NS5=C.... w77

Q4 2019

Ahnlab

ASEC REPORT

VOL.97 as42019

ASEC (AhnLab Security Emergency-response Center) is a global security response group consisting of malware
analysts and security experts. This report is published by ASEC and focuses on the most significant security
threats and latest security technologies to guard against such threats. For further details, please visit AhnLab,
Inc.’'s homepage (www.ahnlab.com).

SECURITY TREND OF Q4 2019 Table of Contents
SECURITY ISSUE * Endgame: AhnLab vs. GandCrab Ransomware 04
ANALYSIS IN-DEPTH * User-Mode Hooking Bypass Techniques 18

ASEC REPORT Vol.97 | Security Trend 2

SECURITY
ISSUE

* Endgame: AhnLab vs. GandCrab Ransomware

Ahnlab

Endgame: AhnLab vs.

Security Issue

GandCrab Ransomware

GandCrab ransomware, which is no longer active, was actively distributed for about a year
from January 2018 to May 2019. GandCrab variants caused damage worldwide, including
South Korea. AhnLab, a leader in cyber threat analysis, fought against GandCrab ransomware

to mitigate attacks and effectively respond to the constantly changing attack methods.

GandCrab ransomware shares an extraordinary history with AhnLab. Just like any other
ransomware, GandCrab searches for any running or pre-installed anti-malware program before
interfering with its normal execution and shutting it down. However, GandGrab was found
making an extra effort. GandCrab directly targeted ‘AhnLab’ and its anti-malware program, ‘'V3
Lite, by mentioning it in its code. GandCrab even revealed the vulnerability of AhnLab V3 and

made attempts to delete the program.

To effectively respond and protect against GandCrab attacks, AhnLab analyzed GandCrab and
all its different versions by thoroughly investigating the distributed code, encryption method,
restoration method, and evasive method used to avoid behavioral-based detection. Also,

anytime a new attack feature targeting AhnLab and V3 was identified, the product developers

ASEC REPORT Vol.97 | Security Trend 4

Ahnlab

promptly addressed it to ensure maximum security.

The conflict between AhnlLab and GandCrab Ransomware was a hot topic in both the IT and
security industry. However, what is known is only a tip of the iceberg. This report will provide

the full story of the long and complicated battle between AhnLab and GandCrab ransomware.

1. The Prelude to War (GandCrab v2.x)

On February 8th 2018, AhnLab announced the active distribution of GandCrab ransomware
in South Korea through its blog. Shortly after, on April 17th, AhnLab publicly released
GandCrab’s Kill-Switch by analyzing how GandCrab works. The kill-switch blocked and

prevented the encryption of files, thus interfering with GandCrab’s operation.

This triggered the war between GandCrab and AhnLab. Three days later, profanity against
AhnLab was found within the mutex name. However, GandCrab creator did not stop here but
continued to express anger towards AhnLab by changing the host address from 'google.com'
to 'ahnlab.com. The host address used for C&C server communication and was randomly

adjusted to avoid network filters.

Sleep{8x3EBu);
CreateMutexW(®, B, L"AhnLab fuck you zaebali suka™);
if (GetLastError() ?= 5 && GetLastError() ?t= 183)
1

sub_10003B46();

sub_10003590() ;

sub_18005368(&v2);
8;
bBinary = 8:
1 - ﬂ;
= ﬂ;
Figure 1-1 | Mutex including profanity towards AhnLab

ASEC REPORT Vol.97 | Security Trend 5

Ahnlab

The previously announced encryption blocking method was patched, and the internal
version of GandCrab v3.0.0 was updated. However, AhnLab immediately identified a new

method of blocking encryption by utilizing a pop-up message and published this finding.

2. Adversary Revealed (GandCrab v4.1.x)

By July 2018, GandCrab was being distributed by various methods including drive-by-
download methods, e-mail, executable files, or fileless, based malware. There was even a case
when a malicious script named ‘ahnlab.txt’ was distributed during a fileless attack exploiting

PowerShell.

While AhnLab was dealing with GandCrab in South-East Asia, Fortinet was also analyzing and
responding to GandCrab in real-time halfway across the globe. On July 9th, Fortinet released
an encryption blocking method that stops encryption if there is a‘<8hex-chars>.lock’ file of a

certain logic.

Based on the information, AhnLab confirmed that the new method was valid for the latest
version, v4.1.1, as well. On July 13th, AhnLab made an executable file tool and distributed it

to the public.

The GandCrab creator retaliated immediately. They included a sarcastic text within v4.1.2
towards both Fortinet and AhnLab by stating that the 'lock’ file isn't the only blocking
method. It then quickly responded by changing the file generation logic for the “lock’ file.
However, AhnLab figured out the logic of v4.1.2 and updated it in their tool as well as for

v4.1.3.

ASEC REPORT Vol.97 | Security Trend 6

Ahnlab

if (SHGetSpecialFelderPathW{®, (LPWSTR)v1 + 256, 35, 1))

{
u2 = (WCHAR =)sub_ HOS42D{ @x<EQCu) ;
y3 = y2;
if (vz)
{
GetWindowsDirectoryW{v?, 0x100u);
vi[3] = 9;
if { GetUolumelnFormationb(
3,
uld + 256,
Bx180u,
(LPDWORD)v3 + 384,
{(LPDWORD)u3 + 386,
(LPDWORD)v3 + 385,
u3 + 512, 4 1 2
Bx188u)) \, - -
{
wsprintiFu
&uvo,

=((_DWORD =)u3 + 38R) >> 2);
sub_uB2152(&v?, (int)&us, (LPUSTR)&GU7);

L"%X fortinet & ahnlab, mutex is also kill-switch not only lockfile)",

T = U
wsprintFW((LPUSTR)u1, L"%simis)
ui = CreateFileW{{LPCUSTR)u1, DOx
uid = {char =)ul + 1 = B;
v = {char =)ul + 1 = @;

y

else

P Custom Salsa20

GetLastError();
H

ock", (char =)u1 + Dx200, &u/);

aaooeou, 08, 0, 1u, MxL000000u, 0);

Figure 1-2 | GandCrab mentioned AhnLab and Fortinet in the Kill-Switch

While the kill-switch mentioned both AhnLab and Fortinet, the slightly modified internal

version of v4.1.2 only included the “ahnlab” string. It also included a specific URL address,

which contained profanity against AhnLab in Russian.

ifF (v2)

{

GCetWindowsbirectoryW{v?, Gx100u);
uvid[3] = 0;
ifF { CetVoalumelnFormationi(
'3 + 254,
Gx100u,
{LFDWORD)u3 = JBN,
(LPDWORD)u3 « JB6,
(LFDWORD)u3 « 385,
1 + 592,
@x100u))

wsprint fU(RuE, L%X ahnlab http://menesnix.net/media/created/ddodoq. jpg™, =({ DWORD
sub_&0Z152(kuB, (int)hus, (LPUSTR)GuG);

I = 0;
wsprintfu(v?, L"Global¥wls.lock™, &ui);

i = @z
CreateMutexu(®, 0, v9);:
if { GetLastError() t= 5 Bk GetLastError{) = WxB7)

vl = 1;

=)l

« JBR) > 2);

Figure 1-3 | AhnLab string included in the URL

ASEC REPORT Vol.97 | Security Trend

Ahnlab

[M dd0doq.jpg (6004500 x

= C [memesmix.net/media/created/dd0doq.jpg

fl 3anucan 1ebqa B CNUCOK
NHAA0NAcoB

Figure 1-4 | Profanity against AhnLab in Russian

3. GandCrab Strikes Back

In August, the creator of GandCrab officially began to strike back. Through an exclusive
interview with BleepingComputer, the creator sent the exploit source and declared
revealment of V3 Lite's zero-day vulnerability. The creator claimed that this was revenge for
the released Kill-Switch. The creator of GandCrab went on explaining that the Kill-Switch is no
longer effective in the latest versions. Then, the internal version of GandCrab v4.2.1 revealed
the attack pattern code for V3 Lite products, stating that AhnLab and GandCrab was finally

even.

ASEC REPORT Vol.97 | Security Trend 8

Ahnlab

"My exploit will be an reputation hole for ahnlab for years," Crabs stated, while also sharing a link to a
file storage service that hosted the alleged exploit.

[65:21:11] <> Hello, Catalin. I am GandCrab. Ping me when online
[85:21:57] <> I want to release ahnlab @day denial of service exploit.
[@5:22:23] <«

http://filestorage.biz/download.php?file

Archive password is GandCrab

Target: AhnLab V3 Lite
Type: Denial of service
Author: GandCrab

Abstract

Ahnlab V3 Lite Denial of service. Possibly can trigger full write-what-where condition with privelege escalation.
Tested on Win7 x86, Win7 x64, Win 10 x64

[85:24:15] <> It is an answer for kill-switch. Their killswitch has became useless in only few hours. My exploit
will be an reputation hole for ahnlab for years

[65:28:37] <> just as verificatinn Ilonk inside support message. I also set unusual bot price and expiration time.

http://gandcrab2pie73et.onion/ support

Figure 1-5 | GandCrab creator announces alleged exploit attack of V3 Lite

e Advanced view Time taken: 0.063 secs Test size: 9907 bytes [SEVE)
I Text FY
WiowbdRevert owEdF zRedrection
keanef32.dil

WiowBADiz able' owb4F 2R edirection
MiD eviceloConlralFile
ABCDEFGHUELMNOPQRS TUWWEY Zabodeighijkimnopgistunweyz01 23456783+
expand 18-byte kexpand 32-byte k2
@hashbreaker Daniel J, Barnstein let's dance salea <3
(@hashbreaker 1))
hey ahnlab, score - 1:7. Oday explait for Ahnlab W3 Like Denial of service. Possibly can trigger full wite-what-whers condition with privelege escalabon, pass G andCrab hitp: /filestorage. biz/ dower
jopochlen
RtComputeCre32
HeapH edlloc
Heap&lloz
[E T T s e
L4 >

Figure 1-6 | GandGrab’s message towards AhnLab hidden in GandCrab v4.2.1

The alleged attack code could trigger a BSOD if V3 Lite was installed in the system, and was
executed after encryption. AhnLab released an urgent patch immediately following the

exploit, thus preventing any impact from the exploit.

4. GandCrab’s Full-on Attack
Since then, the creator of GandCrab has made continuous efforts to uninstall the V3 program

through its scripts and those attempts became more sophisticated as time passed.

ASEC REPORT Vol.97 | Security Trend 9

Ahnlab

The first method used by GandCrab to uninstall V3 was by inducing user-interaction.

Within the distributed script, as shown below in [Figure 1-7], the creator included a code to

specifically drop and run the JS file, which deletes V3 service upon detection.

if (Running Check('V3 Service')) { _

try {J

if (uhwastvrten.FileExists ("$USERPROFILE%"™ + "phnazx.txt"))
Func CreateFile(cpaelli, "3USERPROFILESY" + 'tmtvgcslpw.js'): J

Drop and run the JS file to uninstall V3 when V3 service exists

RunJS ("wscript.exe "' + "IUSERPROFILEX"™ + 'tmtvgcsl

} catch (o) {}

~
} else {J

try {J
RunJS ("explorer.exe "' + WScript.ScriptFullName
} catch (=) {} .

WScript.Quit(); .

Func CreateFile('727272', "S$USERPROFILESY" + 'phnazx.txt');,

Figure 1-7 | GandCrab’s distributed script without obfuscation

The dropped JS file finds the path to the V3 deletion program and runs the corresponding

uninstaller according to the user’s Windows version, as shown in [Figure 1-8]. Afterward, it

checks for 60 seconds whether or not V3 has been removed.

+ jjfmznn +

lcdicgbguqo.ShellExecure("explozer.exe™, "™' + ygawti + elper.exe®*, ", “open®*, 0};
WScript.sleep()i
W52 RegDelete ("% ne ; Frum RN PRRD - NN | O y:

} else |
if (arz[0] == "€") { Windows 7,8,Vista
WSH.RegWrite ("HKEY CURRENT USER\\S Cl _] _ . . + jjfmznn +
7"y 2
lediegbguqo.ShellExecute("explorer.exe”™, ""' & yqowti + EVenTvwL.exe"", "", “"open®", 0)
W3icript.sleep()?
WSH.RegDelete(” _ CURRENT_USER e 1328 : E - - : Ik
1
)
while (true) |
if (Running Check('V3 Servi 1 \Wiait for manamum of 80 seconds fill the uninstaliation of W3
WScript.sleep(l100);
) else {
break;

1

iii = iii +

if (iii =— } |
break:

)]

Figure 1-8 | JavaScript that induces deletion of V3

ASEC REPORT Vol.97 | Security Trend

10

Ahnlab

Within that 60 second period, if the user clicks the ‘remove button’it allows the system to run
the notorious GandCrab Ransomware. This method required user interaction, which meant
that the deletion of the program could not be done in the background without the user
knowing it. This critical limit led the GandCrab creator to update its code on September 2018,
to allow the deletion of the V3 program without letting the user know, as shown in [Figure
1-9]. The upgraded method allowed the V3 uninstallation screen to be hidden from the user's

sight while also automating the click-button process to run GandCrab ransomware.

$al=(Get-Process -Name V3Lite).path | Split-Path: $a2 = §Sal+ Ninst.c
if([Syascem.T0.File]::Exiscs(5a2)){

$a3 = g

Uninstalls V3

starc-proce=zz $a2 §a3: Sa =

While (Sa -1l) {

Starct=5Sleep =8

Obtains the process class of executed uninstaller

$ad = Get-Processz '
if (Sa4) {
if([int]Sad4.MainWindowHandle -eqg 0) {
Start-5leep -seconds
Sends [Enter] to the uninstaller's window and switch into stealthy mode
} [WindowHelper]::SendKeysMe (Sad4.MainWindowHandle)

Figure 1-9 | Main function of the decoded PowerShell

A new executable, cmd.exe, was added in addition to the original process, uninst.exe under
Powershell.exe, for GandCrab v5.0. However, it did not stop here. It continuously altered the
structure of its process tree to evade V3's behavioral-based detection. After September 26th,

WMIC.exe was used instead of cmd.exe to uninstall V3 programs.

AhnLab made continuous updates to its anti-malware program, and GandCrab followed along.

It distributed GandCrab v5.0.2 that incorporated uninstallation using the existing Uninst.exe —

ASEC REPORT Vol.97 | Security Trend 11

Ahnlab

Uninstall, in addition to the AhnUn000.tmp -UC method. As shown in [Figure 1-10], this version
copies the Uninst.exe file to %temp%\AhnUn000.tmp, uses WMIC.exe to run the file as the -UC

switch, and changes the V3 product-deletion processor to runas.exe.

In its later versions, GandCrab v5.0.3 only used AhnUn000.tmp -UC to execute the deletion
of the program instead of using Uninst.exe, and in v5.0.4, the main agent for the program

deletion had changed to cscript.exe.

== explorer,exe (2120}
i eventvwrexe (3312)
- i eventvwr.exe (2336)
;é. powershell,exe {2048}

i cytres.exe (2372)

= cmd,exe (2232)
- @ runas,.exe (2384)
= (¥ install,exe (2480)
P ARRURO00.trp (2504)
=] CIT!U.EXE L£agE)
[# irunas,exe (2752
= (% AhRUNOOD,tmp (2764)
g vaLCli.exe (2316)
— = v 3LClI.exe {3064
= 45DCHLexe (1648)

#' DlIHost exe (1860)

“ DIHostexe (1212)

% DIlHost,exe (2564)

ul svchostexe (716)

= i:| svchostexe (768)

7 | AUDIODG,EXE {9680}
= F!;chust.exe (856}

=7 Piars awva { OEE2Y
Description: Windows 33 &2l
Company: Microsoft Corporation
Path: C:¥WindowsWSystem32emd. exe

Windows EH 7|

Event Viewer S,.,
Event Viewer S,,,
Windows Powe,,,
Yisual C# Cam,,,
Microsoft@® Res..,
Windows @3 .,
ChE HE2Z 2.,
AhnlLab Y 3lite |,
. CUsersy

COM Surrogate
COM Surrogate
COM Surrogate

Host Process 1.,
Hozt Process f,,

windows ZCL...
Hrct Dramrace £
4

. CEWIndowsW,,
AhnLab % 3lite ..,
“3Lite Comman,,,
W3Lite Comman,.,
ASDF Comman,,,

CetWindows,,
CHWindowsH,,
CHWindowsW,,
CHWIindows,,
CrWindows%,,
CHWindows,,
CEWIindows¥,,
CHWIindowsW,,
Crwllsers¥® .,

sEWIindow s,

CHlsers
C:%*Program Fil,
C:#Program Fil,
C:¥#Program Fil,
CHWindows,,
CrgWindowsS,,
CHWindowsW,,
CHWIindows,,
CWindows¥
CHWindows,,

oM i n A et

Command: "C:¥WindowsWsystem32Wemd.exe” /c “runas /trustievel:0x40000 "% TEMP % #AhnUR00O. tmp -UC~™

Figure 1-10 | Process structure of uninstalling

AhnLab continued to update its product in response to GandCrab’s weekly update through
its script. On November 6th, AhnLab added CAPTCHA to the V3 Lite uninstall program
to prevent automated deletion. As a result, GandCrab was unable to delete V3 after the

application of CAPTCHA, and removed the uninstall function from its distributed script.

ASEC REPORT Vol.97 | Security Trend 12

Ahnlab

5. Endgame, the Last Battle
While GandCrab distributed before December 2018 attempted to delete V3 in various ways,
GandCrab v5.0.4 discovered in January 2019 focused on terminating V3's operation instead of

merely uninstalling it.

The process to disable V3 Lite is shown in Figure 1-11.

Figure 1-11 | Process to disable V3 Lite

Before moving onto the next step, GandCrab checks and uses the sleep function to wait
15 minutes to check if V3 Lite is running. As the first step, an execution file (help22.exe) is
dropped to stop the service. The dropped file locates V3 Lite, and then duplicates Uninst.
exe, the V3 uninstall program, to %UserProfile%\help.exe. The duplicated help.exe file then

executes ASDCli.exe and stops the command to disable V3 Lite.

AhnLab immediately responded with critical security patches to respond to GandCrab's
update of uninstalling and disabling V3 program. AhnLab deleted ASDCli.exe and prevented
the stop command from being executed. AhnLab also upgraded the product by requiring
an additional string, other than /Uninstall, to remove the product. The long and complicated

battle between GandCrab and AhnLab seemed to have settled down.

ASEC REPORT Vol.97 | Security Trend 13

Ahnlab

However, the battle was far from the end. GandCrab’s creator continued to insult AhnLab
by adding an insulting text towards AhnLab in GandCrab v5.2. Distributed in February
2019, GandCrab v5.2 incorporated a time-delay technique to disturb the dynamic analysis.
GandCrab v5.2 included “AnalLab_sucks” text string within the Window procedure class
name that enables the SetTimer function. ‘AnaLab’ can be assumed as a typo for AhnLab.
Nonetheless, the creator of GandCrab consistently mentioned ‘V3 Lite’ and ‘AhnLab’ directly

within their distributed strings.

| USER3Z.Create¥indowExY

Us- 100413193 =7ibUD0AS (USERSZ. Create® indowExh,

= MULL
S_OVERLAPPEDIWS_MINIMIZEBOX | WS_MAX 1M | ZEBOX | WS_SYSHENU|WS_THI CKFRAME | YS_CAPT ION

:Ill = |:|

Cli¥idth = 12C (300,)
Height = 96 (150.)
hParent = FFFFFFFD
hMenu = NULL

hinst

Figure 1-12 | AhnLab text string that was used as a class name

GandCrab v5.2, distributed a month later in March 2019, no longer had the above-mentioned
text. Instead, a text insulting Bitdefender was included in the mutex. However, it was too

soon to assume that the long battle between AhnLab and GandCrab ransomware had ended.

After AhnLab had responded to GandCrab's plot of disabling V3 in January 2019, GandCrab
v5.2 added an evasive function in April to bypass V3's detection. Unlike the previous attempts
to disable V3 Lite, the new feature injected the malware into AhnLab's anti-malware update

program to perform malicious activities.

ASEC REPORT Vol.97 | Security Trend 14

Ahnlab

The evasive process of the V3 Lite is shown below in [Figure1-13].

| " Dacodes | h____ {Tam

OpenserviceA
‘W3 Service”

‘ Sleep (20 mins) ‘

l

Searches for Autoup.exe, the Runs Autoup_exe and injecis

update program of V3 malware H Executes malicious behaviors

Figure 1-13 | Evasive process used by GandCrab to bypass V3 Lite

Like the V3 disabling process, it first checks if “V3 Lite” is running. If the service is running,
it uses the sleep function to wait for 20 minutes before moving onto the next step. After
20 minutes, it searches for AhnLab anti-malware update program, Autoup.exe, then injects
the ransomware execution data into the program. When the injected code is executed, the
encryption process begins. AhnLab quickly released a security patch to address the above

process.

Figure 1-14 | GandCrab announces shutdown of its operation

ASEC REPORT Vol.97 | Security Trend 15

Ahnlab

As the famous quote, “everything in life has an end,” what seemed like a never-ending battle
between GandCrab and AhnLab came to an abrupt end when GandCrab’s creator announced
the end of its operation on May 31st, 2019. GandCrab's creator claimed that it made more
than enough through its operation, as stated in [Figure 1-14]. No new variants were released

ever since and GandCrab v5.3 is GandCrab's last released version.

Conclusion

The battle between GandCrab and AhnLab lasted for 478 days, starting from February 8th,
2018 — when AhnLab first mentioned GandCrab Ransomware via its blog (https://asec.ahnlab.
com), to May 31st, 2019 — when the creator of GandCrab Ransomware officially announced

the shutdown of its operation.

GandCrab and AhnLab’s battle highlights one if not the most crucial fact, the importance of
collaboration between security vendors and organizations to fight against advanced threats,
such as GandCrab RaaS (Ransomware-as-a-Service). It is also vital for security vendors to
continuously monitor threats and be resilient. It may seem as though the adversaries always
have a head start in the battle of security. However, advanced attacks cannot prevail if
vulnerabilities are promptly addressed and appropriate updates are made. AhnLab’s prompt

actions exemplified this.

AhnLab will continue to monitor security threats in real-time via its threat analysis and anti-malware
program. In continuous efforts to build a strong alliance with other vendors and organizations,
it will provide Tl (Threat Intelligence) through various channels. Although GandCrab’s operation

along with its long battle against AhnLab has ended, cyber-battle will never end.

ASEC REPORT Vol.97 | Security Trend 16

ANALYSIS-
IN-DEPTH

Ahnlab

User-Mode Hooking

ANALYSIS-IN-DEPTH

Bypass Techniques

Behavioral-based engine, within a sandbox or anti-malware, determines and detects
malicious attempts based on the behavior of the malware. User-mode hooking technique
is one of the most prominent techniques used to detect malware behavior. This technique
consists of injecting a DLL file to monitor the behavior of the malware when it is executed
and then hooking the key API functions required to perform the malicious activities. Thus,
when the malware calls a specific key APIs, the monitoring DLL file keeps a log of the APIs
used to determine the behavior of the malware. The DLL file can detect malicious activities

according to the pre-defined rules set by the analyst.

The user-mode hooking technique commonly targets the Native APIs provided by ntdll.dll. It
is because most malware uses resources related to process, memory, or file input. In doing so,
most APIs must call the system call via ntdll.dIl. However, as the number of security solutions
utilizing the user-mode hooking technique increases, techniques to bypass the security

products also increases.

The most well-known techniques used to bypass the user-mode hooking are as follows:

checking if the ntdll file is hooked, reloading the ntdll file, and directly calling the system call.

ASEC REPORT Vol.97 | Security Trend 18

Ahnlab

The first type of evasive method is checking if the ntdll file has been hooked. The malware
reads the ntdll.dll in the system folder and compares the memory with the loaded ntdll file
by process execution. If there is a difference between the codes, the malware determines
that the hooking is enabled, and proceeds to bypass the user-mode hooking by restoring the

loaded ntdll code to the original one.

The second type of evasive method is reloading the ntdll.dll within the process and not
calling the API from the previous loaded ntdll.dll by the process execution, which is not
possible in theory. This report, however, presents how a malware is able to reload the same

dll file using a simple trick.

The last technique is directly calling out the system call. The Native API of ntdll.dll calls out
the system call using a specific number assigned to it when requesting resources to the
kernel. Thus, using the assigned number, the malware can also call out the system call directly

to perform malicious activities.

This analysis report introduces several malware samples along with the techniques used to

bypass the user-mode hooking.

1. NTDLL Analysis Technique
e Malware Sample: Parasite HTTP (MD5: 6cd0020727088daeecd462b2d844d536)

Parasite HTTP was first introduced in July 2018. It started by analyzing whether or not the

currently loaded ntdll.dll has been hooked. The malware first loads the ntdll.dll, located in the

ASEC REPORT Vol.97 | Security Trend 19

AhnLab

system folder, to the memory and relocates it according to the process.

The malware then compares the API's starting byte of the original ntdll file within the

current process to the API's starting five bytes of the ntdll file, which was directly loaded and

relocated. If the ntdll file of the current process was hooked, the starting five bytes would

have been changed to a branch statement, and therefore, the API’s starting five bytes of the

two does not match. If the two does not match, the malware restores the five bytes’ value

from the original ntdll API's starting five bytes.

@ Dump - 00751000..0088BFFF = || =]] @ Dump - ntdll:77111000..771E6FFF

Address | Hex dump Command Address (Hex dump
' 2a HOP F112F1 90
1 o8 HOP 90
03?52F1D: 8BFF MOV EDI,EDI 8BFF
' 55 PUSH EBP 55
8BEC MOV EBP,ESP 7711 8BEC
8B45 14 MOU EAX,DUWORD PTR SS:[EBP+14] ' 8B45 14
29 (H1] 4 : 929
52 PUSH EDX F112F 52
5o PUSH EAX 1121 5o

FF75 10 PUSH DWORD PTR SS:[EBP+18] 7 F2 FF75 18
FF75 @Cc PUSH DWORD PTR SS:[EBP+8C] FF112F 21 FF75 BC
FF75 08 PUSH DWORD PTR SS:[EBP+8] Fi FF75 68

E8 1DDCO18@ CALL A8778B53 1 1 E8 1DDCEB1A8A
D POP EBP 1) 5D

C2 1088 RETH 18 1121 G2 16888

Command

NOP
HOP

(o] ® =

MOV EDI.EDI

PUSH

EBP

HMOU EBP,ESP
MOU EAX,DWORD PTR SS:[EBP+14]

W])]
PUSH
PUSH
PUSH
PUSH
PUSH
CALL

EDX
EAX

DWORD PTR SS:[EBP+18]
DWORD PTR SS:[EBP+8C]
DWORD PTR SS:[EBP+8]
77130853

POP EBP
RETH 18 b

Figure 2-1 | ntdll file comparison - (Left) Newly loaded ntdll file, (Right) original ntdll file

The following are the list of APIs and key parameters used in this technique.

1) kernel32.CreateFileW()

2) kernel32.GetFileSize() (NtQuerylnformationFile)

3) kernel32.VirtualAlloc() as file (or NtAllocateVirtualMemory)

4) kernel32.ReadFile() (NtReadFile) // hFile required

5) kernel32.CloseHandle() (NtClose)

6) kernel32.VirtualAlloc() as process

7) kernel32.VirtualProtect(] W authorization (NtProtectVirtualMemory)

8) kernel32.VirtualProtect() W authorization removed (NtProtectVirtualMemory)

Table 2-1 | APl used by Parasite HTTP to map ntdll file

ASEC REPORT Vol.97 | Security Trend

20

Ahnlab

NTDLL Reloading Technique
This technique involves reloading the ntdll file from the memory within the process. The
malware then uses the API of the newly loaded ntdll file. Since reloading the same ntdll.dll

within same process is not officially supported, various bypass techniques are used

2.1) Clone DLL
e Malware Sample: SmokelLoader (MD5: 393f3d59f3a481446cadecd492a909¢9)

If ntdll.dll in the system path is loaded using LoadLibrary() API, the existing handle for ntdll.
dll is restored without going through the remapping process. This is because the ntdll.dll
is already loaded is the current process. Meaning, the result will be restored to the loaded
address instead of reloading as the path and the name are identical. However, if the ntdll.dll is

loaded after being copied in a different path, it may be mapped to another memory area.

SmokeLoader malware copies the ntdll.dll to Temp path, and reloads the ntdll file through the
LdrLoadDII(). Afterward, it uses the APIs of the newly loaded ntdll.dll. Note that this malware
directly uses the LdrLoadDII() API of ntdll.dll instead of the common LoadLibrary() type API of
kernel32.dll.

The following are the list of APIs and key parameters used in this technique.

1) kernel32.CopyFileW() - FROM %system%\ntdll.dll ,TO \AppData\Local\Temp\D47F.tmp
2) ntdll.LdrLoadDLL()

Table 2-2 | Key API of the Clone DLL

ASEC REPORT Vol.97 | Security Trend 21

Ahnlab

The following is the memory area after the reloading. (Memory addresses are examples)

Address Size Owner Section Contains Access
0x64DD0000 00001000 D47F_tmp PE header R
0x64DD1000 000D6000 D47F_tmp text, RT Code, exports RE
0x64EA7000 00009000 D47F_tmp .data Data RW
0x64EB00OQO 00057000 D47F_tmp .rsrc Resources R
0x64F07000 00005000 D47F_tmp .reloc Relocations R

Table 2-3 | Memory area of the remapped ntdll file

2.2) File Mapping
e Malware Sample: AgentTesla Packer (MD5: 05e52cdae5537a7edfe3e5fd81765b1f)
e Malware Sample: Lokibot Packer (MD5: e00008afe709507e67ec48244618ceeb)

Instead of reloading the ntdll file by using the LoadLibrary() type API, the malware creates
a Memory Mapped File in the virtual memory via the file mapping method. The Memory
Mapped File is not recognized as a loaded library and exists mapped inside the memory.
Thus, it can find and call out the API from the mapped area instead of using the API of the
loaded ntdll file.

The following are the list of APIs and key parameters used in this technique.

1) kernel32.CreateFileW() - Acquires ntdll.dll handle
2) kernel32.CreateFileMappingW()
3) kernel32.MapViewOfFile()

Table 2-4 | Key APIs of File Mapping

2.3) Section Remapping
e Malware Sample: Ave_maria Packer (MD5: 286cf47399f885659d42a8364668533¢)

ASEC REPORT Vol.97 | Security Trend 22

Ahnlab

ntdll.LdrLoadDlII() API that was mentioned earlier in the “Clone DLL" section internally
calls the following in order when executed: NtOpenFile() = NtCreateSection() =
NtMapViewOfSection() APIl. Both CreateFileMapping() and MapViewOfFile() API that
were mentioned earlier in ‘File Mapping’ technique internally uses NtCreateSection() and

NtMapViewOfSection() API.

The Section Remapping technique is the method that directly uses internal functions of the
following two APIs: NtCreateSection() and NtMapViewOfSection(). Note that if SEC_IMAGE
is allocated to the page property value to set it as an executable image file when creating a

section, permission is granted to each section accordingly.

The following are the list of APIs and key parameters used in this technique.

1) ntdll.RtlDosPathNameToNtPathName_U(] - Acquires ntdll.dll path
2) ntdll.NtCreateFile() - Acquires ntdll.dll handle

3) ntdll.NtCreateSection(] - (...,.SEC_IMAGE,..)

4) ntdlL.NtMapViewOfSection()

Table 2-5 | Key APIs of Section Remapping

2.4) Manual Loading of DLL
e Malware Sample: Formbook (MD5: df0cf87da787021e9004d815f9650e09)

@ Luca Nagy

legaCortex ransomware manually loads and uses a
copy of the original ntdll.dll (for the encryption) in
order to evade user-mode hooking. It is also used by
hook and it's called "Lagos Island method".

lelele

Capt
RWF Cop

Figure 2-2 | SNS Post regarding DLL Manual Loading

ASEC REPORT Vol.97 | Security Trend 23

Ahnlab

Formbook does not use specific APls during the ntdll file relocation. Instead, it directly
reads the header of ntdll.dll and computes it to relocate it to the memory. The developer of

Formbook has named this technique as‘Lagos Island Method!

The malware loads the ntdll.dll via NtReadFile() to the memory, relocates it as a process
after arranging it to fit the file’s structure through an assembly command, then allocates the

memory with RWE permission (NtAllocateVirtualMemory()) and copies it to the memory.

00300000| 0813B0OO

00 00 00 (N ((W((((q(0(
7F 00 04| ("N ((° (
04 00 00 00 00 HZE

40 00 00 68 008 08| (¢

00 00 00 00 00

00 00 00 00 00

21 B8 01 21 54 68 NN ‘B (N[t

61 6D 20 6E 6E 6F is program canno
20 69 6E 4F 53 28|t be run in DOS
24 00 060 80 00 08| mode .NEES qedqed
E9 06 2F 86 2F 6E| -gA Sy /néy/n
EB 7E_BA 86 2F 6E|A™1 A~ nw/n

08580000 BO27B0OOO Priv| RWE RWE

Figure 2-3 | Relocates the data copy to the RWE memory area below

The following are the list of APIs and key parameters used in this technique.

1) NtCreateFile() - Acquires ntdll.dll handle

2) RtlAllocateHeap() - Allocates space for NtReadFile() (RW)

3) NtReadFile() - Reads ntdll.dll

4) RtlAllocateHeap() - Allocates space to relocate as a process form (RW)
5) Relocates with assembly command - Process form

6) NtAllocateVirtualMemory() - Allocates space for the new ntdll (RWE)
7) Copies with assembly command

8) Uses API of the new ntdll

Table 2-6 | Key APIs of Manually Load DLL

Unlike previous techniques, there is a ntdll file that has been relocated to the memory area

with an executable property.

ASEC REPORT Vol.97 | Security Trend 24

Ahnlab

2.4) Heaven's Gate
e Malware Sample: Miner (MD5: ed575ba72ea8b41ac2c31c8c39ce303b)
e Malware Sample: BlueCrab (MD5: c67d6dea99c657ee5f56b53e7f87d8ba)

The malware requires a 32-bit program to be executed in a 64-bit environment. Standard
hooking modules injects only the 32-bit dll file into the 32-bit program when it is executed.
Heaven's Gate technique, however, allows the 32-bit process to run the x64 command instead
of the x86 command. The malware uses this technique to switch the process to recognize 64-

bit code, and then calls out the API of the 64-bit dll file.

When the 32-bit program is executed in the 64-bit OS, all the ntdll.dll required for the x86 and

the x64 environment are loaded within the process memory, as shown below in [Figure2-4].

ppp.exe Oxea0000 184 kB G usersWjunW DesktopWppp.exe
advapiz2.di 0x76560000 g§40kB 12 Windows 32 J|HhAPT C:WwindowsWsysWowe4Wadvapiz2.dil 6.1.7601.17514
apisetschema. dl 0x40000 4kB ApiSet Schema DLL C: WWindows WSystem32Wapisetschema. di 6.1.7600. 16385
crypt32.dl 0x75d40000 1.11MB Crypto API32 i W\"J‘indu:-'n'sWS‘fs\f'.JO\"'JG-‘rWG'yptEZ.d\I 6.1.7601.17514
cryptbase. di 0x753e0000 43kB Base cryptographic API DLL C: Wwindows WSysWOWe4Weryptbase.dil 6.1,7600, 16385
gdiz2.dl 0x76410000 576 kB GDI Client DLL C:'WWindowsWsyswowes4adiz2.dl 6.1.7601,17514
imm32.dl 0x76260000 384kB Multi-User Windows IMM32... C: W‘\“J‘ir\do*A'sWSys'u."-JOW64’¢ﬁmm32.dll 6.1.7601.17514
kernel32.dl 0x76040000 1.06 MB Windows NT J|dFAPT EC}.. C:WwindowsWSysWOWE4kernel32.dI 6.1.7601.17514
KernelBase. dll 0x77730000 280kB Windows NT J|8FAPI 22t.. C:'WWindowsWSysWOWa4WKernelBase. dl 6.1.7601.17514
locale.nls 0xfO000 412kB C:'WwindowsWSystem32Wlocale.nls
Ipk.dll 0x76150000 40kB Language Pack C:WwindowsMsyswowe4iipk.dl 6.1,7600. 163385
mpr.dll 0x75630000 72k C}E 22 CHE DL C:Wwindows'WsysWowa4Wmpr.di 6.1.7600. 16385
msasn 1.dll 0x77d60000 48kB ASN.1Runtime APIs C: WWindows WSysWOW6E4Wmsasn 1.4l 6.1.7601.17514
msctf.dl 0x75f70000 Bl16kB MSCTF Server DLL C: WWindows WSysWOWe4Wmsctf.dl 6.1.7600,16385
mevert.dl 0x762c0000 §88kB Windows NT CRT DLL C: WwindowsWSyswowe4Wmsvert.di 7.0.7600.16385
ntdll.dl 0x77bb0000 166 MB NT HISDLL C:WwindowsWSystem32¥intdl. di ©.1.7601,17514
ntdl.di 0x77d90000 1.5MB NT HIEDLL C: Wiindows WS ysWOWSE4ntdl. di 6.1.7601.17514
lom= .Y 4 mr aam [T | = oaw Lo~ Mbedenez Akl 1nimin e akded 1w n 4 e dEd A

Figure 2-4 | 32-bit process with both x86 and x64 ntdll file loaded

When the 32-bit process attempts to approach the kernel, a native APl of the 32-bit ntdll
file is called out just like the x86 environment. However, since the environment of the
running process is in the x64 environment, 32-bit ntdll file is not the one that calls out the
system call. Instead, the 64-bit ntdll file calls out the system call after switching to 64-bit via
X86SwitchTo64BitMode() API of wow64cpu.dll.

ASEC REPORT Vol.97 | Security Trend 25

Ahnlab

However, Heaven’s Gate technique does not follow the common process. Instead, when a 32-
bit program is executed in the x64 environment, it allows the process to run the x64 assembly

code instead of the x86 assembly code.

It is done through following steps:
The CS register on the top left side of [Figure 2-5] is 0x23. The interpretation method of the
CPU’s code can vary depending on the value of the register. CPU interprets the CS register as

x86 code if it is 0x23, and x64 code if it is 0x33.

The goal of Heaven's Gate is to change the value of a CS register to 0x33. However, since
the value of the CS register cannot be changed directly, Heaven’s Gate uses the ‘retf’ (return)

command to change the EIP value of x64 code and the value of a CS register to 0x33.

First, it uses ‘push’to save the retf (0xCB) command and the CS register value (0x0033) to the
[ESP+4] stack. Afterward, it uses the assembly call command to save the address 0x17001b
to stack [ESP] as the return address value. 0x170014h, executed by the call command, is retf

(0xCB), shown below in [Figure 2-6].

00000000 00170011 633300cboo 0CBOO33h
00000000 00170016 e8fofftiff 00170014

00000000 0017001b 41 ESP 00170018
00000000 8017001C £sPed |
00000000 0017001d

ANNANANANANAN" AMAA “TANA ~

00CB0033

ESP+8

Figure 2-5 | Commanding push and call to convert x86 code to x64 code

ASEC REPORT Vol.97 | Security Trend 26

Ahnlab

When the call occurs, the command ‘retf’ is executed as shown blow in the [Figure 6]. As a
result, esp 4 bytes is changed to eip, and 2 bytes of esp+4 is changed to CS. In other words,
by setting eip as an address that will be read in 64-bit and changing the CS register value to

0x33, the CPU interprets the address' machine code in 64-bit language.

00000000 00170014 cb retf

ESP \00170018
— EIP

ESP+4 00CBOO33, ¢

ESP+8
cs l/

0033 :00000000 0017001d 4c8bec mov ri3, rsp

Figure 2-6 | When configuring eip and CS register via ‘retf’command, interpreted by 64-bit language

It then performs malicious behavior by using the switched x64 code to call out the 64-bit

ntdll functions or loading another 64-bit dll instead of loading the ntdll file to the memory.

Following are examples:
(D Calling out 64-bit ntdll functions — Miner
Miner malware scans the OS architecture to be injected into the 64-bit process. It runs wuapp.

exe for x86 and 64-bit notepad.exe of %WINDIR% path for x64 through ‘suspend!

T~ = 1
n7] sss.exe (1704) &4 = B B notepad.axe (2888) 444 [E=ney %)
| Environment | Handles | Job | GPU | Disk and Network | Comment | Environment | Handles | Job | GPU | Disk and Network | Comment
General | Statistics | Perfarmance | Threads | Token | Modules | Memary General | Statistics | Performance | Threads | Taken | Modules | Memaory
File File
1A I [l =&
|! J (UMVERIFIED) - (verified) Migrosoft Windows
Version: NjA Version: 6.1.7600.16385
Image file name: Image file name:
C¥Usersiun Whesktop s exe " C:WwindowsSystem 32 Wnotepad. exe ;]
Process meca Process
Command lne: "C: WusersWjun'WesktopWsss.exe” & J Command line: -a ryptonight -0 stratum+tcp:fxmr-usa.dwarfpool.com:805 |
Currentdirectory: C:'WUsersiiunWDesktop Currentdirectory: C:¥WUsersWiun¥DesktopW
Started: 2 days and 23 hours ago (2 F 6:15:45 2019-11-08) Started: 5 seconds ago (2% 5:27:41 2019-11-11)
PEB address: O Fefdf000 (32-bit: Ox7efde0na) Image type: 32-hit PEB address: Ox7fffTTd2000 Image type: &4-bit
Parent: explorer.exe (2408) & ‘ Parent: ssz.exe (1704) L
Mitigation polides: DEP (permanent) | Details \ Mitigation polides: DEP (permanent) Details J
Protection: None | Permissions Terminate J Protection: None Permissions Terminate]
Close Close
L]

Figure 2-7 | (Left) 32-bit malware, (Right) The injection target, 64-bit notepad.exe

ASEC REPORT Vol.97 | Security Trend

27

Ahnlab

It then uses the previously explained ‘Heaven'’s Gate’ technique to convert to x64 code and
imports specific APl address by finding 64-bit ‘ntdll.dIl’ from the LDR structure of PEB. The
process is same as the one introduced in the open source, and it can be assumed that the

library from the website was used.

- OPEN SOURCE: (HTTPS://GITHUB.COM/RWFPL/REWOLF-WOW®64EXT)

The names of APIs imported from 64-bit ntdll file are as follows:

NtGetContextThread
NtReadVirtualMemory
NtUnmapViewOfSection
NtAllocateVirtualMemory
NtWriteVirtualMemory

NtSetContextThread

Table 2-7 | APIto be called out after the switching

API that was introduced in [Table 2-7] is the API frequently refer to as the process hollowing. It
approaches the PEB of a suspended notepad.exe process and imports ImageBaseAddress. After
that, it frees the imported address and allocates memory equal to the amount of PE (miner) for
injection, and injects the malicious PE. Finally, it manipulates ImageBaseAddress of PEB as the

allocated memory address and manifests PE injected through ResumeThread() API.

(2 Loading 64-bit dll files to the memory - BlueCrab Ransomware
BlueCrab ransomware scans the user’s OS architecture before exploiting CVE-2018-8453, the
system privilege escalation vulnerability. For the x86 environment, the privilege escalation

occurs through the vulnerability routine, while Heaven'’s Gate technique is used to execute

ASEC REPORT Vol.97 | Security Trend 28

Ahnlab

the vulnerability routine for the x64 environment.

BlueCrab uses 64-bit ntdll.LdrLoadDLL() to additionally load various 64-bit dll files, such as
gdi32.dll, msvcrt.dll, kernel32.dll, kernelbase.dll, and rpcrt4.dil. If the x64 dll files loaded is not
hooked like the x86 dll file, it can be assumed that the malware has successfully bypassed the

hooking.

Mame Base address Sze Description Pl name Mame Base address Size Description Fie name Wersion

PRp.EXE Oxeal000 184 k8 CWusersWjunWoesktopWppp.exe PRp.ExE Oxeal000 184 kB CWusersWiunWoesktopWppp.cxe
advapi32.dl (6560000 64048 113 Windows 32 7|BFAPL Ca Wiindows WS ysWOWE4Wadvam3z.dl advapiaz.dl Q2400000 a7%ks 13 Windows 32 71H AP Ci¥indowa Waystem3ZWadvapis2.dl 6.1.7600. 16385
apsetschesa.di Cx40000 4k8 ApSet Schema DLL C:Wwindows Wsystem 37Wapsetschema. il | advapi32.dil OxPE560000 640KS 113 wWindows 32 JIHFAPT C:Windows WSyswOWESWadvep32dl B LML 17514
eypti2dl 075440000 L11ME Cryplo APII2 Q40000 468 ApSat Sohwma DL CWiindows WS ystem32Wanse tschama. dl £.1.7600.16335
oypibase. i TSEe0000 ! Ox7PSd40000 1L11ME Cryplo API3Z C:Windows WS reWOWEA Woryot12.d 6. 1L.7601. 17514
pda2dl 410000 075860000 48E8 Base cyptographic PIDLL € . £.1.7600. 16335
3zl OxPE260000 i 60000 4128 GOI ChentDLL CWiindows WS ystem32Wpd32.dI 61760117514
ksl 32l x76040000 LOBME WindowsNT J|Etapr @b, o s O 410000 SPEEE GOl ClentDLL S Wiindows WeyswOwWesWad 3201 5. LML 17514
KerneBase.dl 7770000 /048 Windews WT N APT Bk G o D PE260000 ARE Mun-User Windows IMM3Z .. CWWIRGows WSrsWOWEWimm 32 5 1760117514
locale nis Oachi0D00 2i8 OPE090000 LOGMB Windows NT ZIEh APt BTh.. C:WiWindows WSrswOWE Weemel 321 61760117514
-2] 076150000 HWEE Languagt Pak O77aB0000 1AZME Windows NT I8 ap BCE.. C:'Wiindows'WSysiem32ZWiernel 32.dI 6.1.7601.17514
mgr.dl O 7SERI000 nw [HE 3022600 390000 AW Windows NT 2/8HarT @3, C:Wiindows Woystem1Ziiemefase. & £ LM0L17514
msasnl.dl 0w 7350000 4948 ASN.1Runbeme APls CTTTI000 200k8 Windows NT 21 apt B2E.. C:Wiindows W ysWOWEsWitermelBiase. il 6.1.7600. 17514
mactf.di x7SFIO000 BIGME MSCTF Server DUL D000 H2B
mevart.dl OxEI0000 6B3ME Windows NT CRT DL 240000 S6K8 Language Pack 5.1.7600. 16385
ntdl. OxTROO0N LEEME MNT A@OW 075150000 40k Language Pack 6.1.7600. 16335
el Ox 7790000 1.5M8 NTHE&DW Ox TSE£0000 nye OF F2732EHoL 6.1.7600. 16385
32l 0x77E00000 LISME Windows B Micosft OLE O TRIS0000 4968 ASN,1Runtme APTS 5.1.7601. 17514
oo TT20000 960k WA BN IS TERW OXTSEA0000 BI6 KB MSCTE Server DLL 6.1.7600. 16385
sechost.dl O P8£00000 WOKE Host for SOMSDOLLSALoo... C: e 30000 63648 Winclows NT CRLT DLL 7.0.7600. 16385
shel32.4 Ox76620000 12.29MB Windows @ EE DI O T 200000 688 Windows NT CATDLL 7.0.7600. 16385
shiwaps.dl B TTIE0000 4ake @ EZ 0IF SWIE 2% ExFRbOGO0 1SSME NT M@ DL &30 1784
spuch el Ox7580000 334KE Security Support Previder In. OxTA90000 L5ME NT H&oDu 61760117514
wseriz.d 76150000 v CHE METHwindows AHE OuPPB00000 LISME \Wincows S Micosoft OLE A L MSOL1TS4
w0 10.dl Dx7S96000) G2AME Lniscribe Linicode seript pro o200 LM BRZRNMIBUER o L7001 17514
wetheme. di Ox74TE0000 S12M8 Miosoft UxTheme 2I01EL. 5 Wtheme. part G000 w0k HAZZAWH S8 TER CWiindoms W owed . L M60L 17514
woites. o8l 0 74580000 JeE FBSEEEFM 350000 124K Host for SCM/SOOLASA Loo.., 6.1.7500. 16385
— T4ER000 352MB Windows MTTP Senvices OxPEE00000 100 KB Host for SCM/SDOLASA Loan.. C:Wilinclome WS e W OWE4! 6. 1.7600. 16385
winerm.dl 07450000 20046 MCLAPTDLL 620000 1239ME Windows 8 BE 0l B L7E0L 17514
wowea dl Ox 75680000 25268 Win32 Emulation on NTE4 C:¥Windows WS ystem 32 Weows4.di shiwapi & Dx77IE00N00 3k @ 22013 RVAE ... Wiindows' 6. 1.7601. 17514
P | OxTSTI0000 I2E AMDE Wows4 CPU CrWWindons WS yetem 31 W mowEdcpu. o sspuch.dl 0% 75850000 38468 Security Support Provider In... ¥ LML LTS
wowEn.dl G700 %8ME Wowsd Conscle and Win3Z... CriWndowsWSystem3ZWeonSdwind | wseri2d Ox75150000 148 CHE AHE Al windows AHE... 6.L.7601.17514
e 52 77950000 0.58MB CHE AME Thwindows AHE... WS 6.1 760117514
wpll.dl GmoS0000 S48 Unsabe = ¥ 1.636. 7601 17...
w=p10.dl D 75960000 G288 Uniscribe Unicode script pro... C:Wiindoms WSysWOWE4Wuso 10,41 LE26.760L.17...
uctheme.dl OxPFE0000 512K8 MoosoftiTheme 2H0|EL.. C:Wiindows'Ws: Wooctheme, &l 6.1.7600. 16385
weio.dl 074880000 Mee HE@ZI2EDAM C:¥Windoma ¥ e, ol 61760117514
wirhtip.dl 74850000 a8 Cr¥Windows WS Wit di &1L M0 17514
wineren, o Ox 74850000 Widinckms W Wl 1750117514
wowtA.dl 75680000 252 A wes S ookl 1
wowbdcpu.dl 757 0000 C:Wavindows WS ystem32Wwowsacpu. dil
wecrvrlidvin, ol D T5620000 WindZ.. CWindows WSystem 32 Wovdmindl

Figure 2-8 | (Left) Before Heaven'’s Gate technique is used, (Right) various x64 dll files loaded with the use of Heaven’s Gate

The differences can be clearly seen by comparing the 'File name' tab between the left and
right side, focusing on 64-bit dll files that exist in ..\System32\ path, as shown in the [Figure
2-8]. It shows that 64-bit dll files can be mapped to the 32-bit process.

User-mode hooking techniques commonly only hook x86 dll files for x86 programs and
leaves out x64 dll files. However, as shown in the samples, monitoring becomes impossible

for the APIs of 64-bit ntdll files, used after the deployment of the Heaven'’s Gate technique.

AhnLab’s analysis indicated that for the sample, only the 32-bit hooking module (MeDVpHkU.

ASEC REPORT Vol.97 | Security Trend 29

Ahnlab

dll) was loaded to the process memory when a 32-bit program was executed in the 64-bit OS.
Only the 32-bit dll files was targeted for hooking. Therefore, it can be assumed in [Figure 9]

that for the samples using the technique, 64-bit dll file was not hooked.

0:004> u USER32_76650000 |FindWindowd

USER32_76650000!FindWindowh:

0oo00D0D" 7666ffeb 2909849999 inp HeDVpHkU+0=83f4 (00000000 100083£4) L//

ooooooonD” 7eceffeb 33c0 HOT Eax, eax

oooooo00" 7666ffed S50 push rax

00000000 76ebffee ££750c push gword ptr [rbp+0Ch]

0oo00000" 7eebfffl ££7508 push gword ptr [rbp+8]

goooooo0"7eeefffd 50 push rax

0oo0o000" 766eff£f5 50 push rax

00000000 7666fff6 =B2cffffff call USER3Z_76650000! CharUpperBuff A+0x=0 (00000000 7666££27)

0:004> u user3Z!Findllandowh
useri2 |FindWindowa:

ooooooon- 77088270 4883=c3d sub r=p, 38h

goooooon- 77088274 8364242000 and dword ptr [rsp+20k].0

oooooooo- 77088279 4cB8bca mnow r9, rdx

goooooonT?708827c 4cB8bcl nowv r8. rocx

gooooQon*7708827f 3342 b(mh edx, ed=

oooooQoonT 77088281 3329 ®oT BCK, 8K

goooonon* 77088283 e80c000000 call uzeri? | FindWindowA+0=24 (00000000° 77088294)
goooo0on* 77088288 4583438 add r=p, 38h

Figure 2-9 | (Top) Original 32-bit user32.dll, (Bottom) newly mapped 64-bit user32.dlI

3. Direct System Call
e Malware Sample: Trickbot (MD5: 104b457b6d90fc80ff2dbbcebbb7ca8b)

For the key APIs related to the injection, Trickbot directly organizes and calls the system call
without going through APIs such as ntdll. APIs that are targeted by the direct system call are

all related to the injection. It is as shown below:

NtUnmapViewOfSection()
NtCreateSection()
NtMapViewOfSection()
NtWriteVirtualMemory()
NtResumeThread|()

Table 2-8 | APIs targeted by Direct System Call

The number of system call varies depending on the Windows version. That is why the malware

needs to go through the process of saving the number of a target system call. Trickbot brings

ASEC REPORT Vol.97 | Security Trend 30

Ahnlab

the whole path of ntdll after referring to the LDR__Module structure when calling the system
call. It brings the path of the ntdll.dll (system32 folder in x86 environment, and syswow64 folder
in x64 environment) and loads the ntdll.dll to the memory allocated with VirtualAlloc() via

ReadFile(). The rest of the process is similar to that of Manually Loaded DLL.

The difference between the two techniques, however, is that the technique above only grants
RW authorization instead of RWE, and only VirtualFree() the memory once the malware acquires

the number of the target system call.

The system call number is acquired via the following steps. Assume that the system call number
which is put into EAX for NtWriteVirtualMemory() is 0x18F. Trickbot first finds the address of
NtWriteVirtualMemory() and then acquires the number 0x18F through the 4-bytes value that
follows after 0xB8, which is the “MOV EAX"” command.

B8 BFBloee8 |MOV EAX,18F ntdll.NtWriteVirtualMemory(guessed Argl,
BA @@B3FE7F |MOV EDX,7FFE@3080

. FF12
. (2 1400 RETN 14
90 NOP

Figure 2-10 | System call number of NtWriteVirtualMemory() is 0x18F

The following is the function for acquiring system call number, and the routine to directly call
it. Taking a look at the address, it can be seen that Trickbot's codes have been fully executed,
including the part where system call can be called without having to use KiFastSystemCall() API

within the ntdll file.

cC

68 399987E4 |PUSH E4879939 NtWriteVirtualMemory
E8 46F3FFFF

E8 C1FFFFFF

C2 1400 RETN 14

cC

MOV EDX,ESP DirectSyscall()
SYSENTER
RETN

Figure 2-11 | (Top) Functions before importing the NtWriteVirtualMemory() number, (Bottom) Same as KiFastSystemCall()

ASEC REPORT Vol.97 | Security Trend 31

The following are the list of APIs and key parameters used in this technique.

Ahnlab

Repeats at each instance of calling system call

1) kernel32.CreateFileW(] - Acquires ntdll.dll handle

2) kernel32.GetFileSize() - Finds ntdll.dll size

3) kernel32.VirtualAlloc() - Allocates space for ReadFile() (RW)

4) kernel32.ReadFile() - Reads ntdll.dll

5) kernel32.VirtualAlloc() - Allocates space for relocation in the form of process (RW)
6) Relocates through asm command

7) Finds system call number through asm command

8) Executes direct system call

Table 2-9 | Direct system call’s overall process and APIs

ASEC REPORT Vol.97 | Security Trend

32

ASEC REPORT &, AhnlLab

Contributors ASEC Researchers Publisher ~ AhnLab, Inc.
Editor Content Creatives Team Website www.ahnlab.com

Design Desigh Team Email global.infofdahnlab.com

Disclosure to or reproduction for others without the specific written authorization of AhnLab is prohibited.

©AhnLab, Inc. All rights reserved.

