
9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 1/24

September 5, 2019

UPSynergy: Chinese-American Spy vs. Spy Story
research.checkpoint.com/upsynergy

September 5, 2019
Research By: Mark Lechtik & Nadav Grossman

Introduction

Earlier this year, our colleagues at Symantec uncovered an interesting story about the use of
Equation group exploitation tools by an alleged Chinese group named Buckeye (a.k.a APT3, or
UPS team). One of the key findings in their publication was that variants of the Equation tools
were used by the group prior to ‘The Shadow Brokers’ public leak in 2017. Moreover, it seems
that APT3 developed its own in-house capabilities and equipped its attack tool with a 0-day that
targeted the Windows operating system.

Following these revelations, we decided to expand on Symantec’s findings and take a deeper
look at Bemstour, the group’s exploitation tool. In our analysis, we try to understand the
background environment in which it was created, and provide our perspective of how it was
developed. Our observations from the technical analysis allow us to provide evidence for a
speculation that was formerly suggested by Symantec – APT3 recreated its own version of an
Equation group exploit using captured network traffic. We believe that this artifact was collected
during an attack conducted by the Equation group against a network monitored by APT3, allowing
it to enhance its exploit arsenal with a fraction of the resources required to build the original tool.

APT3 is known to be a long-standing and sophisticated threat actor, having a record of using
advanced TTPs, such as leveraging zero day exploits in its attacks. Such capabilities are
consistent with former research by Intrusion Truth and Recorded Future, stating that the entity
behind APT3 is the Chinese Ministry of State Security. That said, it wasn’t very clear so far

https://research.checkpoint.com/upsynergy/
https://www.symantec.com/blogs/threat-intelligence/buckeye-windows-zero-day-exploit
https://intrusiontruth.wordpress.com/category/apt3/
https://www.recordedfuture.com/chinese-mss-behind-apt3/

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 2/24

whether the group developed its exploits in-house or acquired them elsewhere. In this publication
we deliver a glance into one possible modus operandi – the Chinese collect attack tools used
against them, reverse engineer and reconstruct them to create equally strong digital weapons.

Following is a summary of our key findings:

The group’s exploitation tool named Bemstour makes use of a variant of a single Equation
group exploit. Our research shows that the particular equivalent to this exploit is
EternalRomance. APT3 developed their own implementation, possibly based on their
analysis and understanding of EternalRomance’s leveraged vulnerability.
The group attempted to develop the exploit in a way that allowed it to target more Windows
versions, similar to what was done in a parallel Equation group exploit named
EternalSynergy. This required looking for an additional 0-day that provided them with a
kernel information leak. All of this activity suggests that the group was not exposed to an
actual NSA exploitation tool, as they would then not need to create another 0-day exploit.
We decided to name APT3’s bundle of exploits UPSynergy, since, much like in the case of
Equation group, it combines 2 different exploits to expand the support to newer operating
systems.
The underlying SMB packets used throughout the tool execution were crafted manually by
the developers, rather than generated using a third party library. As a lot of these packets
were assigned with hardcoded and seemingly arbitrary data, as well as the existence of
other unique hardcoded SMB artifacts, we can assume that the developers were trying to
recreate the exploit based on previously recorded traffic.
If network traffic was indeed used by the group as a reference, the traffic was likely
collected from a machine controlled by APT3. This means either a Chinese machine that
was targeted by the NSA and monitored by the group, or a machine compromised by the
group beforehand on which foreign activity was noticed. We believe the former is more
likely, and in that case could be made possible by capturing lateral movement within a
victim network targeted by the Equation group.
Finding a 0-day info leak, recreating the exploit based on the aforementioned vulnerability,
and utilizing a lot of internal undocumented structures of SMB in the implants, implies that
there was a similar expertise with and analysis performed on SMB drivers (with an eye to
exploiting them) on the Chinese side, roughly at the same time it was widely used by the
NSA. This, to some extent, suggests a narrative where China and the US are engaged in a
cyber arms race to develop new exploits.

In the following sections, we provide the technical basis for our conclusions, by taking a tour
through the tool’s internals, its underlying exploit, and the implant’s nuts and bolts. We also dive
deeply into the root cause for the 0-day found by APT3. To the best of our knowledge, this hasn’t
been described anywhere else.

Overview of the Bemstour Tool

Besmtour is a tool developed by APT3 to gain remote code execution on a victim’s machine using
UPSynergy – a combination of an exploit based on EternalRomance and a 0-day found by the
group itself. The goal is to deploy a payload on the victim’s machine which is injected to a running
process using an implant. This implant is highly similar to the Equation group’s DoublePulsar.

The tool is meant to be run from a command line, and provides 2 modes of operation. In the first,
the attacker sends a local file which will be executed on the victim machine with a given
command line argument. In the 2nd mode, the attacker runs an arbitrary shell command without
the need to send an actual file.

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 3/24

These functionalities are supported in both 32 and 64 bit versions. According to Symantec, the 64
bit versions were leveraged solely for executing shell commands, mostly to generate new user
accounts in the victims’ environments.

Figure 1: The 2 modes of operation provided by Bemstour.

One thing we noted about Bemstour’s code is the way it generates and sends traffic to the
victim’s machine. In particular, we noticed that all packets are built manually, i.e. the developers
created structs to represent the various SMB packets to send to the victim, and issued them over
plain TCP sockets.

Figure 2: An example of a manually constructed SMB header.

As part of the manual crafting of SMBs, the developers assigned them with values hardcoded in
the binary. Some of these reside within the data section in the form of custom structs, such as the
one depicted in the figure below. When such a hardcoded assignment is required, an allocated
SMB and the hardcoded structure are issued as arguments to a specific function, which in turn
takes the custom struct’s field values and assigns them to the corresponding SMB fields.

Figure 3: A custom structure containing fields to populate SMB headers with hardcoded values.

When looking at a structure like this, it’s noteworthy that some of its fields represent unique
values that are generated per SMB connection. One such value is the UID, which can be
declared by the client and therefore could be chosen arbitrarily by Bemstour. In this case, there
are multiple instances where this field is given hardcoded unique values in a particular range,
which may hint that they were copied from a source like recorded network traffic.

https://research.checkpoint.com/wp-content/uploads/2019/09/figure_1.png
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_2.png
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cifs/a4a70059-d263-47e0-be65-1f773a9b08be

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 4/24

Figure 4: Instances of the custom hardcoded SMB header structure.

We found other hardcoded structures that are actually not used in any place in the code, but
whose values and order imply the field they represent. This suggests that these are header
fragments that were left as residues in the binary from another source. An example of such
structs is shown below, where a numeric proximity can be seen to those UIDs that are used in the
code.

Figure 5: Unused fragments of SMB header that are left in the binary.

There are additional hardcoded artifacts that may provide some insight into the tool’s nature. For
example, the PDB path (seen in the figure below) points out that the tool’s source name is “SMB
Master”, and it was part of a project called “SMB_FOR_ALL_Ultimate-signature.” Based on this,

https://research.checkpoint.com/wp-content/uploads/2019/09/figure_3.png
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_4.png
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_5.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 5/24

we can speculate that the project was indeed about repurposing an SMB exploit to target “ALL”
(or at least more) versions of Windows.

Figure 6: PDB path hardcoded in the tool’s binary.

Finally, more unused strings show something that looks like a concatenation of a computer name,
user name and perhaps domain name. It is unclear where they come from, but again, strengthens
the idea that this network entity was part of a referenced traffic capture.

Figure 7: Unused strings that reveal a network entity.

Overview of the Eternal* Exploits

Before we take a further look at the details of APT3’s exploit implementation, we need to
understand the various Eternal exploits that were incorporated into the Lost in Translation leak by
The Shadow Brokers. Back in 2017, when this leak was released, 4 Eternal exploits were
uncovered: EternalBlue, EternalChampion, EternalRomance and EternalSynergy.

Both and EternalRomance targeted mostly Windows 7 systems (as well as lower version of
Windows NT where SMBv1 is located). One of the problems in adapting EternalRomance to
higher Windows versions was a patch introduced in Windows 8 which eliminated the possibility to
use an information leak vulnerability leveraged by it.

To deal with this problem, the Equation group came up with an upgraded version where the
problematic info leak was replaced with one that could be exploited on Windows 8. Essentially,
there was nothing new there, as the info leak exploit was already used in EternalChampion and
other parts of EternalRomance remained the same. This new hybrid exploit was named
EternalSynergy, suggesting the way it was built – a synergy of 2 exploits.

When it comes to the exploit in the Bemstour tool, it is evident that there’s an attempt to leverage
the same vulnerability exploited by EternalRomance. At the same time, there is the use of a
whole new information leak exploit, which was in fact a 0-day found by APT3. As we will see in
the upcoming section, this particular information leak is quite robust and allowed the group to
upgrade their version of EternalRomance to use in versions higher than Windows 7.

In this sense, APT3 crafted its own exploit from other exploits – a tactic very similar to one used
by the Equation group. As this threat group also uses the name UPS team, we decided to name
their version of the exploit bundle UPSynergy.

Root Cause Analysis of CVE 2019-0703

According to Microsoft, CVE-2019-0703 is “an information disclosure vulnerability [that] exists in
the way […] the Windows SMB Server handles certain requests. An authenticated attacker who
successfully exploited this vulnerability could craft a special packet, which could lead to
information disclosure from the server.

To exploit the vulnerability, an attacker would have to be able to authenticate and send SMB
messages to an impacted Windows SMB Server The security update addresses the vulnerability
by correcting how Windows SMB Server handles authenticated requests ”

https://research.checkpoint.com/wp-content/uploads/2019/09/figure_6.png
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_7.png
https://github.com/misterch0c/shadowbroker

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 6/24

Our analysis shows a slightly different picture. The vulnerability is in fact a logical bug related to
querying information from the Windows Named Pipes mechanism, and not a vulnerabilityin the
SMB protocol nor its implementation. While it can be triggered using SMB, there are other ways
to leverage it, e.g. using the NtQueryInformationFile Windows API call that is unrelated to SMB.

The bug resides within npfs.sys (Name Pipe File System driver) in a function named
NpQueryInternalInfo. The latter is used to query named pipes and return a value called a file
reference number, which according to Microsoft “MUST be assigned by the file system and is
unique to the volume on which the file or directory is located.”

However, our analysis shows that the returned value is not a file reference number, but rather a
pointer to a kernel structure named CCB (Client Control Block). This is an undocumented struct
defined in npfs.sys, which has a partial definition (named NP_CCB) provided by the ReactOS
project. Clearly, this is not the intended value to be returned in this case, and the leak of this
struct discloses useful information that can be leveraged by attackers.

Figure 8: The leaked object is in fact a CCB struct, as evident from WinDbg.

To trigger this information disclosure vulnerability, a call with the following arguments is made to
the NtQueryInformationFile stub in ntdll.dll:

FileHandle – Handle to a named pipe (for example “\\.\pipe\browser”).
FileInformationClass – FileInternalInformation (equals 0x6).

After this happens, we get the following call stack:

Figure 9: Kernel mode call stack corresponding to an NtQueryInformationFile call from user
mode.

As already mentioned, it is also possible to trigger this vulnerability via SMB, as was used by
APT3. The method was used to determine the bitness of the attacked operating system and
overwrite (using a write primitive) a field in the leaked structure, which eventually provided the
group with remote code execution.

To leverage the vulnerability, you must first establish an SMB connection to a named pipe on the
victim’s machine, as can be seen in the figure below.

https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntqueryinformationfile
https://doxygen.reactos.org/d4/d30/drivers_2filesystems_2npfs_2npfs_8h_source.html
https://reactos.org/
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_8.png
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntqueryinformationfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/ns-ntifs-_file_internal_information
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_9.png
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_10.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 7/24

Figure 10: Network capture of SMB packets that demonstrates an establishment of a connection
to the \pipe\browser named pipe (FID 0x4000).

Next, it’s possible to query information about the opened pipe using the 0x32 SMB command
(SMB_COM_TRANSACTION2) and the 0x7 subcommand
(TRANS2_QUERY_FILE_INFORMATION). The latter has a field named InformationLevel which
describes the types of information that can be retrieved by the server.

Furthermore, if the server declared a capability named Infolevel Passthru in its Negotiate
Response field as a part of an earlier negotiation (a capability usually provided by default), more
types of information can be retrieved, namely ones that provide native file information on the
server. In this case, the former capability allows it to provide a code number named a Pass-thru
Information Level by the client, which maps directly to another Windows NT numerical value
called an Information Class on the server. This value corresponds to the FileInformationClass
parameter of the NtQueryInformationFile API, which specifies what type of file information to
query from a server destined file object.

To use one of the pass-thru Information Levels to request a corresponding Information Class for a
file on the server, it is sufficient to add the value 0x3e8 (SMB_INFO_PASSTHROUGH) to the
requested Information Class. As an example, if we take the FileInternalInformation Information
Class (which has the value 6) and want to get the corresponding Information Level, we just need
to add the previously mentioned value to it, resulting in the value 0x3ee.

In our case, using this very same Information Level by placing it as a parameter of the
TRANS2_QUERY_FILE_INFORMATION subcommand, triggers the vulnerability by causing the
invocation of the NtQueryInformationFile from the srv.sys driver (SMB driver). The latter in turn
calls the vulnerable NpQueryInternalInfo from npfs.sys, as depicted in the stack trace below.

Figure 11: Kernel mode calls stack resulting from execution of the SMB transaction that triggers
the bug.

Consequently, when we issue a Trans2 request to query for a file info using the previously
mentioned Info Level, we get a CCB leaked pointer in the response.

Figure 12: Wireshark’s view of triggering the vulnerability.

To examine the described root cause for the vulnerability from another angle, we can take a look
at the diff between the patched and unpatched code in npfs.sys:

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/714bb6fa-7fab-4dab-8ff8-8a01c273b9ce
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/f4503a0b-f809-477f-8ef6-9633ee90d1cc
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/c7d64f17-1ab6-4151-b9e8-f15813235c83#gt_b01da706-86d0-4ee2-9461-2d9fb1060543
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cifs/794afe2e-7c11-4a8c-b909-0a397966f6a9
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/ab2aca37-6c9e-4505-baa9-9e2bc556c475
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-fscc/4718fc40-e539-4014-8e33-b675af74e3e1
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-fscc/7d796611-2fa5-41ac-8178-b6fea3a017b3
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cifs/0a96fae0-b183-42b6-92bd-e05b1d92f434
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntqueryinformationfile
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_11.png
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_12.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 8/24

Figure 13: Patch diff – The vulnerable code can be seen in the upper part.

As can be seen in the vulnerable code, the out_buffer argument returned to the caller and then to
the client contains a pointer to the ClientControlBlock (NP_CCB) argument instead of the file
reference number. This is fixed in the patched code, where offsets 0xa0 and 0xa4 from
ClientControlBlock are written to the out_buffer instead, thus returning the actual intended file
reference number to the caller and client.

As mentioned previously, the information obtained from this info leak can give us the ability to
execute code on the victim machine, using another write primitive. To understand how this is
possible, we need to take a closer look at the CCB structure. One of its members points to yet
another undocumented struct, which we will denote as ‘struct x’. This struct contains a pointer to a
function that is called when the connection to the named pipe is terminated, which we’ll refer to as
the ‘pipe destructor function’.

In APT3’s implementation of the exploit, the HAL heap is written with both shellcode and a rogue
instance of ‘struct x’. The latter simply contains a pointer to the shellcode in the position of the
‘pipe destructor function’. Therefore, when we use a write primitive and know the whereabouts of
the leaked CCB structure, we can overwrite its pointer to ‘struct x’ so that it points to the rogue
instance. After the connection is closed, the shellcode is triggered and the attacker can run
arbitrary code on the victim’s machine.

Comparison of UPSynergy and Eternal Romance Implementations

One of the observations we made during our analysis of Bemstour was that its main exploit
targets only a particular vulnerability that overlaps with one used by the Equation group. This
vulnerability is rooted in a type confusion bug leveraged in a similar fashion in the
EternalRomance exploit, which was then reused together with other exploits in EternalSynergy.

As a result of this type confusion between SMB messages, the server considers an unrelated
SMB message as part of an SMB Transaction of a different type, and activates the wrong type of
SMB handler. This handler in turn shifts the Transaction struct’s pointer to the incoming data
buffer by the amount of data received in the SMB message. Because the pointer value was
shifted by the wrong handler, data of further SMB messages (which are treated by the correct
type of handler) can be potentially written outside the boundaries of the incoming data buffer. If
there was successful grooming (i.e. the heap was correctly shaped beforehand), this out-of-bound
write may allow us to overwrite an adjacent SMB Transaction structure.

https://research.checkpoint.com/wp-content/uploads/2019/09/figure_13.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 9/24

Instead of going through every detail of APT3’s exploit, the table below compares the underlying
techniques used by EternalRomance vs. those used by UPSynergy. Detailed information about
the bug (CVE-2017-0143) and how it was exploited in EternalRomance to gain a write-what-
where and read-what-where primitives is explained very well by Microsoft in their analysis of
EternalSynergy.

Ex‐
ploita‐
tion
Tech‐
nique

EternalRomance APT3 Exploit (UPSynergy)

Deter‐
mine the
OS Type

Determined from the server’s session SetupAndX re‐
sponse (part of a session negotiation), where the un‐
derlying target OS is specified.

Same technique.

Deter‐
mine the
OS
Bitness

Uses a leaked pool header structure that contains
parameters from which the OS architecture can be
inferred.

Uses the address of the leaked
CCB structure to infer the range
in which it resides and the un‐
derlying architecture.

Groom‐
ing
Tech‐
nique
(Heap
Shap‐
ing)

Uses 2 types of allocations with different sizes,
named “bride” and “groom.” Another technique is
used for OS versions prior to Windows 7.

Uses “bride” allocations only,
with a different allocation size.

Leaked
Object

Leaks a kernel object named Transaction (corre‐
sponding to an SMB Transaction).

Leaks a kernel object named
CCB (Client Control Block).

OOB
Write
Vulnera‐
bility

A result of a type confusion bug, as outlined above. Same vulnerability.

Write-
What-
Where
primitive

Can be achieved by overwriting the input buffer
pointer of a target Transaction structure, as outlined
above.

Same technique.

Read-
What-
Where
primitive

Can be achieved by overwriting the output buffer
pointer of a target Transaction structure, as outlined
above.

APT3 doesn’t use this primitive.

RWE
Cave

Uses an RWE page in the srv.sys memory section. Uses HAL’s heap.

First
Shell‐
code
Execu‐
tion

Overwrites an unimplemented SMB command point‐
er in the SMB command handler table, and sends an
SMB transaction for this command to execute a han‐
dler (which is in fact shellcode).

Overwrites a named pipe con‐
nection handler function which
executes after the connection is
closed.

In addition, we conducted a quantitative analysis of various actions performed during both
exploits, as can be seen in the following table:

Parameter EternalRo‐
mance

APT3 Exploit
(UPSynergy)

https://msrc-blog.microsoft.com/2017/07/13/eternal-synergy-exploit-analysis/

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 10/24

Info leak exploit usage 2 times 1 time

Usage of a write-what-where primitive 24 times 3 times

Usage of a read-what-where primitive 4 times Not used

Number of attempts to overwrite a Transaction structure in
case of failure on the first try

2 attempts 0 attempts

From this table, we can infer that the UPSynergy information leak significantly eases the
exploitation process, as the leaked CCB object described earlier contains almost a direct code
execution primitive. In EternalRomance, we could see the usage of a read-what-where primitive,
mainly used for dereferencing child structs of a leaked Transaction struct. In the case of
UPSynergy, that would be redundant.

Having said that, there is a slight chance of instability in the grooming implementation of
UPSynergy, where a write to an unallocated page might lead to an unintended BSOD. This will
not happen in EternalRomance (point for the Equation group).

Comparison of APT3 and Equation Group Implants

The last action to take place following the exploitation is the set-up and invocation of an implant
shellcode. The purpose is to serve as a basic backdoor, allowing the attacker to issue a further
kernel mode payload and execute it on the target machine. In the case of both APT3 and
Equation group, an implant named DoublePulsar is used. This implant was leaked by The
Shadow Brokers in 2017.

In both cases, there is a very similar flow to the implant’s operation – a hook is set up for a
particular SMB handler function to handle invalid SMBs. This hook searches for one of 3
commands in a particular SMB field and executes a corresponding function for each one. One of
the supported commands is responsible for accepting further shellcode and running it – the last
stage payload. At this point, the attacker may issue an arbitrary piece of code for execution in the
kernel space.

As far as APT3’s implant is concerned, it seems likely f the DoublePulsar code was reused as is.
The code is not executed directly, but has several layers of obfuscation. Essentially, the Equation
group’s DoublePulsar code is wrapped with an APT3 position independent crypter & loader.

In the following sections, we take a look at the differences and supplements provided by APT3.
As we will see, the main logic flow was preserved in both cases. However, the differences show
that APT3 did not want to fully disclose the fact it was using an allegedly American implant.

1st Stage – DoublePulsar Loader

The very first stage of the implant’s code is a custom loader written by APT3, which extracts an
encrypted version of DoublePulsar code from incoming SMB packets, and decrypts and executes
it. This is in fact a self-modifying piece of code, i.e. before it actually handles any of the
aforementioned functionalities, it must decrypt subsequent parts of itself. The code is wrapped in
2 layers using simple crypters, so the first crypter decodes the second, and the latter decodes the
actual loader code.

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 11/24

Figure 14: First and second phase of decoding the loader’s payload.

After these phases are completed, the loader starts its operation which is broken down into the
following steps:

1. Dynamic function resolution.
2. Determine the OS version.
3. Locate the SrvTreeConnectList in sys.
4. Extract the encoded shellcode from a Transaction object list.
5. Execute the shellcode.

The figure below summarizes this flow, showing the main code of this loader. We then present a
detailed outline of each of these steps, and point out the major differences that set this code apart
from that of the Equation group.

https://research.checkpoint.com/wp-content/uploads/2019/09/figure_14_a.png
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_14_b.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 12/24

Figure 15: The main flow of the 1st stage loader.

Step 1: Dynamic function resolution

As this is essentially position independent code, we need to resolve some API functions
dynamically, which are then used during run time. First, we must locate the base address of the
ntoskrnl.exe image. We do this by obtaining the KPCR structure from the FS register, and use
offset 0x38 which points to KIDTENTRY *IDT (i.e. the interrupt dispatch table). As we know the
latter resides within ntoskrnl.exe and is aligned to the beginning of a page, so it is sufficient to
walk back in page multiples until the start of the page is equivalent to the magic number of a PE.

After that is done, it’s possible to parse the export table of ntoskrnl.exe to achieve several basic
API function addresses. A common technique is to parse the export tables of a relevant loaded
image where these functions reside (e.g. ntoskrnl.exe), hash the names of their exports, and
compare them to hardcoded ones. The latter represent the names of the functions that require
address resolution. In this case, we see that the hashing function differs from that of the Equation
group, resulting in different name hashes.

Function Name APT3 Hash Equation Hash

ZwQuerySystemInformaiton 0x8754A7F7 0x0D2515B2E

ExAllocatePoolWithTag 0x37F154D9 –

ExAllocatePool – 0x0E3690194

ExFreePool 0x3F7747DE 0x0F0835485

RtlGetVersion 0x0DDE5CDD –

https://research.checkpoint.com/wp-content/uploads/2019/09/figure_15.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 13/24

Figure 16: Different name hashing implementations and their resulting string hashes.

We see that not only different hashing algorithms are used, but also different API functions. For
instance, the Equation group uses a simple pool allocation via the ExAllocatePool API, while
APT3 uses a tagged allocation and calls ExAllocatePoolWithTag. In the latter case, the used tag
represents a work context structure.

Figure 17: APT3 tagged allocation.

Step 2: Determining the OS version

Next, the loader invokes the RtlGetVersion function to obtain information about the underlying
Windows version. It then assigns a numeric value to a field in a particular struct maintained by the
loader, which corresponds to the OS version. The value is in fact an offset into an undocumented
SMB struct called CONNECTION, which will result in a field that points to yet another
undocumented struct called PAGED_CONNECTION. How this struct is used will be evident in
subsequent steps.

https://research.checkpoint.com/wp-content/uploads/2019/09/figure_16.png
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_17.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 14/24

Figure 18: Determining the version of Windows, and choosing a corresponding offset value.

Step 3: Locating sys and SrvTreeConnectList

At this point, the loader tries to find Srv.sys (the SMB driver’s image) and parse it. This is done to
locate a global undocumented list named SrvTreeConnectList. Srv.sys is located using
ZwQuerySystemInformation to obtain a list of loaded module information (where a base address
of the loaded images is specified), while the struct is found by going through Srv.sys’ .data section
and looking for several identifying numeric parameters.

Step 4: Extracting encoded shellcode from a Transaction object list.

After the list is found, it is used to go through several linked SMB structures to finally obtain a list
of Transaction structs. The latter allows us to access the data obtained from relevant SMB Trans
packets which contains the subsequent shellcode.

The chain of these structures can be seen in the figure below. The main takeaway is that all of
these structures are undocumented – i.e. the developers of APT3 must have done quite a bit of
reverse engineering on Srv.sys to infer them (on more than one Windows version, as evident from
the offset to PAGED_CONNECTION). This effort is very similar to the one invested by the NSA to
find the various Eternal exploits around the same time.

https://research.checkpoint.com/wp-content/uploads/2019/09/figure_18.png
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_19.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 15/24

Figure 19: APT3’s code to ‘walk’ through various undocumented SMB strucures, suggesting that
a considerable analysis was performed and the group’s members have a good understanding of
the SMB internals.

Step 5: Executing the shellcode

After the shellcode is obtained and decoded, it is finally executed. This leads to the next stage,
which is yet another piece of self-modifying PIC. However, in this case, most of the code that is
unravelled after 2 layers of decoding is a variant of the original DoublePulsar, as used by the
Equation group.

2nd Stage – DoublePulsar Installation & Hook

In this stage of the implant’s operation, yet another shellcode runs. As previously mentioned, this
code is obfuscated with 2 layers of crypters, the same ones used to wrap the loader in the 1st
stage. The code that is unpacked was mostly not written by APT3.

The first part of the resulting PIC seems to be custom-made, and invokes a system thread that
works periodically to form paged allocations of various sizes. It can run in rounds indefinitely,
creating 256 allocations for each round and counting the number that get an address within the
range of 64 bytes from the point in which the first shellcode was written. Only if there are more
than 64 ‘faulty’ allocations can this loop terminate. The purpose is not fully clear, but could be an
attempt to avoid paging out the shellcode buffers from the paged pool.

The other part of this internal payload installs DoublePulsar. This is done by replacing a function
pointer to point at a hook function instead of the original function named
SrvTransactionNotImplemented. The replacement of this pointer happens in a hard-coded table in
the SMB driver (srv.sys) named SrvTransaction2DispatchTable.

In essence, both APT3 and the Equation group take similar steps to achieve this goal. These are
outlined in the figure below, and are more thoroughly explained here and here.

Figure 20: The general steps taken to install DoublePulsar’s hook, in both implementations of the
shellcode.

You can see the similarity in the call flow graph comparison of these hook functions:

https://zerosum0x0.blogspot.com/2017/04/doublepulsar-initial-smb-backdoor-ring.html
https://blog.checkpoint.com/2017/07/03/brokers-shadows-part-2-analyzing-petyas-doublepulsarv2-0-backdoor/
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_20.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 16/24

Figure 21: CFG comparison of the DoublePulsar hook functions.

This particular hook function anticipates an initial command named “ping” where a XOR key is
obtained from the attacker. This key can then be used to decode the payload of subsequent
SMBs carrying additional shellcode. The latter is executed as part of another command called
“exec”.

https://research.checkpoint.com/wp-content/uploads/2019/09/figure_21.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 17/24

Figure 22: Commands supported by the 2nd stage hook backdoor.

There is an addition to the code that was not observed in other variants of DoublePulsar. This
addition is a common snippet used to disable the WP bit flag of the CR0 register, which allows the
kernel to write into read only pages. It is not clear if this serves any purpose in the implant’s
operation, but it is reasonable to assume that it was bundled to a version of DoublePulsar that
was captured by APT3 and was simply left as a code residue.

Figure 23: Code snippet from DoublePulsar, used to clear the WP flag in CR0.

3rd Stage – APC Injector

The last stage of the implant is a piece of code that performs APC injection of a hardcoded
routine to the “services.exe” process in the user space. In turn, this routine can write a given
payload to a new file and execute it, or run a shell command. In both cases, the API used for the
execution is WinExec.

https://research.checkpoint.com/wp-content/uploads/2019/09/figure_22.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 18/24

It’s worth noting that while an arbitrary command can be
issued by the user, there are several hardcoded
commands that the shellcode runs through the invoked
APC in the user space. One of these commands adds a
new user as local admin with a hardcoded name and
password. In the sample analyzed for this publication, this
username is cessupport and the password is 1qaz#EDC.

Figure 24: Hardcoded shell command to add a new admin user to the system.

The implementation of this part doesn’t resemble that of the Equation group (compared to their
equivalent APC injector). It’s also different from the previous stages of APT3’s implant. For
example, function resolution does not use string hashes anymore, but rather makes comparisons
to strings stored in the stack. The allocations are no longer tagged and the overall choice of API
functions for similar actions looks different. This may mean that there was another entity within
the group that was involved in the development of this part, but not of previous ones.

Conclusion

In our research, we analyzed and compared the exploit development efforts done by 2 major
actors in the APT landscape – the Equation group and APT3. While the former is known for its
advanced and almost unparalleled capabilities in the field of vulnerability research, it is interesting
to observe how other groups focus on similar research objectives, with a considerable degree of
success.

It’s not always clear how threat actors achieve their exploitation tools, and it’s commonly assumed
that actors can conduct their own research and development or get it from a third party. In this
case we have evidence to show that a third (but less common) scenario took place – one where
attack artifacts of a rival (i.e. Equation group) were used as the basis and inspiration for
establishing in-house offensive capabilities by APT3.

https://research.checkpoint.com/wp-content/uploads/2019/09/figure_23.png
https://research.checkpoint.com/wp-content/uploads/2019/09/figure_24.png

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 19/24

Although we can’t prove this beyond any doubt, we brought many facts and analysis findings to
back up our speculations. We will continue our efforts to find the answers to these as well as any
future questions that arise.

Check Point protects against the exploits issued by the Bemstour tool with the IPS protection
‘Microsoft SMB Client Transaction Memory Corruption (MS10-020)’.

We would like to thank Eyal Itkin for assisting in parts of the analysis during this research.

IOCs
MD5:

F595228976CC89FFAC02D831E774CFA6

SHA1:

80143E32F887B2583B777DAEC5982FB5C2886FB3

SHA256:

0B28433A2B7993DA65E95A45C2ADF7BC37EDBD2A8DB717B85666D6C88140698A

Yara Rules:

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 20/24

rule apt3_bemstour_strings
{
meta:

description = "Detects strings used by the Bemstour exploitation tool"
author = "Mark Lechtik"
company = "Check Point Software Technologies LTD."
date = "2019-06-25"
sha256 = "0b28433a2b7993da65e95a45c2adf7bc37edbd2a8db717b85666d6c88140698a"
strings:

$dbg_print_1 = "leaked address is 0x%llx" ascii wide
$dbg_print_2 = "========== %s ==========" ascii wide
$dbg_print_3 = "detailVersion:%d" ascii wide
$dbg_print_4 = "create pipe twice failed" ascii wide
$dbg_print_5 = "WSAStartup function failed with error: %d" ascii wide
$dbg_print_6 = "can't open input file." ascii wide
$dbg_print_7 = "Allocate Buffer Failed." ascii wide
$dbg_print_8 = "Connect to target failed." ascii wide
$dbg_print_9 = "connect successful." ascii wide
$dbg_print_10 = "not supported Platform" ascii wide
$dbg_print_11 = "Wait several seconds." ascii wide
$dbg_print_12 = "not set where to write ListEntry ." ascii wide
$dbg_print_13 = "backdoor not installed." ascii wide
$dbg_print_14 = "REConnect to target failed." ascii wide
$dbg_print_15 = "Construct TreeConnectAndX Request Failed." ascii wide
$dbg_print_16 = "Construct NTCreateAndXRequest Failed." ascii wide
$dbg_print_17 = "Construct Trans2 Failed." ascii wide
$dbg_print_18 = "Construct ConsWXR Failed." ascii wide
$dbg_print_19 = "Construct ConsTransSecondary Failed." ascii wide
$dbg_print_20 = "if you don't want to input password , use server2003 version.." ascii
wide

$cmdline_1 = "Command format %s TargetIp domainname username password 2" ascii wide
$cmdline_2 = "Command format %s TargetIp domainname username password 1" ascii wide
$cmdline_3 = "cmd.exe /c net user test test /add && cmd.exe /c net localgroup
administrators test /add" ascii wide
$cmdline_4 = "hello.exe \"C:\\WINDOWS\\DEBUG\\test.exe\"" ascii wide
$cmdline_5 = "parameter not right" ascii wide

$smb_param_1 = "browser" ascii wide
$smb_param_2 = "spoolss" ascii wide
$smb_param_3 = "srvsvc" ascii wide
$smb_param_4 = "\\PIPE\\LANMAN" ascii wide
$smb_param_5 = "Werttys for Workgroups 3.1a" ascii wide
$smb_param_6 = "PC NETWORK PROGRAM 1.0" ascii wide
$smb_param_7 = "LANMAN1.0" ascii wide
$smb_param_8 = "LM1.2X002" ascii wide
$smb_param_9 = "LANMAN2.1" ascii wide
$smb_param_10 = "NT LM 0.12" ascii wide
$smb_param_12 = "WORKGROUP" ascii wide
$smb_param_13 = "Windows Server 2003 3790 Service Pack 2" ascii wide
$smb_param_14 = "Windows Server 2003 5.2" ascii wide
$smb_param_15 = "Windows 2002 Service Pack 2 2600" ascii wide
$smb_param_16 = "Windows 2002 5.1" ascii wide
$smb_param_17 = "PC NETWORK PROGRAM 1.0" ascii wide
$smb_param_18 = "Windows 2002 5.1" ascii wide
$smb_param_19 = "Windows for Workgroups 3.1a" ascii wide

$unique_str_1 = "WIN-NGJ7GKNROVS"
$unique_str_2 = "XD-A31C2E0087B2"

condition:

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 21/24

 uint16(0) == 0x5a4d and (5 of ($dbg_print*) or 2 of ($cmdline*) or 1 of
($unique_str*)) and 3 of ($smb_param*)
}

rule apt3_bemstour_implant_byte_patch
{
meta:

description = "Detects an implant used by Bemstour exploitation tool (APT3)"
author = "Mark Lechtik"
company = "Check Point Software Technologies LTD."
date = "2019-06-25"
sha256 = "0b28433a2b7993da65e95a45c2adf7bc37edbd2a8db717b85666d6c88140698a"

/*

0x41b7e1L C745B8558BEC83 mov dword ptr [ebp - 0x48], 0x83ec8b55
0x41b7e8L C745BCEC745356 mov dword ptr [ebp - 0x44], 0x565374ec
0x41b7efL C745C08B750833 mov dword ptr [ebp - 0x40], 0x3308758b
0x41b7f6L C745C4C957C745 mov dword ptr [ebp - 0x3c], 0x45c757c9
0x41b7fdL C745C88C4C6F61 mov dword ptr [ebp - 0x38], 0x616f4c8c

*/

strings:

$chunk_1 = {

C7 45 ?? 55 8B EC 83
C7 45 ?? EC 74 53 56
C7 45 ?? 8B 75 08 33
C7 45 ?? C9 57 C7 45
C7 45 ?? 8C 4C 6F 61

}

condition:
 any of them
}

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 22/24

rule apt3_bemstour_implant_command_stack_variable
{
meta:

description = "Detecs an implant used by Bemstour exploitation tool (APT3)"
author = "Mark Lechtik"
company = "Check Point Software Technologies LTD."
date = "2019-06-25"
sha256 = "0b28433a2b7993da65e95a45c2adf7bc37edbd2a8db717b85666d6c88140698a"

strings:

/*

0x41ba18L C78534FFFFFF636D642E mov dword ptr [ebp - 0xcc], 0x2e646d63
0x41ba22L C78538FFFFFF65786520 mov dword ptr [ebp - 0xc8], 0x20657865
0x41ba2cL C7853CFFFFFF2F632063 mov dword ptr [ebp - 0xc4], 0x6320632f
0x41ba36L C78540FFFFFF6F707920 mov dword ptr [ebp - 0xc0], 0x2079706f
0x41ba40L C78544FFFFFF2577696E mov dword ptr [ebp - 0xbc], 0x6e697725
0x41ba4aL C78548FFFFFF64697225 mov dword ptr [ebp - 0xb8], 0x25726964
0x41ba54L C7854CFFFFFF5C737973 mov dword ptr [ebp - 0xb4], 0x7379735c
0x41ba5eL C78550FFFFFF74656D33 mov dword ptr [ebp - 0xb0], 0x336d6574
0x41ba68L C78554FFFFFF325C636D mov dword ptr [ebp - 0xac], 0x6d635c32
0x41ba72L C78558FFFFFF642E6578 mov dword ptr [ebp - 0xa8], 0x78652e64
0x41ba7cL C7855CFFFFFF65202577 mov dword ptr [ebp - 0xa4], 0x77252065
0x41ba86L C78560FFFFFF696E6469 mov dword ptr [ebp - 0xa0], 0x69646e69
0x41ba90L C78564FFFFFF72255C73 mov dword ptr [ebp - 0x9c], 0x735c2572
0x41ba9aL C78568FFFFFF79737465 mov dword ptr [ebp - 0x98], 0x65747379
0x41baa4L C7856CFFFFFF6D33325C mov dword ptr [ebp - 0x94], 0x5c32336d
0x41baaeL C78570FFFFFF73657468 mov dword ptr [ebp - 0x90], 0x68746573
0x41bab8L C78574FFFFFF632E6578 mov dword ptr [ebp - 0x8c], 0x78652e63
0x41bac2L C78578FFFFFF65202F79 mov dword ptr [ebp - 0x88], 0x792f2065
0x41baccL 83A57CFFFFFF00 and dword ptr [ebp - 0x84], 0

*/

$chunk_1 = {

C7 85 ?? ?? ?? ?? 63 6D 64 2E
C7 85 ?? ?? ?? ?? 65 78 65 20
C7 85 ?? ?? ?? ?? 2F 63 20 63
C7 85 ?? ?? ?? ?? 6F 70 79 20
C7 85 ?? ?? ?? ?? 25 77 69 6E
C7 85 ?? ?? ?? ?? 64 69 72 25
C7 85 ?? ?? ?? ?? 5C 73 79 73
C7 85 ?? ?? ?? ?? 74 65 6D 33
C7 85 ?? ?? ?? ?? 32 5C 63 6D
C7 85 ?? ?? ?? ?? 64 2E 65 78
C7 85 ?? ?? ?? ?? 65 20 25 77
C7 85 ?? ?? ?? ?? 69 6E 64 69
C7 85 ?? ?? ?? ?? 72 25 5C 73
C7 85 ?? ?? ?? ?? 79 73 74 65
C7 85 ?? ?? ?? ?? 6D 33 32 5C
C7 85 ?? ?? ?? ?? 73 65 74 68
C7 85 ?? ?? ?? ?? 63 2E 65 78
C7 85 ?? ?? ?? ?? 65 20 2F 79
83 A5 ?? ?? ?? ?? 00
}

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 23/24

/*

0x41baeeL C785D8FEFFFF636D6420 mov dword ptr [ebp - 0x128], 0x20646d63
0x41baf8L C785DCFEFFFF2F632022 mov dword ptr [ebp - 0x124], 0x2220632f
0x41bb02L C785E0FEFFFF6E657420 mov dword ptr [ebp - 0x120], 0x2074656e
0x41bb0cL C785E4FEFFFF75736572 mov dword ptr [ebp - 0x11c], 0x72657375
0x41bb16L C785E8FEFFFF20636573 mov dword ptr [ebp - 0x118], 0x73656320
0x41bb20L C785ECFEFFFF73757070 mov dword ptr [ebp - 0x114], 0x70707573
0x41bb2aL C785F0FEFFFF6F727420 mov dword ptr [ebp - 0x110], 0x2074726f
0x41bb34L C785F4FEFFFF3171617A mov dword ptr [ebp - 0x10c], 0x7a617131
0x41bb3eL C785F8FEFFFF23454443 mov dword ptr [ebp - 0x108], 0x43444523
0x41bb48L C785FCFEFFFF202F6164 mov dword ptr [ebp - 0x104], 0x64612f20
0x41bb52L C78500FFFFFF64202626 mov dword ptr [ebp - 0x100], 0x26262064
0x41bb5cL C78504FFFFFF206E6574 mov dword ptr [ebp - 0xfc], 0x74656e20
0x41bb66L C78508FFFFFF206C6F63 mov dword ptr [ebp - 0xf8], 0x636f6c20
0x41bb70L C7850CFFFFFF616C6772 mov dword ptr [ebp - 0xf4], 0x72676c61
0x41bb7aL C78510FFFFFF6F757020 mov dword ptr [ebp - 0xf0], 0x2070756f
0x41bb84L C78514FFFFFF61646D69 mov dword ptr [ebp - 0xec], 0x696d6461
0x41bb8eL C78518FFFFFF6E697374 mov dword ptr [ebp - 0xe8], 0x7473696e
0x41bb98L C7851CFFFFFF7261746F mov dword ptr [ebp - 0xe4], 0x6f746172
0x41bba2L C78520FFFFFF72732063 mov dword ptr [ebp - 0xe0], 0x63207372
0x41bbacL C78524FFFFFF65737375 mov dword ptr [ebp - 0xdc], 0x75737365
0x41bbb6L C78528FFFFFF70706F72 mov dword ptr [ebp - 0xd8], 0x726f7070
0x41bbc0L C7852CFFFFFF74202F61 mov dword ptr [ebp - 0xd4], 0x612f2074
0x41bbcaL C78530FFFFFF64642200 mov dword ptr [ebp - 0xd0], 0x226464
0x41bbd4L 6A5C push 0x5c

*/

$chunk_2 = {

C7 85 ?? ?? ?? ?? 63 6D 64 20
C7 85 ?? ?? ?? ?? 2F 63 20 22
C7 85 ?? ?? ?? ?? 6E 65 74 20
C7 85 ?? ?? ?? ?? 75 73 65 72
C7 85 ?? ?? ?? ?? 20 63 65 73
C7 85 ?? ?? ?? ?? 73 75 70 70
C7 85 ?? ?? ?? ?? 6F 72 74 20
C7 85 ?? ?? ?? ?? 31 71 61 7A
C7 85 ?? ?? ?? ?? 23 45 44 43
C7 85 ?? ?? ?? ?? 20 2F 61 64
C7 85 ?? ?? ?? ?? 64 20 26 26
C7 85 ?? ?? ?? ?? 20 6E 65 74
C7 85 ?? ?? ?? ?? 20 6C 6F 63
C7 85 ?? ?? ?? ?? 61 6C 67 72
C7 85 ?? ?? ?? ?? 6F 75 70 20
C7 85 ?? ?? ?? ?? 61 64 6D 69
C7 85 ?? ?? ?? ?? 6E 69 73 74
C7 85 ?? ?? ?? ?? 72 61 74 6F
C7 85 ?? ?? ?? ?? 72 73 20 63
C7 85 ?? ?? ?? ?? 65 73 73 75
C7 85 ?? ?? ?? ?? 70 70 6F 72
C7 85 ?? ?? ?? ?? 74 20 2F 61
C7 85 ?? ?? ?? ?? 64 64 22 00
6A 5C

}

/*

0x41be22L C745D057696E45 mov dword ptr [ebp - 0x30], 0x456e6957
0x41be29L C745D478656300 mov dword ptr [ebp - 0x2c], 0x636578

9/6/2019 UPSynergy: Chinese-American Spy vs. Spy Story - Check Point Research

https://research.checkpoint.com/upsynergy/ 24/24

0x41be30L C7459C47657450 mov dword ptr [ebp - 0x64], 0x50746547
0x41be37L C745A0726F6341 mov dword ptr [ebp - 0x60], 0x41636f72
0x41be3eL C745A464647265 mov dword ptr [ebp - 0x5c], 0x65726464
0x41be45L C745A873730000 mov dword ptr [ebp - 0x58], 0x7373
0x41be4cL C745C443726561 mov dword ptr [ebp - 0x3c], 0x61657243
0x41be53L C745C874654669 mov dword ptr [ebp - 0x38], 0x69466574
0x41be5aL C745CC6C654100 mov dword ptr [ebp - 0x34], 0x41656c
0x41be61L C745B857726974 mov dword ptr [ebp - 0x48], 0x74697257
0x41be68L C745BC6546696C mov dword ptr [ebp - 0x44], 0x6c694665
0x41be6fL C745C065000000 mov dword ptr [ebp - 0x40], 0x65
0x41be76L C745AC436C6F73 mov dword ptr [ebp - 0x54], 0x736f6c43
0x41be7dL C745B06548616E mov dword ptr [ebp - 0x50], 0x6e614865
0x41be84L C745B4646C6500 mov dword ptr [ebp - 0x4c], 0x656c64
0x41be8bL 894DE8 mov dword ptr [ebp - 0x18], ecx

*/

$chunk_3 = {

C7 45 ?? 57 69 6E 45
C7 45 ?? 78 65 63 00
C7 45 ?? 47 65 74 50
C7 45 ?? 72 6F 63 41
C7 45 ?? 64 64 72 65
C7 45 ?? 73 73 00 00
C7 45 ?? 43 72 65 61
C7 45 ?? 74 65 46 69
C7 45 ?? 6C 65 41 00
C7 45 ?? 57 72 69 74
C7 45 ?? 65 46 69 6C
C7 45 ?? 65 00 00 00
C7 45 ?? 43 6C 6F 73
C7 45 ?? 65 48 61 6E
C7 45 ?? 64 6C 65 00
89 4D ??

}

condition:
 any of them
}

