
AD O B E F L A S H Z E RO - DAY L EVE R AG E D F O R

TARG ETE D AT TAC K I N M I D D L E E A ST

June 7, 2018

By: Chenming Xu, Jason Jones, Justin Warner, Dan Caselden

Tags: Exploitation, File Analysis, Flash, Threat Detection, Zero-Day

ICEBRG’s Security Research Team (SRT) has identified active exploitation of a zero-day

vulnerability in Adobe Flash that appears to target persons and organizations in the Middle

East. The vulnerability (CVE-2018-5002) allows for a maliciously crafted Flash object to

execute code on victim computers, which enables an attacker to execute a range of

payloads and actions.

This blog will outline details on various aspects of the discovered attack, the potential

targeting of Qatar, and suggestions for defenses against similar attack chains. It is our goal

that by sharing this, defensive teams will be informed about recently discovered threat

activity and more broadly understand the type of indicators that can assist in identification

of similar attack vectors.

ICEBRG was the first to report the discovered vulnerability to Adobe, on June 1, 2018 at 4:14

AM PDT. Adobe acted quickly to coordinate with ICEBRG, reproduce the vulnerability, and

distribute a patch for its software on June 7, 2018. Many thanks to the team for working with

us.

AT TAC K OVE RVI EW

The exploit uses a Microsoft Office document to download and execute an Adobe Flash

exploit to victim computers. The exploitation process, detailed in Figure 1, begins by

downloading and executing a remote Shockwave Flash (SWF) file. Unlike most Flash

exploits delivered with Microsoft Office, this document uses a lesser-known feature to

remotely include all SWF content from the attacker’s server instead of embedding it

directly in the document.

https://helpx.adobe.com/security/products/flash-player/apsb18-19.html
https://www.icebrg.io/

The first stage SWF includes a RSA+AES cryptosystem that protects the subsequent SWF

stage, containing the actual exploit, which it downloads and executes. Appropriate use of

asymmetric cryptography, like RSA, evades traditional defenses such as replay-based

network security devices and prevents a post-mortem network packet capture analysis.

The second SWF stage, after exploiting the system and achieving code execution, uses the

same cryptosystem to download and execute shellcode to further enable the threat actor

to control the victim machine. Typically, the final payload consists of shellcode that

provides backdoor functionality to the system or stages additional tools. ICEBRG

attempted to retrieve the final payload during analysis but was unable to due to several

possible reasons.

Figure 1: Walkthrough of exploitation process

R E M OTE F L A S H I N C LU S I O N

The attack loads Adobe Flash Player from within Microsoft Office, which is a popular

approach to Flash exploitation since Flash is disabled in many browsers. Attackers typically

embed a Flash file within a document, which may contain the entire exploit, or may stage

the attack to download exploits and payloads more selectively (e.g. APT28/Sofacy

DealersChoice). This leaves, at a minimum, a small Flash loader that defenders can flag for

detection and analysts can fingerprint for tracking.

Contrary to typical tactics, this attack uses a lesser-known feature that remotely includes

the Flash content instead of directly embedding it within the document (Figure 2). Only

XML wrappers selecting the Flash Player ActiveX control and an OLE Object supplying

parameters are present.

https://researchcenter.paloaltonetworks.com/2016/10/unit42-dealerschoice-sofacys-flash-player-exploit-platform

Figure 2: Example Flash object included via “Movie” property which specifies remote

location of Flash object. This is purely an example of how the initial object can be included.

Remote loading of the embedded Flash object has multiple significant advantages:

Evasion: The document by itself does not contain any malicious code. Statically, the

best one can do is detect the presence of remotely included Flash content.

Dynamically, the sandbox/simulator must interact with the attacker’s server and

receive malicious content, necessitating that the analysis system has a live

connection to the Internet. Further, the attacker may selectively serve the next stage

based upon the requesting IP address or HTTP headers (indicating a specific

targeted environment). Once access is established, the attacker may decommission

their server and subsequent analysis of the attack must rely on leftover forensic

artifacts.

Targeting: Because the attacker can selectively serve exploits to the victim, they can

limit the attack to intended victims. The attacker can limit access to specific IP

addresses, either through whitelisting networks of target companies or individuals

via a regional ISP, or blacklisting cloud infrastructure and security companies. The

“Accept-Language” and “User-Agent” in HTTP headers may also be useful to

whitelist known victim locales and victim environments or blacklist security products

with non-standard or outdated responses. The ordering, inclusion, or absence of

HTTP headers in general may also discriminate between security products, real

victims, and intended victims. Lastly, “x-flash-version” includes the version of Flash

Player on the victim with which the attacker can choose their most effective exploit

server side.

Even with a minimal static footprint, upon document load, the remote Flash object will be

retrieved and executed within the context of Microsoft Office.

C RYP TO G R AP H I C RO UTI N ES

Data transmission from the attacker’s server to the client is protected by a custom

cryptosystem (Figure 3) leveraging a symmetric cipher (AES), that protects the data

payload and an asymmetric cipher (RSA) to protect the symmetric key. The custom

cryptosystem leverages a public Action Script library for low level operations.

Figure 3: Generic network retrieval and decrypt routine

Data transmission is initiated by the client, whereby the client HTTP POSTs a randomly

generated RSA modulus n and the exponent 0x10001, and the server responds with the

following structure:

0x0: Encrypted AES key length (L)
0x4: Encrypted AES key
0x4+L: AES IV
0x14+L: AES encrypted data payload

https://github.com/timkurvers/as3-crypto/tree/master/src/com/hurlant/crypto

Figure 4: Structure of encrypted data

To decrypt the data payload, the client decrypts the encrypted AES key using its randomly

generated private key, then decrypts the data payload with the decrypted AES key.

The extra layer of public key cryptography, with a randomly generated key, is crucial here.

By using it, one must either recover the randomly generated key or crack the RSA

encryption to analyze subsequent layers of the attack. If implemented correctly, this

renders packet capture in forensic analysis and automated security products ineffective.

Furthermore, the decrypted data payloads will only reside in memory, challenging

traditional disk forensics and non-volatile artifact analysis.

In this scenario, the attacker chose an RSA modulus length of 512 bits, which is considered

insecure by today’s standards and may be cracked with notable effort. Consequently,

offline analysis is possible, although more laborious than online analysis, whereby the

analyst may either instrument a mock victim or create a man-in-the-middle service, then

attempt to be exploited by the attacker.

The combination of a remotely included Flash exploit and asymmetric cryptography are

particularly powerful counters against postmortem analysis. Once exploited, the only

artifact residing on the victim’s system would be the initial lure document that only contains

a URL. In that scenario, responders may look to network packet captures to recreate the

attack. However, without the victim’s randomly created private key, it would be impossible

for responders to decrypt the attacker’s code and recover subsequent protected stages

like the exploit or payload. In this scenario, responders’ only saving grace would be the use

of a weak RSA modulus.

U S E O F Z E RO - DAY E XP L O IT

After decryption, the exploit payload is loaded and triggered to allow for follow-on code

execution. Although the document is a Microsoft Office document, the code is executing

within an Adobe Flash container.

You might ask, why conduct Flash exploitation within Microsoft Office? Over the past

several years, many browsers have hardened their attack surface in regard to external

plugins and applications, including Adobe Flash. An example of this hardening can be seen

with Google’s Chrome Browser v.55, which outright blocks Flash by default. On the other

hand, Office still supports embedded ActiveX controls, including Flash. According to

Microsoft, this will be changing with its Office 365 products in 2019.

https://www.bleepingcomputer.com/news/software/chrome-55-now-blocks-flash-uses-html5-by-default/
https://www.bleepingcomputer.com/news/microsoft/microsoft-to-block-flash-in-office-365/

The use of a zero-day, rather than an “N-day”, vulnerability is particularly interesting in the

context of the attack chain. A zero-day vulnerability is a vulnerability for which there exists

no patch, whereas an “N-Day” vulnerability is an attack that takes place “N” days after the

patch is available. There are numerous benefits of leveraging a zero-day exploit against a

target (Figure 5) .

Code execution with minimal interaction: The vulnerabilities used in zero-day exploits

typically trigger with little or no user interaction other than opening the document.

Due to patches and other protective mechanism, N-day exploits will frequently cause

a prompt, warning, popup or flat out will not work.

Higher success rates with less risk of discovery: Due to the minimally required user

interaction, users do not get suspicious of the document as easily and therefore do

not report the situation to internal security teams. Most user training focuses on

informing users of all the built-in security prompts rather than analyzing the overall

suspicion of a scenario.

Figure 5: Benefits of using a zero-day exploit

On the other hand, there are some negative aspects to using a zero-day vulnerability,

notably cost of operations and risk of additional investigation upon discovery. In 2015, leaks

of conversations involving Hacking Team revealed that zero-day exploits for Adobe Flash

were being sold for $30k-$45k per exploit. Additionally, when the discovery of a zero-day

happens, investigators will tend to dive deeper than if they discovered use of an older N-

day exploit.

N ET W O R K C O M M U N I C ATI O N S

During the attack, the weaponized document downloads the initial SWF stage and multiple

blobs of encrypted data from the attacker’s server and provides basic system information

to the same server, both over HTTP. All downloads contain a unique 32-byte parameter

named 'token', which is reused in the URI paths of other URLs passed as Flash parameters.

The SWF stages log data to the URL identified as 'stabUrl', which is on the same command-

and-control server. The URI is constructed by appending a random value onto a format

string (Figure 6), whose values will indicate the current function, and progress within the

function, that is transmitted to track successes and failures. For example, the value

reported after successful retrieval of the first stage is '0-0-0'.

stabUrl + “%d-%d-%d.png?x=”+ Math.random()

Figure 6: Computation of the stabURL

https://arstechnica.com/information-technology/2015/07/how-a-russian-hacker-made-45000-selling-a-zero-day-flash-exploit-to-hacking-team/

Once that is completed, a request is made to the 'encKeyUrl' parameter, which is the

second stage SWF containing the exploit. Upon retrieval of the second stage, a request is

then made to the 'downloadUrl', which is the shellcode payload. The command-and-

control server has not responded with a payload for the third-stage even when phoning

home from the assumed targeted region, which may signal that the campaign has been

ended. The second GET request to the stabUrl uses the values '2-0-1' to signify a

successful verification of a supported version of Windows. This is not significant for this

exploit since it returns true for any version between and including Windows XP to Windows

10. Examples of these network interactions can be seen in Figure 7 and Figure 8.

Figure 7: Network Communication observed during analysis

Figure 8: Network trace of HTTP Requests

P O S S I B L E QATAR I TARG ETI N G

The weaponized document (Figure 9), titled “ا��ا�� ا�����.xlsx” (translated to

“basic_salary”), is an Arabic language themed document that purports to inform the target

of employee salary adjustments. The document was uploaded from an IP address in Qatar

to VirusTotal on May 31, 2018. Most of the job titles included in the document are diplomatic

in nature, specifically referring to salaries with positions referencing secretaries,

ambassadors, diplomats, etc.

Figure 9: Lure document in Arabic purporting to show salary modifications

Within the document, the threat actor utilizes the domain “dohabayt[.]com” for malicious

content which also reveals additional clues as to the intended target. When broken down

into parts (Figure 10), the domain indicates a possible targeting of Qatar interests. The first

part contains “doha”, which is the capital of Qatar. The second part also may be mimicking

the legitimate Middle Eastern job search site “bayt[.]com” in a further attempt to blend in

on the network.

Figure 10: Attacker domain broken down into pieces

ICEBRG assesses with low confidence that these aspects indicate targeting of Qatari

victims based on geopolitical interests. Such focused targeting would not be surprising

given the hotbed of regional instability due to an ongoing blockade of Qatar by a number

of other Middle Eastern countries and recent allegations of Qatar using offensive

capabilities and contractors to target US political organizations.

This assessment should not be considered an attempt to aid or assess in true attribution of

the responsible party, but rather an attempt to provide relevant targeting information for

analysts to associate with a known activity group or campaign.

AT TAC K I N D I C ATO R S

Numerous atomic indicators (Figure 11) were identified through the attack chain of this

activity and might serve as an initial method of detection. Atomic indicators are generally

weak indicators given their ease of modification within the attack scenario and should only

be used as preliminary indicators while more robust methods are instituted.

Indicator Description

0b4f0d8d57fd1cb9b4408013aa7fe5986339ce66ad09c941e76626b5d872e0b5

SHA256 hash

of the

document lure.

185.145.128[.]57 IP Address of

https://en.wikipedia.org/wiki/2017%E2%80%9318_Qatar_diplomatic_crisis
https://www.nytimes.com/2018/05/24/world/middleeast/be-very-careful-conversation-cited-to-link-qatar-to-hack-of-gop-donor.html

shared hosting

provider

(abelons[.]com)

hosting

payloads for

exploit chain.

people.dohabayt[.]com

Domain used

for various

stages of the

exploit chain.

6535abc68a777b82b8dca49ffbf2d80af7491e76020028a3e18186e1cad02abe

SHA256 of SSL

certificate

observed on

malicious

infrastructure.

https://crt.sh/?

id=482419008

internationsplanet[.]com

Domain

associated

with SSL

certificate

observed on

malicious

infrastructure.

Figure 11: Table of atomic indicators

https://crt.sh/?id=482419008

Figure 12: Timeline of various dates associated with the involved indicators

While this attack leveraged a zero-day exploit, individual attacker actions do not happen in

isolation. There are several other behavioral aspects that can be used for detection. Any

single observable might be low confidence but multiple observables clustered might be

indicative of suspicious or malicious activity. Example observables include:

Use of Newly Registered and Low Reputation Infrastructure: The domains utilized in

this attack chain are very recently registered domains (Figure 12) and leverage low

reputation hosting providers and registars that commonly host malicious sites. The

hosting provider Abelons has been repeatedly included on spamhaus and abused by

attackers to deliver malicious content.

Staged Download of Flash: During the attack chain, the weaponized document loads

the malicious Flash object through remote loading resulting in observable HTTP

traffic resulting with the header “x-flash-version” pulling a secondary Flash object

(Figure 8).

Use of Newly Created “Let’s Encrypt” Certificate: A certificate observed being hosted

on malicious infrastructure, likely used for some aspect of a malicious campaign, is a

newly observed certificate (Figure 12) from a free provider that contains a hostname

mismatch with the server itself.

Office Document with Embedded Flash Using Remote Inclusion: The document

utilized in the attack utilizes an uncommon method of embedding Flash and such

methods, particularly from untrusted sources, should be considered suspicious.

Detections have been created and deployed to protect customers using the ICEBRG

platform.

ICEBRG is a network security analytics company that offers a SaaS capability that enables

customers to gain and utilize widespread network visibility for security operations. As part

of its research, ICEBRG coordinates disclosure of security threats and vulnerabilities with

relevant parties in order to maximize both the response and victim remediation efforts as

well as working to truly improve the security of customers and other victims prior to

publishing blog posts. To learn more about ICEBRG, contact us at info@icebrg.io.

SHARE:

C O P Y R I G H T © 2 0 1 8 A L L R I G H T S R E S E R V E D .

T E R M S O F U S E

P R I V A C Y & C O O K I E S P O L I C Y

I N F O @ I C E B R G . I O

mailto:info@icebrg.io
mailto:?Subject=Check%20out%20this%20article%3A%20Adobe%20Flash%20Zero-Day%20Leveraged%20For%20Targeted%20Attack%20in%20Middle%20East&Body=%20https://www.icebrg.io/index.php?p=blog/adobe-flash-zero-day-targeted-attack
https://www.icebrg.io/terms-of-use
https://www.icebrg.io/privacy-policy
mailto:info@icebrg.io

