunner.dll (Memory Resident)

0 c8d12b90e9efd04a2c523efaef3d01d4

0 abd78cf430d91d07387e7305be6523249af38caa

0 88cb332eb82f3c086eaa33607al73cf6410bff0b9a21d6692225ffb9bbe877c6
PotatoEx.dll (Memory Resident)

o 92fd2e7d4dfced8c635fbcb54bb651b9

0 be6648adal074cb76b5da7854c37cb784c52f989

0 4adlalb8adf426959ece8ebedOfccdcd5dbl1124eb0686c2f590b3b93392429e6
ExtDLL.dIl (Memory Resident)

0 6322a2a4b5dd34ecff3af22c4fac94cf

0 5679ada30e9cdbdfe62a05448d76e7034489945a

0 40blbc34ecaddc7f08ca6399cb2a07520a7203394aa3accblbb7d94aa21b35d6
WebTunnel.dll (Memory Resident)

0 3a0f85d811916f66371b9a994472667cC

0 ba251c5f2884e2535a2178509b9065a9be969965

0 0d6dec29075584af62801306913430c1733882955eedcd9e9a4916b2dae4d457
AssemblyManager.dll (Memory Resident)

0 0bd1d822710cadcd8612cfcd78a12155

0 94df55b21bbd7bb82ab269d7840a3188003e5d35

o elf3763092aa779fd291afe9aal8866658966332bl3caa57d34d294120e1f608
ReflectiveLoadForms.dll

0 9d705f6333fc8cb3e75ddel4e7a’lcasd

0 cb84313a708723268a0608929887ad16fcf83a26

0 01e33b20366589b19f66ffdd560538e83fela63cab7f29e0a6754bcbb49ec7bb

SYGN/A 2

Additional IOCs

Malicious HTTP Identifiers:

o User agent hard-coded in the tools -
“Mozilla/5.0+(Windows+NT+10.0;+WOW®64;+Trident/7.0;+rv:11.0)+like+Gecko”

o0 HTTP parameter and cookie — “AESKey”

o HTTP parameter — “__ VSTATEGENERATOR”

SYGN/A

23

MITRE ATT&CK Breakdown

1. Reconnaissance
I. T1595.002 - Active Scanning: Vulnerability Scanning
Il. T1592 — Gather Victim Host Information

. T1590 — Gather Victim Network Information

2. Resource Development
I. T1587.001 - Develop Capabilities: Malware

Il. T1587.004 - Develop Capabilities: Exploits

3. Initial Access
|. T1190 - Exploit Public-Facing Application
4. Execution
I. T1059.001 - Command and Scripting Interpreter: PowerShell

IIl. T1059.007 - Command and Scripting Interpreter: JavaScript/JScript

5. Persistence
I. T1505.003 — Web Shell
6. Privilege Escalation
I. T1055.001 - Process Injection: Dynamic-link Library Injection
Il. T1055.001 - Process Injection: Dynamic-link Library Injection
lIll. T1068 - Exploitation for Privilege Escalation
7. Defense Evasion
I. T1036.005 - Masquerading: Match Legitimate Name or Location
Il. T1036.005 - Masquerading: Match Legitimate Name or Location
lll. T1140 - Deobfuscate/Decode Files or Information
IV. T1070.004 - Indicator Removal on Host: File Deletion
V. T1134.001 - Access Token Manipulation: Token Impersonation/Theft
VI. T1562.002 - Impair Defenses: Disable Windows Event Logging
VIl. T1078.002 - Domain Accounts

VIIl. T1027.002 - Software Packing
8. Credential Access
I. T1056.003 - Input Capture: Web Portal Capture
9. Discovery
. T1135 - Network Share Discovery

Il. 71083 - File and Directory Discovery

SYGN/A

24

10. Lateral Movement

. T1550.004 - Use Alternate Authentication Material: Web Session Cookie

II. T1021.002 - Remote Services: SMB/Windows Admin Shares

lll. T1210 - Exploitation of Remote Services

IV. T1570 - Lateral Tool Transfer

11. Collection

I. T1005 - Data from Local System

12. Command and Control

I. T1071.001 - Application Layer Protocol: Web Protocols

Il. T1001 - Data Obfuscation

lIl. T1090.001 - Internal Proxy

IV. T1132.001 - Data Encoding: Standard Encoding

V. T1573.001 - Encrypted Channel: Symmetric Cryptography

VI. T1572 - Protocol Tunneling

SYGN/A

For more information:
www.sygnia.co

About Sygnia

Sygnia is a cyber technology and services company, providing high-end consulting and incident
response support for organizations worldwide. Sygnia works with companies to proactively build their
cyber resilience and to respond and defeat attacks within their networks. It is the trusted advisor and
cyber security service provider of IT and security teams, senior managements and boards of leading
organizations worldwide, including Fortune 100 companies.

94a Yigal Alon St., 488 Madison Ave., 52 Tras St., 2nd
29th floor, Tel Aviv, 11th floor, New York, floor, Singapore,
Israel, 6789155 NY, USA, 10022 078991

http://www.sygnia.co/

	Overview
	Windows IIS Server & Web Application Exploits
	Checkbox Survey RCE Exploit (CVE-2021-27852)
	VIEWSTATE Deserialization Exploit
	Altserialization Insecure Deserialization
	Telerik-UI Exploit (CVE-2019-18935, CVE-2017-11317)

	Toolset Infrastructure & IIS Platform Malware
	NodeIISWeb Malware
	Hooking Mechanism
	Payload Search
	Module Reflective Loading
	JScript Payload Execution
	Traffic Forwarding

	NodeIISWeb Reflective Loaders
	Reflective Loader DLL
	Loader Web Shell

	Second Stage Malware - ExtDLL.dll
	Additional Modules
	PSRunner.dll
	Forward.dll
	PotatoEx.dll
	E.dll

	Post-exploitation Activities
	Credential harvesting
	Reconnaissance
	Lateral Movement

	Similarities to the Copy-Paste threat actor
	Defending Against TG1021 Attacks
	Sealing .NET Deserialization Exploits & Best Practices
	Indicators of Compromise
	Files
	Additional IOCs

	MITRE ATT&CK Breakdown

