
Reversing the Inception APT malware
After reading the Inception paper by Snorre Fagerland and Waylon Grange, I got curious about this threat
and did some reversing. I felt that it would be good to write a technical blog about the process - maybe it
could be helpful or interesting for some.

RTF file Analysis

MD5: 4a4874fa5217a8523bf4d1954efb26ef

Exploit: CVE-2012-0158

As we can see in following screen shot, this is a RTF [Rich Text Format] file. Its common that attackers use
document files such as these as bait.

It is common that shellcode starts with a NOPsled. In following screenshot we can see that the embedded
shellcode starts with NOP slide. NOP, or No OPeration - is a single-byte opcode that does nothing. It has
the hex value of 0x90.

Embedded Shellcode Analysis - First Level

Now, to the functionality of the shellcode. We will ignore the first two prolog instructions, and for
remaining statements I have inserted comments to help understanding what is happening in this chunk of

code. It’s traversing the TEB, the PEB and the Ldr structure to get the base addresses of ntdll.dll and
kernel32.dll. It needs these to find the API addresses it requires for the rest of the infection.

In screenshot below, Function 00120F82 is the malware's own GetProcAddress function which takes two
parameters

1. Base address of the system dll

2. Hash of the API name.

The function returns the memory address of the API.

Functionality of function 00120F82 (GetProcAddress)

As shown in the next screenshot, this function parses the “export name pointer table” of the .dll [ex.
kernel32.dll] and generates a hash for each function. It compares this with the argument API hash (Ex
DF7D9BAD for GetFileSize, see above screenshot) using the CMP EDI, ESI instruction. Once the matching
API is found it parses the Export Address Table and returns the respective API address to the caller in
EAX register.

The document contains two levels of shellcode. We are analyzing first level, and in the following code we
can see a typical egghunting method: It attempts to open the already opened rtf file by checking file
handles in memory. It starts with a handle with the value 4 and verifies it by doing GetFileSize on it. If this
fails it does ADD ESI,4 again (adds 4 to the handle) until the API succeeds. When this happens it checks
the file offset 0x8300 for the marker 0x54405450. Again, if this matches up, it allocates memory into

which it reads the file content and jumps to the 2nd level shellcode with a JMP EBX.

Second Level Shell Code Analysis

Now we have landed into the second level shellcode, but it is obfuscated to evade static analysis. At the
initial stage there are few instructions waiting to help us. This is the deobfuscation code. We can see that
0x23B * 4 is the number of bytes obfuscated, POP EBX is the get EIP instruction and 0x5687F945 is the
deobfuscation XOR key.

In following code we can see the hexadecimal value that corresponds to the library name being pushed to
the LoadLibrary function, as well as two loops to get the API addresses using “CALL 02E203E2” function.
Here also it uses hashes to look up APIs.

Hash API Hash API
73E2D87E ExitProcess 0C0397EC GlobalAlloc
7CB922F6 GlobalFree 10FA6516 ReadFile
36EF7370 GetCommandLineA 76DA08AC SetFilePointer
0E8AFE98 WinExec DF7D9BAD GetFileSize
E9238AD9 _lwrite 6DD38706 CoUninitialize
E88A49EA _lcreat EB9E05F5 CoSetProxyBlanket
5B8ACA33 GetTempPathA 6E26C880 CoCreateInstance
0FFD97FB CloseHandle 7FC7A3CB CoInitializeEx

In the following code it searches for the embedded VBS file inside the RTF file in memory. It checks for
the file size in a loop, and if the size is larger than 0x2000 then it sets the file ponter to 0x8C14 to compare
with the VBS file marker as we can see in following screenshot.

After finding the VBS marker in memory, it decrypts the VBS file in two iterations. In the first loop it
decrypts and in the second loop it swaps the low and high bytes of the first 0x100 16-bit words, after which
it writes the file to a file named “Temp/ew_Rg.vbs”.

Payload .VBS file Analysis

The following screenshot shows a part of the .VBS payload file dropped by .RTF file. First line is the

encrypted .dll 4th line contains Key to decrypt the .dll. Remaining part is self-explanatory.

The instruction c = Crypt(c,k) function decrypts the encrypted dll and returns the decrypted dll. (See the
screenshot above)

c= encrypted dll.

k = decryption key.

Following function writes byte by byte to the dropped.dll file.

Finally, the following code executes the “regsvr32” command to run the wmiprvse.dll in silent mode and
sets the run key in registry.

Payload “wmiprvse.dll” file Analysis

This first level of deobfuscation in wmiprvse.dll takes around 3-4 minutes to finish. Then it allocates
memory using VirtualAlloc and writes the unpacked code to newly allocated memory before it jumps to
the unpacked code as shown in following screen shot.

This dll has 3 layers of unpacking. The one above is level one, below iyou can see level two. We can see
the passing of the control to the newly unpacked .dll @CALL EAX.

It's very time-consuming to understand the functionality of the dll as it decrypts and builds its own
runtime import table to hinder the analysis. Analyst cannot directly see which API gets called.

Finally we can see it’s connecting to webdav.cloudme.com and cleartext credentials in following
screenshot.

http://webdev.cloudme.com/

Malware tries to communicate with the user account created at the WebDAV C&C to exfiltrate system and
user information.

Reference:

https://www.bluecoat.com/security-blog/2014-12-09/blue-coat-exposes-%E2%80%9C-
inception-framework%E2%80%9D-very-sophisticated-layered-malware

https://www.bluecoat.com/security-blog/2014-12-09/blue-coat-exposes-%E2%80%9C-inception-framework%E2%80%9D-very-sophisticated-layered-malware

