
A Totally Tubular Treatise
on TRITON and TriStation
June 07, 2018 | by Steve Miller, Evan Reese

Introduction

In December 2017, FireEye's Mandiant discussed an incident response involving the
TRITON framework. The TRITON attack and many of the publicly discussed ICS intrusions
involved routine techniques where the threat actors used only what is necessary to
succeed in their mission. For both INDUSTROYER and TRITON, the attackers moved
from the IT network to the OT (operational technology) network through systems that
were accessible to both environments. Traditional malware backdoors, Mimikatz
distillates, remote desktop sessions, and other well-documented, easily-detected attack
methods were used throughout these intrusions.

Despite the routine techniques employed to gain access to an OT environment, the
threat actors behind the TRITON malware framework invested significant time learning
about the Triconex Safety Instrumented System (SIS) controllers and TriStation, a
proprietary network communications protocol. The investment and purpose of the
Triconex SIS controllers leads Mandiant to assess the attacker's objective was likely to
build the capability to cause physical consequences.

TriStation remains closed source and there is no official public information detailing the
structure of the protocol, raising several questions about how the TRITON framework
was developed. Did the actor have access to a Triconex controller and TriStation 1131

Home FireEye Blogs Threat Research A Total ly Tubular Treatise on TRITON and TriStatio...A Total ly Tubular Treatise on TRITON and TriStatio...

Solutions Services Partners Support Resources Company

Convert webpages to pdf online with PDFmyURL

https://www.fireeye.com
https://www.fireeye.com/solutions.html
https://www.fireeye.com/services.html
https://www.fireeye.com/partners.html
https://www.fireeye.com/support.html
https://www.fireeye.com/current-threats.html
https://www.fireeye.com/company.html
https://www.fireeye.com/
https://www.fireeye.com/blog.html
https://www.fireeye.com/blog/threat-research.html
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/cap-steve-miller
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/evan-reese
https://www.fireeye.com/services.html
https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html
https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

software suite? When did development first start? How did the threat actor reverse
engineer the protocol, and to what extent? What is the protocol structure?

FireEye’s Advanced Practices Team was born to investigate adversary methodologies,
and to answer these types of questions, so we started with a deeper look at the
TRITON’s own Python scripts.

Glossary:

TRITON – Malware framework designed to operate Triconex SIS controllers via the
TriStation protocol.

TriStation – UDP network protocol specific to Triconex controllers.
TRITON threat actor – The human beings who developed, deployed and/or

operated TRITON.

Diving into TRITON's Implementation of TriStation

TriStation is a proprietary network protocol and there is no public documentation
detailing its structure or how to create software applications that use TriStation. The
current TriStation UDP/IP protocol is little understood, but natively implemented
through the TriStation 1131 software suite. TriStation operates by UDP over port 1502 and
allows for communications between designated masters (PCs with the software that are
“engineering workstations”) and slaves (Triconex controllers with special
communications modules) over a network.

To us, the Triconex systems, software and associated terminology sound foreign and
complicated, and the TriStation protocol is no different. Attempting to understand the
protocol from ground zero would take a considerable amount of time and reverse
engineering effort – so why not learn from TRITON itself? With the TRITON framework
containing TriStation communication functionality, we pursued studying the framework
to better understand this mysterious protocol. Work smarter, not harder, amirite?

The TRITON framework has a multitude of functionalities, but we started with the basic
components:

TS_cnames.pyc # Compiled at: 2017-08-03 10:52:33
TsBase.pyc # Compiled at: 2017-08-03 10:52:33
TsHi.pyc # Compiled at: 2017-08-04 02:04:01

Convert webpages to pdf online with PDFmyURL

https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html
https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

TsHi.pyc # Compiled at: 2017-08-04 02:04:01
TsLow.pyc # Compiled at: 2017-08-03 10:46:51

TsLow.pyc (Figure 1) contains several pieces of code for error handling, but these also
present some cues to the protocol structure.

Figure 1: TsLow.pyc function print_last_error()

In the TsLow.pyc’s function for print_last_error we see error handling for “TCM Error”.
This compares the TriStation packet value at offset 0 with a value in a corresponding
array from TS_cnames.pyc (Figure 2), which is largely used as a “dictionary” for the
protocol.

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

Figure 2: TS_cnames.pyc TS_cst array.

From this we can infer that offset 0 of the TriStation protocol contains message types.
This is supported by an additional function, tcm_result, which declares type, size =
struct.unpack('<HH', data_received[0:4]), stating that the first two bytes should be
handled as integer type and the second two bytes are integer size of the TriStation
message. This is our first glimpse into what the threat actor(s) understood about the
TriStation protocol.

Since there are only 11 defined message types, it really doesn't matter much if the type is
one byte or two because the second byte will always be 0x00.

We also have indications that message type 5 is for all Execution Command Requests
and Responses, so it is curious to observe that the TRITON developers called this
“Command Reply.” (We won’t understand this naming convention until later.)

Next we examine TsLow.pyc’s print_last_error function (Figure 3) to look at “TS Error”
and “TS_names.” We begin by looking at the ts_err variable and see that it references
ts_result.

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

Figure 3: TsLow.pyc function print_last_error() with ts_err highlighted

We follow that thread to ts_result, which defines a few variables in the next 10 bytes
(Figure 4): dir, cid, cmd, cnt, unk, cks, siz = struct.unpack('<, ts_packet[0:10]). Now
things are heating up. What fun. There’s a lot to unpack here, but the most interesting
thing is how this piece script breaks down 10 bytes from ts_packet into different
variables.

Figure 4: ts_result with ts_packet header variables highlighted

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

Figure 5: tcm_result

Referencing tcm_result (Figure 5) we see that it defines type and size as the first four
bytes (offset 0 – 3) and tcm_result returns the packet bytes 4:-2 (offset 4 to the end
minus 2, because the last two bytes are the CRC-16 checksum). Now that we know where
tcm_result leaves off, we know that the ts_reply “cmd” is a single byte at offset 6, and
corresponds to the values in the TS_cnames.pyc array and TS_names (Figure 6). The
TRITON script also tells us that any integer value over 100 is a likely “command reply.”
Sweet.

When looking back at the ts_result packet header definitions, we begin to see some
gaps in the TRITON developer's knowledge: dir, cid, cmd, cnt, unk, cks, siz =
struct.unpack('<, ts_packet[0:10]). We're clearly speculating based on naming
conventions, but we get an impression that offsets 4, 5 and 6 could be "direction",
"controller ID" and "command", respectively. Values such as "unk" show that the
developer either did not know or did not care to identify this value. We suspect it is a
constant, but this value is still unknown to us.

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

Figure 6: Excerpt TS_cnames.pyc TS_names array, which contain TRITON actor’s notes for execution

command function codes.

TriStation Protocol Packet Structure

The TRITON threat actor’s knowledge and reverse engineering effort provides us a
better understanding of the protocol. From here we can start to form a more complete
picture and document the basic functionality of TriStation. We are primarily interested in
message type 5, Execution Command, which best illustrates the overall structure of the
protocol. Other, smaller message types will have varying structure.

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

Figure 7: Sample TriStation "Allocate Program" Execution Command, with color annotation and protocol

legend.

Corroborating the TriStation Analysis

Minute discrepancies aside, the TriStation structure detailed in Figure 7 is supported by
other public analyses. Foremost, researchers from the Coordinated Science Laboratory
(CSL) at University of Illinois at Urbana-Champaign published a 2017 paper titled
"Attack Induced Common-Mode Failures on PLC-based Safety System in a Nuclear
Power Plant". The CSL team mentions that they used the Triconex System Access
Application (TSAA) protocol to reverse engineer elements of the TriStation protocol.
TSAA is a protocol developed by the same company as TriStation. Unlike TriStation, the
TSAA protocol structure is described within official documentation. CSL assessed
similarities between the two protocols would exist and they leveraged TSAA to better
understand TriStation. The team's overall research and analysis of the general packet
structure aligns with our TRITON-sourced packet structure.

There are some awesome blog posts and whitepapers out there that support our
findings in one way or another. Writeups by Midnight Blue Labs, Accenture, and US-
CERT each explain how the TRITON framework relates to the TriStation protocol in
superb detail.

TriStation's Reverse Engineering and TRITON's Development

When TRITON was discovered, we began to wonder how the TRITON actor reverse
engineered TriStation and implemented it into the framework. We have a lot of theories,
all of which seemed plausible: Did they build, buy, borrow, or steal? Or some
combination thereof?

Our initial theory was that the threat actor purchased a Triconex controller and software
for their own testing and reverse engineering from the "ground up", although if this was
the case we do not believe they had a controller with the exact vulnerable firmware
version, else they would have had fewer problems with TRITON in practice at the victim
site. They may have bought or used a demo version of the TriStation 1131 software,
allowing them to reverse engineer enough of TriStation for the framework. They may

Convert webpages to pdf online with PDFmyURL

https://ieeexplore.ieee.org/iel7/7919908/7920579/07920614.pdf
https://www.midnightbluelabs.com/blog/2018/1/16/analyzing-the-triton-industrial-malware
https://www.accenture.com/t20180123T095554Z__w__/us-en/_acnmedia/PDF-46/Accenture-Security-Triton-Trisis-Threat-Analysis.pdf
https://ics-cert.us-cert.gov/MAR-17-352-01-HatMan-Safety-System-Targeted-Malware-Update
https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

allowing them to reverse engineer enough of TriStation for the framework. They may
have stolen TriStation Python libraries from ICS companies, subsidiaries or system
integrators and used the stolen material as a base for TriStation and TRITON
development. But then again, it is possible that they borrowed TriStation software,
Triconex hardware and Python connectors from government-owned utility that was
using them legitimately.

Looking at the raw TRITON code, some of the comments may appear oddly phrased, but
we do get a sense that the developer is clearly using many of the right vernacular and
acronyms, showing smarts on PLC programming. The TS_cnames.pyc script contains
interesting typos such as 'Set lable', 'Alocate network accepted', 'Symbol table ccepted'
and 'Set program information reponse'. These appear to be normal human error and
reflect neither poor written English nor laziness in coding. The significant amount of
annotation, cascading logic, and robust error handling throughout the code suggests
thoughtful development and testing of the framework. This complicates the theory of
"ground up" development, so did they base their code on something else?

While learning from the TriStation functionality within TRITON, we continued to explore
legitimate TriStation software. We began our search for "TS1131.exe" and hit dead ends
sorting through TriStation DLLs until we came across a variety of TriStation utilities in
MSI form. We ultimately stumbled across a juicy archive containing "Trilog v4." Upon
further inspection, this file installed "TriLog.exe," which the original TRITON executable
mimicked, and a couple of supporting DLLs, all of which were timestamped around
August 2006.

When we saw the DLL file description "Tricon Communications Interface" and original
file name "TricCom.DLL", we knew we were in the right place. With a simple look at the
file strings, "BAZINGA!" We struck gold.

File Name tr1com40.dll

MD5 069247DF527A96A0E048732CA57E7D3D

Size 110592

Compile Date 2006-08-23

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

Compile Date 2006-08-23

File Description Tricon Communications Interface

Product Name TricCom Dynamic Link Library

File Version 4.2.441

Original File Name TricCom.DLL

Copyright Copyright © 1993-2006 Triconex Corporation

The tr1com40.DLL is exactly what you would expect to see in a custom application
package. It is a library that helps support the communications for a Triconex controller. If
you've pored over TRITON as much as we have, the moment you look at strings you can
see the obvious overlaps between the legitimate DLL and TRITON's own TS_cnames.pyc.

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

Figure 8: Strings excerpt from tr1com40.DLL

Each of the execution command "error codes" from TS_cnames.pyc are in the strings of
tr1com40.DLL (Figure 8). We see "An MP has re-educated" and "Invalid Tristation I
command". Even misspelled command strings verbatim such as "Non-existant data item"
and "Alocate network accepted". We also see many of the same unknown values. What
is obvious from this discovery is that some of the strings in TRITON are likely based on
code used in communications libraries for Trident and Tricon controllers.

In our brief survey of the legitimate Triconex Corporation binaries, we observed a few
samples with related string tables.

Pe:dllname
Compile
Date

Reference CPP Strings Code

Lagcom40.dll 2004/11/19
$Workfile: LAGSTRS.CPP $ $Modtime: Jul 21 1999
17:17:26 $ $Revision: 1.0

Tr1com40.dll 2006/08/23
$Workfile: TR1STRS.CPP $ $Modtime: May 16 2006
09:55:20 $ $Revision: 1.4

$Workfile: LAGSTRS.CPP $ $Modtime: Jul 21 1999

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

Tridcom.dll 2008/07/23
$Workfile: LAGSTRS.CPP $ $Modtime: Jul 21 1999
17:17:26 $ $Revision: 1.0

Triccom.dll 2008/07/23
$Workfile: TR1STRS.CPP $ $Modtime: May 16 2006
09:55:20 $ $Revision: 1.4

Tridcom.dll 2010/09/29
$Workfile: LAGSTRS.CPP $ $Modtime: Jul 21 1999
17:17:26 $ $Revision: 1.0

Tr1com.dll 2011/04/27
$Workfile: TR1STRS.CPP $ $Modtime: May 16 2006
09:55:20 $ $Revision: 1.4

Lagcom.dll 2011/04/27
$Workfile: LAGSTRS.CPP $ $Modtime: Jul 21 1999
17:17:26 $ $Revision: 1.0

Triccom.dll 2011/04/27
$Workfile: TR1STRS.CPP $ $Modtime: May 16 2006
09:55:20 $ $Revision: 1.4

We extracted the CPP string tables in TR1STRS and LAGSTRS and the TS_cnames.pyc
TS_names array from TRITON, and compared the 210, 204, and 212 relevant strings from
each respective file.

TS_cnames.pyc TS_names and tr1com40.dll share 202 of 220 combined table strings.
The remaining strings are unique to each, as seen here:

TS_cnames.TS_names (2017 pyc) Tr1com40.dll (2006 CPP)

Go to DOWNLOAD mode <200>

Not set <209>

Unk75 Bad message from module

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

Unk75 Bad message from module

Unk76 Bad message type

Unk77 Bad TMI version number

Unk78 Module did not respond

Unk79 Open Connection: Invalid SAP %d

Unk81
Unsupported message for this TMI
version

Unk83

Wrong command

TS_cnames.pyc TS_names and Tridcom.dll (1999 CPP) shared only 151 of 268 combined
table strings, showing a much smaller overlap with the seemingly older CPP library. This
makes sense based on the context that Tridcom.dll is meant for a Trident controller, not
a Tricon controller. It does seem as though Tr1com40.dll and TR1STRS.CPP code was
based on older work.

We are not shocked to find that the threat actor reversed legitimate code to bolster
development of the TRITON framework. They want to work smarter, not harder, too. But
after reverse engineering legitimate software and implementing the basics of the
TriStation, the threat actors still had an incomplete understanding of the protocol. In
TRITON's TS_cnames.pyc we saw "Unk75", "Unk76", "Unk83" and other values that were
not present in the tr1com40.DLL strings, indicating that the TRITON threat actor may
have explored the protocol and annotated their findings beyond what they reverse
engineered from the DLL. The gaps in TriStation implementation show us why the actors
encountered problems interacting with the Triconex controllers when using TRITON in

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

the wild.

You can see more of the Trilog and Triconex DLL files on VirusTotal.

Item Name MD5 Description

Tr1com40.dll 069247df527a96a0e048732ca57e7d3d
Tricom Communcations
DLL

Data1.cab e6a3c93a6d433cbaf6f573b6c09d76c4 Parent of Tr1com40.dll

Trilog v4.1.360R 13a3b83ba2c4236ca59aba679941c8a5 RAR Archive of TriLog

TridCom.dll 5c2ed617fdec4779cb33c89082a43100
Trident Communications
DLL

Afterthoughts

Seeing Triconex systems targeted with malicious intent was new to the world six months
ago. Moving forward it would be reasonable to anticipate additional frameworks, such
as TRITON, designed for usage against other SIS controllers and associated technologies.
If Triconex was within scope, we may see similar attacker methodologies affecting the
dominant industrial safety technologies.

Basic security measures do little to thwart truly persistent threat actors and monitoring
only IT networks is not an ideal situation. Visibility into both the IT and OT environments
is critical for detecting the various stages of an ICS intrusion. Simple detection concepts
such as baseline deviation can provide insight into abnormal activity.

While the TRITON framework was actively in use, how many traditional ICS “alarms”
were set off while the actors tested their exploits and backdoors on the Triconex
controller? How many times did the TriStation protocol, as implemented in their Python
scripts, fail or cause errors because of non-standard traffic? How many TriStation UDP
pings were sent and how many Connection Requests? How did these statistics compare

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

pings were sent and how many Connection Requests? How did these statistics compare
to the baseline for TriStation traffic? There are no answers to these questions for now.
We believe that we can identify these anomalies in the long run if we strive for increased
visibility into ICS technologies.

We hope that by holding public discussions about ICS technologies, the Infosec
community can cultivate closer relationships with ICS vendors and give the world better
insight into how attackers move from the IT to the OT space. We want to foster more
conversations like this and generally share good techniques for finding evil. Since most
of all ICS attacks involve standard IT intrusions, we should probably come together to
invent and improve any guidelines for how to monitor PCs and engineering workstations
that bridge the IT and OT networks. We envision a world where attacking or disrupting
ICS operations costs the threat actor their cover, their toolkits, their time, and their
freedom. It's an ideal world, but something nice to shoot for.

Thanks and Future Work

There is still much to do for TRITON and TriStation. There are many more sub-message
types and nuances for parsing out the nitty gritty details, which is hard to do without a
controller of our own. And although we’ve published much of what we learned about the
TriStation here on the blog, our work will continue as we continue our study of the
protocol.

Thanks to everyone who did so much public research on TRITON and TriStation. We have
cited a few individuals in this blog post, but there is a lot more community-sourced
information that gave us clues and leads for our research and testing of the framework
and protocol. We also have to acknowledge the research performed by the TRITON
attackers. We borrowed a lot of your knowledge about TriStation from the TRITON
framework itself.

Finally, remember that we're here to collaborate. We think most of our research is right,
but if you notice any errors or omissions, or have ideas for improvements, please
contact: smiller@fireeye.com.

Recommended Reading

Attackers Deploy New ICS Attack Framework “TRITON” and Cause Operational

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

Disruption to Critical Infrastructure
Attack Induced Common-Mode Failures on PLC-Based Safety System in a Nuclear

Power Plant: Practical Experience Report
Development of a tailored methodology and forensic toolkit for industrial control

systems incident response
Analyzing the TRITON industrial malware
Repository containting original and decompiled files of TRISIS/TRITON/HATMAN

malware
MAR-17-352-01 HatMan - Safety System Targeted Malware (Update A)
TRISIS Malware Analysis of Safety System Targeted Malware

Appendix A: TriStation Message Type Codes

The following table consists of hex values at offset 0 in the TriStation UDP packets and
the associated dictionary definitions, extracted verbatim from the TRITON framework in
library TS_cnames.pyc.

Value at 0x0 Message Type

1 Connection Request

2 Connection Response

3 Disconnect Request

4 Disconnect Response

5 Execution Command

6 Ping Command

7 Connection Limit Reached

Convert webpages to pdf online with PDFmyURL

https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html
https://ieeexplore.ieee.org/document/7920614/
https://calhoun.nps.edu/bitstream/handle/10945/42595/14Jun_Carr_Nicholas.pdf
https://www.midnightbluelabs.com/blog/2018/1/16/analyzing-the-triton-industrial-malware
https://github.com/ICSrepo/TRISIS-TRITON-HATMAN
https://ics-cert.us-cert.gov/MAR-17-352-01-HatMan-Safety-System-Targeted-Malware-Update
https://dragos.com/blog/trisis/TRISIS-01.pdf
https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

8 Not Connected

9 MPS Are Dead

10 Access Denied

11 Connection Failed

Appendix B: TriStation Execution Command Function Codes

The following table consists of hex values at offset 6 in the TriStation UDP packets and
the associated dictionary definitions, extracted verbatim from the TRITON framework in
library TS_cnames.pyc.

Value at 0x6 TS_cnames String

0 0: 'Start download all',

1 1: 'Start download change',

2 2: 'Update configuration',

3 3: 'Upload configuration',

4 4: 'Set I/O addresses',

5 5: 'Allocate network',

6 6: 'Load vector table',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

6 6: 'Load vector table',

7 7: 'Set calendar',

8 8: 'Get calendar',

9 9: 'Set scan time',

A 10: 'End download all',

B 11: 'End download change',

C 12: 'Cancel download change',

D 13: 'Attach TRICON',

E 14: 'Set I/O address limits',

F 15: 'Configure module',

10 16: 'Set multiple point values',

11 17: 'Enable all points',

12 18: 'Upload vector table',

13 19: 'Get CP status ',

14 20: 'Run program',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

15 21: 'Halt program',

16 22: 'Pause program',

17 23: 'Do single scan',

18 24: 'Get chassis status',

19 25: 'Get minimum scan time',

1A 26: 'Set node number',

1B 27: 'Set I/O point values',

1C 28: 'Get I/O point values',

1D 29: 'Get MP status',

1E 30: 'Set retentive values',

1F 31: 'Adjust clock calendar',

20 32: 'Clear module alarms',

21 33: 'Get event log',

22 34: 'Set SOE block',

23 35: 'Record event log',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

23 35: 'Record event log',

24 36: 'Get SOE data',

25 37: 'Enable OVD',

26 38: 'Disable OVD',

27 39: 'Enable all OVDs',

28 40: 'Disable all OVDs',

29 41: 'Process MODBUS',

2A 42: 'Upload network',

2B 43: 'Set lable',

2C 44: 'Configure system variables',

2D 45: 'Deconfigure module',

2E 46: 'Get system variables',

2F 47: 'Get module types',

30 48: 'Begin conversion table download',

31 49: 'Continue conversion table download',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

32 50: 'End conversion table download',

33 51: 'Get conversion table',

34 52: 'Set ICM status',

35 53: 'Broadcast SOE data available',

36 54: 'Get module versions',

37 55: 'Allocate program',

38 56: 'Allocate function',

39 57: 'Clear retentives',

3A 58: 'Set initial values',

3B 59: 'Start TS2 program download',

3C 60: 'Set TS2 data area',

3D 61: 'Get TS2 data',

3E 62: 'Set TS2 data',

3F 63: 'Set program information',

40 64: 'Get program information',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

40 64: 'Get program information',

41 65: 'Upload program',

42 66: 'Upload function',

43 67: 'Get point groups',

44 68: 'Allocate symbol table',

45 69: 'Get I/O address',

46 70: 'Resend I/O address',

47 71: 'Get program timing',

48 72: 'Allocate multiple functions',

49 73: 'Get node number',

4A 74: 'Get symbol table',

4B 75: 'Unk75',

4C 76: 'Unk76',

4D 77: 'Unk77',

4E 78: 'Unk78',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

4F 79: 'Unk79',

50 80: 'Go to DOWNLOAD mode',

51 81: 'Unk81',

52

53 83: 'Unk83',

54

55

56

57

58

59

5A

5B

5C

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

5D

5E

5F

60

61

62

63

64 100: 'Command rejected',

65 101: 'Download all permitted',

66 102: 'Download change permitted',

67 103: 'Modification accepted',

68 104: 'Download cancelled',

69 105: 'Program accepted',

6A 106: 'TRICON attached',

6B 107: 'I/O addresses set',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

6C 108: 'Get CP status response',

6D 109: 'Program is running',

6E 110: 'Program is halted',

6F 111: 'Program is paused',

70 112: 'End of single scan',

71 113: 'Get chassis configuration response',

72 114: 'Scan period modified',

73 115: '<115>',

74 116: '<116>',

75 117: 'Module configured',

76 118: '<118>',

77 119: 'Get chassis status response',

78 120: 'Vectors response',

79 121: 'Get I/O point values response',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

7A 122: 'Calendar changed',

7B 123: 'Configuration updated',

7C 124: 'Get minimum scan time response',

7D 125: '<125>',

7E 126: 'Node number set',

7F 127: 'Get MP status response',

80 128: 'Retentive values set',

81 129: 'SOE block set',

82 130: 'Module alarms cleared',

83 131: 'Get event log response',

84 132: 'Symbol table ccepted',

85 133: 'OVD enable accepted',

86 134: 'OVD disable accepted',

87 135: 'Record event log response',

88 136: 'Upload network response',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

89 137: 'Get SOE data response',

8A 138: 'Alocate network accepted',

8B 139: 'Load vector table accepted',

8C 140: 'Get calendar response',

8D 141: 'Label set',

8E 142: 'Get module types response',

8F 143: 'System variables configured',

90 144: 'Module deconfigured',

91 145: '<145>',

92 146: '<146>',

93 147: 'Get conversion table response',

94 148: 'ICM print data sent',

95 149: 'Set ICM status response',

96 150: 'Get system variables response',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

97 151: 'Get module versions response',

98 152: 'Process MODBUS response',

99 153: 'Allocate program response',

9A 154: 'Allocate function response',

9B 155: 'Clear retentives response',

9C 156: 'Set initial values response',

9D 157: 'Set TS2 data area response',

9E 158: 'Get TS2 data response',

9F 159: 'Set TS2 data response',

A0 160: 'Set program information reponse',

A1 161: 'Get program information response',

A2 162: 'Upload program response',

A3 163: 'Upload function response',

A4 164: 'Get point groups response',

A5 165: 'Allocate symbol table response',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

A5 165: 'Allocate symbol table response',

A6 166: 'Program timing response',

A7 167: 'Disable points full',

A8 168: 'Allocate multiple functions response',

A9 169: 'Get node number response',

AA 170: 'Symbol table response',

AB

AC

AD

AE

AF

B0

B1

B2

B3

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

C0

C1

C2

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

C2

C3

C4

C5

C6

C7

C8 200: 'Wrong command',

C9 201: 'Load is in progress',

CA 202: 'Bad clock calendar data',

CB 203: 'Control program not halted',

CC 204: 'Control program checksum error',

CD 205: 'No memory available',

CE 206: 'Control program not valid',

CF 207: 'Not loading a control program',

D0 208: 'Network is out of range',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

D1 209: 'Not enough arguments',

D2 210: 'A Network is missing',

D3 211: 'The download time mismatches',

D4 212: 'Key setting prohibits this operation',

D5 213: 'Bad control program version',

D6 214: 'Command not in correct sequence',

D7 215: '<215>',

D8 216: 'Bad Index for a module',

D9 217: 'Module address is invalid',

DA 218: '<218>',

DB 219: '<219>',

DC 220: 'Bad offset for an I/O point',

DD 221: 'Invalid point type',

DE 222: 'Invalid Point Location',

DF 223: 'Program name is invalid',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

DF 223: 'Program name is invalid',

E0 224: '<224>',

E1 225: '<225>',

E2 226: '<226>',

E3 227: 'Invalid module type',

E4 228: '<228>',

E5 229: 'Invalid table type',

E6 230: '<230>',

E7 231: 'Invalid network continuation',

E8 232: 'Invalid scan time',

E9 233: 'Load is busy',

EA 234: 'An MP has re-educated',

EB 235: 'Invalid chassis or slot',

EC 236: 'Invalid SOE number',

ED 237: 'Invalid SOE type',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

EE 238: 'Invalid SOE state',

EF 239: 'The variable is write protected',

F0 240: 'Node number mismatch',

F1 241: 'Command not allowed',

F2 242: 'Invalid sequence number',

F3 243: 'Time change on non-master TRICON',

F4 244: 'No free Tristation ports',

F5 245: 'Invalid Tristation I command',

F6 246: 'Invalid TriStation 1131 command',

F7 247: 'Only one chassis allowed',

F8 248: 'Bad variable address',

F9 249: 'Response overflow',

FA 250: 'Invalid bus',

FB 251: 'Disable is not allowed',

Convert webpages to pdf online with PDFmyURL

https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

FC 252: 'Invalid length',

FD 253: 'Point cannot be disabled',

FE 254: 'Too many retentive variables',

FF 255: 'LOADER_CONNECT',

 256: 'Unknown reject code'

This entry was posted on Thu Jun 07 10:00 EDT 2018 and filed under Ics, python,
analysis, Evan Reese, Industrial Control Systems, and Steve Miller.

Convert webpages to pdf online with PDFmyURL

https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/ics
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/python
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/analysis
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/evan-reese
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/industrial-control-systems
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/cap-steve-miller
https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

Sign up for email
updates
Get information and insight on
today's advanced threats from the
leader in advanced threat
prevention.

First Name Last Name

Email Address

Company Name

Threat Research Blog

Products and Services
Blog

Executive Perspectives
Blog

SUBSCRIBE

Convert webpages to pdf online with PDFmyURL

https://www.fireeye.com/content/fireeye-www/en_US/blog/threat-research/_jcr_content.feed
https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

CompanyCompany

About FireEye

Customer Stories

Careers

Partners

Investor Relations

Supplier Documents

New s and EventsNew s and Events

Newsroom

Press Releases

Webinars

Events

Awards and Honors

Email Preferences

Technical SupportTechnical Support

Incident?

Report Security Issue

Contact Support

Customer Portal

Communities

Documentation Portal

FireEye BlogsFireEye Blogs

Threat Research

Products and Services

Executive Perspectives

Threat MapThreat Map

View the Latest Threats

Contact UsContact Us

+1 877-347-3393

Stay ConnectedStay Connected

Copyright © 2018 FireEye, Inc. All rights reserved.

Privacy & Cookies Policy | Privacy Shield | Legal Documentation

Site Language

English

Convert webpages to pdf online with PDFmyURL

https://www.fireeye.com/company/why-fireeye.html
https://www.fireeye.com/customers.html
https://www.fireeye.com/company/jobs.html
https://www.fireeye.com/partners.html
http://investors.fireeye.com/
https://www.fireeye.com/company/supplier.html
https://www.fireeye.com/company/newsroom.html
https://www.fireeye.com/company/press-releases.html
https://www.fireeye.com/company/webinars.html
https://www.fireeye.com/company/events.html
https://www.fireeye.com/company/awards.html
https://www2.fireeye.com/manage-your-preferences.html
https://www.fireeye.com/company/incident-response.html
https://www.fireeye.com/company/security.html
https://www.fireeye.com/support/contacts.html
https://csportal.fireeye.com/secur/login_portal.jsp?orgId=00D3000000063LS&portalId=06030000000pSNE
https://community.fireeye.com/welcome
https://docs.fireeye.com
https://www.fireeye.com/blog/threat-research.html
https://www.fireeye.com/blog/products-and-services.html
https://www.fireeye.com/blog/executive-perspective.html
https://www.fireeye.com/cyber-map/threat-map.html
tel:+1 877-347-3393
https://www.linkedin.com/company/fireeye
https://twitter.com/fireeye
https://www.facebook.com/FireEye
https://plus.google.com/+Fireeye
https://www.youtube.com/user/FireEyeInc
https://itunes.apple.com/us/podcast/eye-on-security/id1073779629?mt=2
https://www.fireeye.com/company/privacy.html
https://www.fireeye.com/company/privacy-shield-commitment.html
https://www.fireeye.com/company/legal.html
https://www.fireeye.com/index.html
https://www.fireeye.fr
https://www.fireeye.de
https://www.fireeye.jp
https://www.fireeye.kr
https://www.fireeye.com/products/international-literature.html
https://pdfmyurl.com/?src=pdf
https://pdfmyurl.com/?src=pdf

