

It's not the end of the world: DarkComet misses by a mile

Reversing the DarkComet RAT's crypto- 3/13/2012

Jeff Edwards, Research Analyst, Arbor Networks ASERT

In this article, we will continue our series on reversing DDoS malware crypto systems. Previous subjects have included

Armageddon, Khan (now believed to be a very close "cousin" of Dirt Jumper version 5), and PonyDOS. Today we'll be

diving deep into the details of DarkComet's crypto. Over the last several months, we have encountered a large number of

DarkComet samples, numbering well over a thousand. DarkComet is primarily a general purpose remote access trojan

(RAT). It's capabilities support quite an extensive laundry list of mischief, including but not limited to key logging, web

cam (and sound card) spying, deleting victim files, scanning ports, hijacking MSN sessions, etc.

Figure 1. Dark Comet's pretty logo

http://ddos.arbornetworks.com/2012/03/its-2012-and-armageddon-has-arrived/
http://ddos.arbornetworks.com/2012/03/kahn/
http://ddos.arbornetworks.com/2012/03/not-just-a-one-trick-ponydos/

Arbor Networks | 2

Of course the malware includes DDoS capabilities as well - hence our interest in reversing its communications so that we

can keep tabs on whom the DarkComet botnets are attacking. In fact, it is believed to have been used as a DDoS weapon

by supporters of the Syrian regime against opposition forces in the recent Syrian uprisings; TrendMicro has a nice article

/on this topic.

DarkComet has been studied by a number of researchers. In particular, in November 2011 Laura Aylward of Contextis

published an excellent analysis [http://www.contextis.com/research/blog/darkcometrat/] of Dark Comet in which she

described the basic cryptographic mechanism used by DarkComet bots to hide their communications; Laura's analysis

saved us a considerable amount of time. It was also included in Curt Wilson's recent survey of modern DDoS weapons .

The DarkComet sample upon which we will primarily focus on today is 462,848 bytes in size and has an MD5 hash of

63f2ed5d2ee50e90cda809f2ac740244. It happens to be an instance of DarkComet Version 4.2; however, the

results presented here apply to most other versions of DarkComet as well.

When executed in a sandbox, we observed it connecting to a command & control (C&C) server at newrat2.no-

ip.org on TCP port 1604. The RAT uses a raw TCP protocol to exchange information with its C&C; on the wire, the

comms look something like this (modified and re-encrypted to protect some of our sensitive sandbox information):

C&C:

155CAD31A61F

Bot:

0F5DAB3EB308

C&C:

1B7D8D3BBF14C6B619480C265C2F4664F9DCB878EA7DFC6F2637

Bot:

35769F079329B4E04603496A432E5A7CFC90A477F478F07A3826A1B436AB92852B685636

F72B52C56D70434D7691F3307D637118B869586A1D19FD15B8C6AE14F8F8C57EFAFCCC09

964E8EE8EED553886AB188665F1AB96586F4F2581C093E75DCF2A8ADC817558BF3452344

0CDBE43CA4C05AC6E8D90D00F35BE795A44AE0E2EDE36C061EAEBD754461F680DBD9893A

CF6211698AF22B0BBB92A9B47363AE86E69A08C29DD3DBA59D287E4A0E12664B312A81C0

E9FE4D6E538AB5CC8952CCB372869F57D168CE8ABB52B8D7F8E78547A5EB009931735868

http://blog.trendmicro.com/darkcomet-surfaced-in-the-targeted-attacks-in-syrian-conflict/
http://www.contextis.com/research/blog/darkcometrat/
http://ddos.arbornetworks.com/2012/02/ddos-tools/

Arbor Networks | 3

ADEC6BA2B73A94C7A9A6784B1A81C58CF746D384B645DD02D4616479A055420DADEF0458

658A33EEA62BF7F12ABF1C0E00CB6B971869FBC275A3270E8DEBFA20E53E8C3BC6CA2744

A88897E0B16FBBDCAA731B93A72D75FF6DC297

Bot:

KEEPALIVE144357

Bot:

C: KEEPALIVE160360

C&C:

S: KeepAlive|27120274

Bot:

C: KEEPALIVE176363

Bot:

C: KEEPALIVE192366

C&C:

S: KeepAlive|27160288

Figure 2. Example of DarkComet's encrypted comms

These communications are consistent with those reported by Contextis in their DarkComet report. It certainly looks like an

initial "phone home" exchange of information, after which the bot and C&C send periodic "Keep Alive" messages to each

other. Besides being encrypted, this protocol is somewhat unusual in that the C&C sends the first payload; it is much more

common for the bot to send the first payload.

So in order to develop a tracker that impersonates a DarkComet bot so as to snoop on DDoS attacks, we need to reverse the

malware's crypto system and write decryption and encryption routines in Python. Let's start reversing by loading a process

memory dump of the running bot in IDA Pro. We'll then start poking around looking for routines that might implement the

phone home protocol. Since DarkComet clearly uses raw TCP for communication (as opposed to, say, HTTP), we'll focus

on finding WinSock2 calls such as socket(), connect(), send(), and recv().

Well, it turns out that the bot is riddled with vast numbers of WinSock2 calls; not surprising, since DarkComet has a great

deal of RAT functions that require network communication. So to narrow down on the actual bot-C&C comms loop, we

http://www.contextis.com/research/blog/darkcometrat/
http://www.hex-rays.com/products/ida/index.shtml

Arbor Networks | 4

locate the lengthy list of command strings, such as KeylogOn, GetOfflineLogs, WEBCAMLIVE, GetMsnList,

DDOSHTTPFLOOD, etc. In particular, we note that all these command strings are referenced from the same function.

Furthermore, this function is structured as a very long sequence of if-else statements that compare each of these

command strings against the same buffer. Even better, there is only a single caller of this function. Hmmm, that certainly

sounds like the bot's primary command dispatch routine; we'll call it DispatchCommands_sub_493DAC().

Checking out the caller function, we see that it operates in a loop. On each iteration through the loop, it basically performs

the following actions:

1. Calls recv() to read network traffic into a buffer;

2. Performs some copies and operations on this buffer to produce an intermediate buffer;

3. Performs an operation (decryption perhaps?) on the intermediate buffer and a global string to produce a final buffer;

3. Passes the final buffer to the aforementioned DispatchCommands_sub_493DAC() function;

Yes, this sounds like the main comms loop for which we are looking; we'll name this caller function

MainCommsLoop_sub_493A30(), and focus our attention on the aforementioned loop:

Arbor Networks | 5

Arbor Networks | 6

Figure 3. Function MainCommsLoop_sub_493A30()

It definitely looks like a great candidate for the decryption operation. It follows the general structure that is quite common

among bot families that encrypt their comms; namely, a pre-processing operation applied to a buffer, followed by the

actual decryption step. In particular, one strong clue is that the (assumed) decryption step takes a third argument which, in

this case, is a reference to a global string - very likely to be the decryption key string!

So first let's see what our (tentatively named) DecryptCommandBuffer_sub_44C628() function looks like.

DarkComet being a Delphi-based bot, the decryption function is passed the source (encrypted) buffer in EAX, the

(presumed) crypto key in EDX, and an output string buffer in ECX. After checking to make sure neither the source nor key

strings are empty, the function gets down to business. The first substantive operation is to pass the raw (encrypted) source

buffer src_buf_var_4 via EAX, along with an output buffer temp_buf_var_420 via EDX, to function

sub_44C1C0(); the output buffer is then copied back into the original source buffer src_buf_var_4:

Figure 4. Function DecryptCommandBuffer_sub_44C628()

Arbor Networks | 7

So sub_44C1C0() seems like it might be doing some pre-processing on the encrypted source buffer; let's see what kind

of pre-processing it is doing. Skipping past the obligatory checks for empty source buffers, etc., we arrive at some code

that loops over the source buffer, referenced by src_buf_var_4; however, it makes only one loop iteration for every

two bytes in src_buf_var_4. This is accomplished by extracting the DWORD just in front of the source string and

shifting it one bit to the right, in order to calculate the number of pairs of source characters:

Figure 5. Function PreProcess_sub_44C1C0()

Arbor Networks | 8

This works because in Delphi, the AnsiString class stores its length at an offset of 4 bytes in front of the first actual

byte of string content:

Figure 6. Structure of a Delphi AnsiString

For example, in the case of the initial encrypted payload received by the bot from the C&C, 155CAD31A61F , the length

of the source buffer is 12, so the code will make only 6 iterations through the loop. On each iteration of the loop,

DarkComet will process a pair of two source bytes to yield one output byte.

The first operation inside the loop is to test whether or not the value of the first source byte in the pair is greater than 0x39,

and branch accordingly. After using the one-based index EBX to pull out the first of the two source bytes in the pair, it adds

0xD0, subtracts 0x0A, and then tests whether the resulting value is greater than or equal to zero. Since it is operating on

the 8-bit register AL, the result is that source bytes with values of 0x3A or greater will be processed by one branch, and

those with values of 0x39 and less will be processed by a second branch:

Arbor Networks | 9

Figure 7. Function PreProcess_sub_44C1C0()

If the first source byte in the pair has value 0x39 or less, the bot will subtract 0x30 from it and save the result to the

current index within the output buffer:

Arbor Networks | 10

Figure 8. Function PreProcess_sub_44C1C0()

In other words, it will convert the ASCII representations (0x30, 0x31, ..., 0x39) of the digits 0 through 9 into their

equivalent integer representations (0x00, 0x01, ..., 0x09).

The second branch performs a similar operation: it first tests to make sure that the value of the source byte is not 0x47 or

greater (in which case it will immediately bail out of the loop and jump to the end of the PreProcess_sub_44C1C0()

function.) It will then subtract 0x37 from the source byte and save the result into the current index within the output

buffer:

Arbor Networks | 11

Figure 9. Function PreProcess_sub_44C1C0()

Arbor Networks | 12

In other words, it will convert the ASCII representations (0x41, 0x42, ..., 0x46) of the upper-case letters A through F

into their equivalent hexadecimal representations (0x0A, 0x0B, ..., 0x0F).

The two branches (for handling digits and upper-case A through F) will then re-join, and the resulting integer/hexadecimal

representation of the first source byte will be left-shifted by four (thus multiplying it by 16):

Figure 10. Function PreProcess_sub_44C1C0()

At this point, it is pretty clear what is going on. The PreProcess_sub_44C1C0() function is converting the ASCII

representation of the source string of bytes into the equivalent hexadecimal representation. This conjecture is confirmed

upon inspection of the remaining portion of the loop, which applies the same ASCII-to-hex operation on the second byte of

each pair of source bytes, and adds the result to the left-shifted output from the first byte of the pair. So at the end of the

day, the first line of raw encrypted source payload from the C&C is pre-processed from the 12-character ASCII string

155CAD31A61F to its equivalent sequence of six hexadecimal bytes 0x15 0x5C 0xAD 0x31 0xA6 0x1F, as follows:

src index 0 1 2 3 4 5 6 7 8 9 10 11

src (ASCII) 1 5 5 C A D 3 1 A 6 1 F

src (raw) 0x31 0x35 0x35 0x43 0x41 0x44 0x33 0x31 0x41 0x36 0x31 0x46

src (hex) 0x01 0x05 0x05 0x0C 0x0A 0x0D 0x03 0x01 0x0A 0x06 0x01 0x0F

shifted 0x10 0x50 0xA0 0x30 0xA0 0x10

dst 0x15 0x5C 0xAD 0x31 0xA6 0x1F

Arbor Networks | 13

Figure 11. ASCII to Integer Conversion

So we will rename this function as Integerize_sub_44C1C0(), and head back to the main

DecryptCommandBuffer_sub_44C628() function to continue reversing the crypto algorithm. After the raw source

buffer has been converted from ASCII form to integer form, the next substantive code block initializes a 256-element

array stable_var_41C:

Arbor Networks | 14

Figure 12. Function DecryptCommandBuffer_sub_44C628()

Each element in stable_var_41C is a 32-bit DWORD; the elements are initialized to the values 0x00000000 through

0x000000FF in ascending order:

Index ESI 0 1 2 3 4 ... 253 254 255

Value subst_var_41C[ESI] 0x00 0x01 0x02 0x03 0x04 ... 0xFD 0xFE 0xFF

Figure 13. Initial state of substitution table stable_var_41C

At this point, we can guess that stable_var_41C is going to play the role of a substitution table for decrypting the

source buffer src_buf_var_4, so let's see how DarkComet builds this table.

After initializing the substitution table to hold all the values between 0x00 and 0xFF in a nice ascending order, it

proceeds to vigorously scramble up the elements of the table. It makes 256 iterations through a loop; on each iteration, it

swaps the positions of two of the elements in the substitution table. On the kth iteration, one of the swapped elements is

always the kth element, which is pointed to by register ECX; the other is chosen based on the key string. The core of the

loop that scrambles up the substitution table is as follows:

Arbor Networks | 15

Arbor Networks | 16

Figure 14. Function DecryptCommandBuffer_sub_44C628()

The first code block in the above IDA listing chooses which element of stable_var_41C should be swapped with the

k
th

 element. It uses an accumulator variable, implemented by register EBX and initialized to zero. On each pass through

the loop, it updates the acccumulator EBX by adding to it the value of the k
th

 element of stable_var_41C and the value

of the current key string byte. One byte of key string is used per iteration, and whenever the key string is "used up", it

restarts again at the beginning of the key; register EDI holds the length of the key string, so the bot just computes k

modulo EDI (at instruction 0x0044C767) to choose which byte of the key to use on the k
th

 iteration.

The last code block performs the actual swapping, using swap_temp_var_15 as the temporary variable to do the swap.

Once 256 such swaps have been performed, the loop exits and the substitution table stable_var_41C has been nicely

scrambled and is ready for use.

At this point, the actual process of decryption is performed. DarkComet iterates through its decryption loop once for each

byte in the encrypted source message (after conversion from ASCII to integer representation.) The decryption loop

performs the following two steps:

First, it performs an additional scrambling operation on the substitution table stable_var_41C by swapping two

elements. When processing the k
th

 source byte, the first element of the swap pair is always the k+1
th

 element of table

stable_var_41C; it uses another accumulator variable, implemented by register EDI, to choose the second element of

the swap pair:

Arbor Networks | 17

Arbor Networks | 18

Figure 15. Function DecryptCommandBuffer_sub_44C628()

After performing this swap operation, DarkComet finally decrypts a byte of message. It sums up the values of the two

swapped elements (at instruction 0x0044C85F), then uses the result (modulo 256) to re-index into the

stable_var_41C table to pull out a third element (at instruction 0x0044C874). This third element is XORed against

the current (k
th

) source byte to produced a decrypted character.

It should be pointed out that conceptually, this decryption mechanism - both the manner in which the substitution table is

built, as well as how it is used for XOR-based decryption - is very similar to that used by the Trojan.PonyDOS malware

family. The actual implementation has quite a few differences, but the basic encryption algorithm is the same.

Trojan.PonyDOS, however, adds a few additional layers to secure its communications protocol above and beyond the core

crypto algorithm which it shares with DarkComet; specifically, the computation of some cryptographic hashes. Also,

Trojan.PonyDOS does not go to the trouble of converting its encrypted data payloads into ASCII representations as

DarkComet does.

Now that we've reversed the core DarkComet decryption mechanism (needed to read C&C commands), we'll want to

confirm that the encryption mechanism (needed to read and/or fake bot phone home messages) is symmetric. And indeed,

by following references to the socket handle used to recv() the initial C&C command, we can trace through to find the

encryption routine called by DarkComet just prior to send()ing back its response messages. Sure enough, the encryption

routine, Encrypt_sub_44C34C(), is functionally identical to the decryption routine, as hoped and expected; the only

difference being that the Integerize_sub_44C1C0() routine prior to decryption is absent, and a new routine, which

we'll call Integer2String_sub_409C6C(), is called following the encryption step; this routine simply converts the

raw encrypted data back into the ASCII version of its hexadecimal values.

Of course, in order to have a fully functional implementation of DarkComet's crypto system, we'll need to know what key

strings it uses. We see that there are two locations where DecryptCommandBuffer_sub_44C628() is called, and

one of those locations, EncryptData_sub_49D9EC(), has a hard-coded string with an uncanny resemblance to a

decryption key:

http://ddos.arbornetworks.com/2012/03/not-just-a-one-trick-ponydos/

Arbor Networks | 19

Figure 16. Function EncryptData_sub_49D9EC()

We see that the decryption string key_var_10, passed to DecryptCommandBuffer_sub_44C628() via EDX, is

formed by concatenating a hard-coded string #KCMDDC42F#- with some mystery string stored at [EBX+8]. It turns out

that this mysterious value stored at an offset from EBX is passed into EncryptData_sub_49D9EC() via the EAX

register. Tracing backwards up the stack, we follow the reference to EAX as the baton is passed from register to register. It

does not take long to come across the following routine, which we will label ComputeKeySuffix_sub_48F52C():

Arbor Networks | 20

Arbor Networks | 21

Figure 17. Function ComputeKeySuffix_sub_48F52C()

You don't run into code like this very often. It receives an output buffer passed via EAX. It then uses register EBX to do

some rather "inefficient" operations. First, it assigns EBX the value 0xFFFFFF8F, or -71. It then adds 1000 to EBX,

yielding 887. Then it goes through four iterations of a loop that has no purpose other than to increment EBX by one on

each iteration, resulting in a value of 891. Finally, it completes its laborious calculations by decrementing EBX by one,

yielding a final answer of 890. This integer is passed to a standard integer-to-string API, which writes the string 890 into

the output buffer. In C, these shenanigans would look something like the following:

int nAddend = 1000;

int nSuffix = -71;

int nResult = nSuffix + nAddend;

for (int k=0; k<4; k++)

 nResult += 1;

sprintf(suffix, "%d", --nResult);

This is a very roundabout way of assigning the hard-coded string 890 to a buffer. Clearly the DarkComet author is

(wisely) trying to avoid having the entire decryption key string hard-coded in the bot executable.

So at this point, we know that the decryption key is composed of the prefix #KCMDDC42F#- concatenated with the suffix

890, yielding #KCMDDC42F#-890.

One final note regarding the encryption key strings used by DarkComet: as first documented in

Contextis' Laura Aylward's DarkComet analysis, each version of DarkComet uses a different hard-coded string for the key

prefix. For example, we have observed the following:

Dark Comet version Crypto Key Prefix (Default)

Version 4.0 #KCMDDC4#-890

Version 4.2 #KCMDDC42F#-890

http://www.contextis.com/research/blog/darkcometrat/

Arbor Networks | 22

Version 5.0 #KCMDDC5#-890

Figure 18. Standard crypto key prefixes for DarkComet versions

Furthermore, and also documented by Contextis, DarkComet supports the use of an optional password that is appended to

the default (version-specific) crypto key. For example, the default password (if enabled) string is 0123456789. This 10-

digit string will be appended to the standard crypto key #KCMDDC42F#-890 (in the case of DarkComet version 4.2) to

yield a final key of #KCMDDC42F#-8900123456789. The code that performs this concatenation is found in a routine

we'll call FormCryptoKey_sub_49D2F4():

Figure 19. Function FormCryptoKey_sub_49D2F4()

Arbor Networks | 23

This code concatenates the three components of the final crypto key: the hard-coded prefix (e.g., #KCMDDC42F#-), the

three-digit string 890 that is not technically hard-coded but deterministically computed using the aforementioned

ComputeKeySuffix_sub_48F52C() routine, and the optional botnet password stored in the global variable

PWD_off_4A4B84.

The password itself is actually stored as an encrypted resource. Upon initialization, it is decrypted using a preliminary

crypto key comprised only of the first two components (e.g., #KCMDDC42F#-890) using a routine we've labeled

DecryptResource_sub_49D9EC(). To make a long story short, this routine uses the Windows APIs

FindResource(), LoadResource(), etc. to extract a named resource of type RT_RCDATA (code 0x0A), intended

for "application-defined resources (raw data)". The raw data is then decrypted using the preliminary crypto key.

In the case of the crypto password, the name of the resource is PWD. The resource is extracted, decrypted, and stored for

future use in the global variable PWD_off_4A4B84 by a function we call DecryptResources_sub_49F92C():

Arbor Networks | 24

Figure 20. Function DecryptResources_sub_49F92C()

In the case of the default password 0123456789, the encrypted resource will hold the value

6811E636E69E9AEFA5C6. This DecryptResources_sub_49F92C() function actually decrypts a lot of

encrypted bot parameters stored in various resources; some of the more interesting ones are as follows:

Resource Name Encrypted Data Decrypted Value

FAKEMSG 69 1

GENCODE 6146B749A3CF9C9FE8CFAB2C 9fcLqd0Gu00j

MSGCORE 1100A768B3C7C0F8FCDFC907B6F9 I small a RAT!

MSGTITLE 1C41A66E91C4C1BDE9 DarkComet

Arbor Networks | 25

MUTEX 1C638B4887FFE980B0B9AE72B1EA40A3 DC_MUTEX-F54S21D

NETDATA 6919E62BE39D94F6ACCFAB68D5ED4BD67BA333 192.168.100.75:1604

PWD 6811E636E69E9AEFA5C6 0123456789

SID 1F55B176A69A9A Guest16

Figure 21. Interesting encrypted resources

Of particular interest is the encrypted NETDATA resource, which holds the C&C hostname and port. The Resource Hacker

tool is a great utility for viewing and extracting the various DarkComet encrypted parameters:

http://www.angusj.com/resourcehacker/

Arbor Networks | 26

Figure 22. Resource Hacker extracting DarkComet resources

So to summarize, DarkComet uses a hard-coded (although different for each version) preliminary key string, such as

#KCMDDC42F#-890, to decrypt its sensitive parameters from various raw resources - such as the C&C information and

communications password stored in the NETDATA and PWD resources, respectively. It then appends the decrypted comms

password (stored in the PWD resource) to the end of the preliminary crypto key string to form the final key,

#KCMDDC42F#-8900123456789, that it uses for securing the network traffic to and from its C&C server.

Putting everything together into a complete DarkComet crypto module yields the following Python script:

DarkComet decryptor/encryptor

Copyright (c) 2012 Arbor Networks

import sys

class DarkCometCryptor(object):

 def __init__(self, key):

 self._len_key = len(key)

 self._key = [ord(token) for token in key]

 def decrypt(self, src):

 # Convert ASCII to hex representation

 buf = [int("0x%s" % src[k*2:k*2+2], 16) for k in range(len(src)//2)]

 self._cryption(buf)

 return "".join([chr(token) for token in buf])

 def encrypt(self, src):

 buf = [ord(token) for token in src]

Arbor Networks | 27

 self._cryption(buf)

 # Convert to hex codes (upper case)

 return "".join(["%02x" % tok for tok in buf]).upper()

 def _cryption(self, src):

 # Build subst table

 stable = list(range(256))

 accum = 0

 for k in range(256):

 accum += stable[k]

 accum += self._key[k % self._len_key]

 accum &= 0xff

 stable[k], stable[accum] = stable[accum], stable[k]

 # Apply subst table

 accum = 0

 for k in range(len(src)):

 elem_a_idx = self._LS_BYTE(k + 1)

 accum += stable[elem_a_idx]

 elem_b_idx = self._LS_BYTE(accum)

 stable[elem_b_idx], stable[elem_a_idx] = \

 stable[elem_a_idx], stable[elem_b_idx]

 swap_sum = self._LS_BYTE(stable[elem_b_idx] + stable[elem_a_idx])

 src[k] ^= self._LS_BYTE(stable[swap_sum])

 @staticmethod

 def _LS_BYTE(value):

 return 0xff & value

if __name__ == '__main__':

 if len(sys.argv) != 4 or sys.argv[1] not in ('-d', '-e'):

 print "usage: %s [-d|-e] SRC_TEXT KEY" % sys.argv[0]

Arbor Networks | 28

 sys.exit(1)

 do_decrypt = bool(sys.argv[1] == '-d')

 src = sys.argv[2]

 key = sys.argv[3]

 print "%s: %s" % ("CRYPT" if do_decrypt else "PLAIN", src)

 cryptor = DarkCometCryptor(key)

 dst = cryptor.decrypt(src) if do_decrypt else cryptor.encrypt(src)

 print "%s: %s" % ("PLAIN" if do_decrypt else "CRYPT", dst)

Figure 23. darkcomet.py Crypto Module

Applying our DarkComet encryption module against the observed traffic results in the following:

C&C:

IDTYPE

Bot:

SERVER

C&C:

GetSIN192.10.8.64|27038511

Bot:

infoesComet|192.10.8.64 / [192.1.167.30] : 1604|SANDBOX7 /

Admin|27038511|29s|Windows XP Service Pack 2 [2600] 32 bit (C:\

)|x||US|C:\WINDOWS\system32\cmd.exe|{16382783-b70c-71e4-11e0-

28f8efc0696f-10806d6172}|127.43 MiB/256.09 MiB [128.22 MiB Free]|English

(United States) US / -- |10/9/2011 at 8:13:31 PM

Figure 24. Decrypted version of comms from Figure 2.

Likewise, when a DarkComet C&C issues attacks command, the encrypted traffic on the wire looks like these examples:

185CB63BBE0EA3DF6D2A725936265160E391BC77F47FF46A3934CFB173AC

Arbor Networks | 29

185CB63BA31EA7C967297252432E5A7CFC96B261EB7EF4742533CEBF37A9C081

185CB63BA503B9C967297252432E5A7CFC96B261EB7EF4742533CEBF37A9C081

But applying the decryption routine yields the following:

DDOSHTTPFLOOD192.168.100.254|5

DDOSUDPFLOOD192.168.100.254:80|5

DDOSSYNFLOOD192.168.100.254:80|5

Which corresponds to ordering an HTTP flood, a UDP flood, and a TCP flood, respectively, against target

192.168.100.254, with each attack lasting for 5 seconds. Once the attacks are completed the DarkComet bot will

respond with an encrypted status message such as the following:

1E4CAB2DA50FBBDB781F5336347B073DA9DCD936B46EB03B646DDAE366F7D5C76D3C0420A55906F524

240A0F34D3A6384150

Which decrypts to the following:

BTRESULTSyn Flood|Syn task finished!|Administrator

As implied above, DarkComet supports three types of DDoS attacks: HTTP flooding, UDP flooding, and TCP flooding

(mis-advertised as "SYNFLOOD"). The UDP and TCP volumetric floods are quite unremarkable and simply consist of

random gibberish blasted at a target host and port. The HTTP flood also appears to be intended as a rudimentary GET

flood with a minimalist HTTP request header. However, DarkComet's HTTP flood implementation happens to have not

one, but two catastrophic bugs.

First of all, the thread procedure that implements the DDOSHTTPFLOOD attack command, SendHttp_sub_485848(),

uses the WinSock2 library's socket(), connect(), and send() APIs to send the following hard-coded HTTP

flooding request:

GET / HTTP/1.1\r\n\r\n

Arbor Networks | 30

At first glance, this looks like an (almost) valid, although minimalist, HTTP request that is terminated with a double

carriage-return/line-feed (CRLF) combination. However, when one takes a closer look at the way DarkComet stores this

string, we see that the \r and \n characters are not actually CR (0x0D) and LF (0x0A) bytes. Instead, they are literally

comprised of the backslash (0x2F), letter r (0x72), and letter n (0x6E) bytes!

Arbor Networks | 31

Figure 25. Hard-coded HTTP request string HttpRequest_byte_485970

If the HTTP request string had been encoded properly (ending with 0x0D0A0D0A), the length of the string would have

been 18. But instead, we see that it is 22 bytes in length. Due to this, DarkComet's attempt at an application layer attack is

not close to a valid HTTP request per the RFCs.

The second big mistake in the implementation of DarkComet's HTTP flood attack becomes apparent further down in the

attack thread code, just before the (buggy) HTTP request payload is sent to the target via the send() API:

Arbor Networks | 32

Arbor Networks | 33

Figure 26. Function EncryptAndSendData_sub_49393C()

Unbelievably, DarkComet bot is accidentally encrypting the (buggy) GET request string at instruction 0x00493972 via a

call to the already-reversed Encrypt_sub_44C34C() routine. The resulting (encrypted) HTTP request is then sent on

its merry way to the DDoS target via the send() API call at instruction 0x0049399D.

So the target web server ends up receiving gibberish instead of a well-formed HTTP request that might exhaust resources

at the application layer. Due to these two serious flaws, DarkComet's HTTP flood attack reduces down to nothing more

than a volumetric TCP flood against port 80, and a very weak one at that (a mere 22 bytes of TCP payload per flooding

packet...) In fact, here is what the actual "HTTP flooding" traffic looks like:

1B5DAD48D97ABFDB7F3612275C26342091CED63D8620

1B5DAD48D97ABFDB7F3612275C26342091CED63D8620

1B5DAD48D97ABFDB7F3612275C26342091CED63D8620

Clearly, this is very unlikely to bring any web server to its knees!

Acknowledgements to Arbor Networks analyst Curt Wilson for his valuable insights and assistance with this article.

