Opening “STEELCORGI”: A Sophisticated APT Swiss
Army Knife

B

January 12, 2021

01/12/2021

Introduction

2020 was a really intense year in terms of APT activities, in fact it brought us new
evidence of sophisticated campaigns targeting Enterprises organization across Europe
and also Italy. In particular the threat group we track as TH-239, also mentioned as
UNC1945 by FireEye security researchers, has been one of the sneakiest.

We discussed some of the new techniques and modus operandi used by this actor in our
previous post, revealing how it leverages modern post exploitation tools even in legacy
environments such as old Linux-based machines: with the help of a portable virtual
machine, TH-239 is able to move part of its arsenal directly into the victim's internal
network.

This time we decided to dissect and share intelligence information about another piece of
the TH-239 arsenal: a tiny and mysterious tool dubbed “STEELCORGI” on FireEye
research. This tool was heavily protected using a novel technique able to make things
really difficult to any DFIR Team tackling with TH-239 intrusion, but it’s contents reveal
huge surprises and unattended capabilities.

Technical Analysis

One of the most interesting components of the TH-239arsenal is an ELF binary file
classified as “STEELCORGI”. The tool is presented in the form of an ELF named with the
following mds: 0845835e18a3ed4057498250d30a11bi.

This binary is protected in a very aggressive way, let’s see how.

A Packed ELF

1/17

https://yoroi.company/research/opening-steelcorgi-a-sophisticated-apt-swiss-army-knife/
https://yoroi.company/research/shadows-from-the-past-threaten-italian-enterprises/
https://www.fireeye.com/blog/threat-research/2020/11/live-off-the-land-an-overview-of-unc1945.html

During the analysis we noticed that this ELF was very far from being readable, we
extracted a series of elements confirming us that:

e High file dimension (more than 4MB);

e Obfuscated strings;

e Absence of Dynamic and (.dynsym) and Static Symbol Tables (.symtab);
e Absence of section-headers as Anti-reverse engineering Technique;

e High value of entropy > 7.9

e Runtime linking mechanism with dlopen and disym

As the first step, we focused on the static analysis of the sample in order to reconstruct the
high level of sophistication and complexity of the packing. At first impact, strings are
obfuscated, the binary is dynamically linked but the dynamic symbols table is empty.

Also, the absence of section-headers is an anti-reverse engineering technique adopted in
this packer. Another indicator that the binary is packed is the high value of entropy 7.99,
as it is possible to observe in the following picture, on the right we have the whole portion
of the ELF binary with compressed data.

Figure. High entropy section

At this point, we aren’t able to retrieve any other information about the packer, so we have
to analyze the malicious routines aimed at unpack the sample. During the code
inspection, a very long and complex subroutine emerges and it looks like the following
screen:

2/17

BURaS S

@

BoLR P& W0~

@ ;n

=]

Wik ®

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

BohoB ok oB B oLt Lot Loty G R R R R R B3 DR3P R

i

o
IRV
2 @ D@

'

It is a particular decoding routine instructed to decrypt some other protected code and
strings. The code is a complex succession of logic instructions, like xor, shift, or etc. In the
end of the decoding routine, the sample performs a check on the environment variables,

|2 ME

unsigned _ int64 v319; // ri
unsigned _ inte4 v32@; // -
unsigned _ int64 v321; // rc

unsigned _ int64 result; // rax

((unsigned
{(unsi
((unsi
((unsi
((unsi

(unsigned

1[6]5

i gne N = e
i _ inte4)a2[6] << 8
a2[18]

<< 8) | =2[11] | ya2[9] << 168) | (
8) | a2[15] | 22[13] << 18) |
8) | =2[19] | << 16) |
8) | =2[23] | o << 18) |
8) | =2[27] | ((unsigned _ << 16) |
8) | a2[31] | ((unsigned _ << 16)
8) | a2[35] | ((unsigned << 16) |
8) | a2[39] | ((unsigned << 16) |
| a2[43] | ((unsigned << 16) |
| a2[47] | ({unsigned << 16) |
| a2[51] | ({unsigned << 16)
| a2[55] | ({unsigned << 16) | ({unsigned
8) | a2[59] | (({unsigned
8) | a2[63] | ((unsigned

__int64)(unsigned int)

e o

) | 22[7] | ((unsigned _ int64)a2[5] << 16) | ((unsigned

16 »» 25)) * (((unsigned _ int64)(unsigned int)vis »>> 6) |

Figure. Part of the decoding routines

looking for a custom one installed by the TH-239 operators.

[4] << 24);
a2[8] << 24);

<< 24);
<< 24);
<< 24);
<< 24);
<< 24);
<< 24);
<< 24);
<< 24);
<< 24);
<< 24);
<< 24);

<< 24);
<< 24);

(w16 << 26)) ~ ((v16 << 21) | ((unsigned __

In fact, the environment variable “MCARCH_” contains the decryption key of the

protector wrapper. When the malware retrieves the desidered environment variable, it
starts the unpacking routine using the key stored in it and then starts the execution of the

real payload.

This approach is a great evasion technique because it avoids the execution of the sample

in any environments except the ones where TH-239 operators decide to get in.

I T T e - | e
00060000:00467|48 85 f6 test rsi, rsi
00060000:00467|b8 30 b9 60 00 mov eax, ©x60b930
00060000:00407|48 Bb 0d 14 27 0. | mov rcx, [rel 0x40a600
60060008:00407|48 OF 44 O cmove rsi, rax
60060008 :00407|31 d2 xor edx, edx
60060000:00407|c6 46 40 B0 mov byte [rsi+Bxd0], 8
60060000:00407|8a 04 17 mov al, [rdi+rdx;
60060000:00407|cO &8 B4 shroal, 4

£0000000: 0407|148 81 cd
£0000000:60407|83 0 le
£0000008:B0407|8a 44 01 1
©0000000: 80407|88 84 56
©0000000:80467|01 b6 04 17
60000000: 00407|48 81 cd
66000000:00467|83 8 le
66000008 :B0407|8a 44 01 1

return to 0x0000000000408007

Data D&ump

| 0x00007ffflad6a000-0x00007ffflad8b000

BBOO7TT: 13086566 |29 a4 40 B O 00 00 B 60 66 dB la
BOOO7FFf: 13086596 [ee ac d8 la Tf 71 00 0 60 66 dB la
BO0O7FFf:1ad865aE [cc 82 40 B0 OO B0 00 08 40 00 O 0
B0O7TT:1ad8650E (00 00 B0 B 6O B0 0O B8 55 69 3c 73
©00077FF:1ads65cE [c3 48 a3 55 72 fb 9d d6 eb c 69 fe
©00077Ff:1ads65d8 (41 83 7a e3 26 db 78 8b 10 b7 7a &0
000077 1ads65e6 (7b ed 76 41 76 60 al 29 37 e9 3d 94
60077 :1adB57E a0 77 ef ff 54 eb 9b 41 47 de 47 4d
BBBO7FFf:1adB660E (52 4d 49 de 41 dc 5f 53 43 52 45 45
BBBO7FFf:1ad8661E 00 00 B0 B OO 0O
BBBO7FFf:1ad8662E (00 0O BO B O 0O
B0O7FF: 13086635 (00 00 B0 B OO 0O
BOOO7FFf: 13086646 [ee ac d8 la Tf 71
BO0O7FFF:1ad8665E [4a 16 48 09 0O 0O
BOO7TFT:1ad8666E 5 Tf aa 14 ec 19
©00077ff:1ads6678 [d7 27 8a 3a 71 12
©0007FF:1ads668E [5c 81 d8 la Tf 71
000077 F:1adB6695 00 00 00 00 00 00

add rax, rax
and eax, Bxle

mov al, [rex+rax+l]

mov [rsi+rdx*2], al
movzx eax, byte [rdi+rdx]
add rax, rax

and eax, Oxle

mov al, [rex+rax+l]

mov [rsi+rdx*2+1], al

£f 71 06 00])0@ 0.0 -
£f 7 00 00|000.0--- f0
00 00 00 06|0.@.

.@ .
18[........UissHhC,
€7 91 86 fb|IHIUr .000400. -

2|A.z7&0x..0z.5t..

WiIITD) - AGHOME_TE
TNAL SCREEN. .

isters

0214743526c6491

caef13b9912cd3b
80007 f1T1a086588
0000711086528
0000000000000008
77edcE6Beet8Tass
8006713086500
d09d7b719a3bda3e
Tb8691c7clfacd79
71dadbadd5e52774
823c10ed1699Feed
6008000060080660
80067 FfF1ad865b0
8008000060080060
8006713086588

0000000000487dc

Bookmarks

@® Stack
00RO 1T
00007171
00007111

~| eoooriif
00007111
0060711
0000711
0000711
0000711
pOBOTTT
00BO7 1T
00BO7 1T
00BO7 1T
00007171
00007111
00007111
0060711
0000711
0000711
0000711
AARATFTE

:1a086528
:1a086530
:1adB6538
:1adB6540
:1adB6546
:1adB6550
:1adB6558
:1adB6560
:1adB6568
:1a086570
:1a086578
:1a086580
:1a086588
:1ad86590
:1adB6598
:1adB65a0
:1adB65a8
:1adB65bO
:1adB65b8
:1adB65c0
1adRASCR

Figure. Environment variable lookup

Registers

0000000REA408007 |.
200000HEEA00DDOR

6000006680000002
000071ff1adB65b0
00007 f11adB6660
600000086040a429
80007Fff1adB6660
6000000B68000008
00007f111a088298
00000008EA40BOTY
aB0000OEEA0ODOR
8000000EEA40a429
000071111ad86660
00007fffladBacee
000071f11adB6660
600000066040B2cC
6000000860000048
6000000BE8000008
18636848733c6955 |Ui<sHhc.
ARAAThT255A34RA3 |OHOIF 0

.|return to 0x0eEE000OER40EERT

return to 0x000800000D40E0TY

return to 0x00BEB000DR4BEZCC

3/17

T T T T T - Registers
04 E 86 ¢3 20 and bl, Ox20 0808 06
00000 L @f B4 12 05 00 00 je Bxd02316 L

oC 4 4c 89 fd mov P, rl
7 4c Bd ac 24 bO 19 00 00
f eb 6f
1 48 ff 3

8a 63

84 <0

74 62

0000
8633
002
0000
0000

test al. a
1 75 14 jne 0x401e27
=01

LR T

- v rdx, rl
e 05 64 00 00 call BxdB88248
101e c6 03 3d mov byte [rbx],
Blede 131 d2

Bx3d

Figure. Environment variable match (redacted)

A Closer Look to the Stub

In addition, this packed ELF is matching some suspicious functions usually found in
backdoors using the runtime linking techniques. Following are the functions with their
relative offset:

sendmall

dlopen
dlsym

open

open

open
@=xbg9c:$1: _ xstat
@xab9:$n: unlink
opendir
readdir

Figure. Packed EFL
imports

The presence of the dlopen and dlsym syscalls inside libdl.so.2 is a clear indicator that
this ELF uses a runtime linking mechanism by which hides all the dynamic symbols. The
dlopen() function loads a shared object into the calling process’s address space (the same
of LoadLibrary() in Windows). The symbol resolution is done by the dlsym() syscall
which returns the address of the first occurrence of the symbol. Setting a breakpoint on
dlopen() we are able to know which libraries are loaded at runtime:

4/17

Breakpoint 2 dlopen (Bx7 3d?2 "libm.so.6",
75 in dl

(gdb) ¢

Continuing.

Breakpoint 2 d en (B=7 3d?2 *librt.so.1",
75 in dl

(gdb) ¢

Continuing.

Breakpoint 2 dlopen (Bx7 "libutil.so.1"%,
75 in dl

(gdb) c

Continuing.

Breakpoint 2 dlopen (Bx7 3d2a@1l3 "libcrypt.so.1",
75 in dl

(gdb) ¢

Continuing.

Figure. Libraries dynamically loaded by the stub

Then, in the same way we dump all the symbol resolved at runtime with the disym()
syscall:

5/17

Ereakpoint dlsym =@=7ffff5d29d3c "optind”) at
56 in dl

(gdb) c

ontinuing.

Breakpoint dlsym =@x7ffff5d29c8: "xdr_void") at «
56 in dl

(gdb) c

ontinuing.

Breakpoint dlsy =@=7ffff5d2961f " _ cxa_finalize") at
56 in dl

(gdb) c

ontinuing.

Breakpoint dlsym =@=7ffff5d298c: "stdin") at
56 in dl

(gdb) c

ontinuing.

Ereakpoint dlsym =@=7ffff5d29d3:
56 in dl

(gdb) c

ontinuing.

Ereakpoint dlsym =@=7ffff5d2966f “"strcmp”)
56 in

(gdb) c

ontinuing.

Ereakpoint dlsym =@=7ffff5d2963t "stderr”)
56 in dl

(gdb) c

ontinuing.

Ereakpoint d1sym =@=7ffff5d296ff "stdout”™)
56 in dl

(gdb) c

ontinuing.

Breakpoint m =@=7ffff5d29681 "malloc”)
56 in dl

(gdb) c

ontinuing.

Breakpoint =@=7ffff5d29681 "malloc”)

Figure. Syscall invoked during the unpacking

Inspecting the new unpacked memory,we immediately noticed its structure with all the
program headers and section headers, then we found all the loaded new segments
mapped into Virtual Memory at specific offset:

0=0000000000003000
f=00000000012cHals
0=0000000000003000
0=00000000012c9a18
@=0000000000004000
0=00000000012cdals
f=0000000000001000
0=00000000812ceals
g=000000000008l1000
2=20000000012cfals
0=0000000000001000
f=00000000012ddals
0=0000000000002000
0=00000000012d2a18
@x0000000000001000
@=00000000012d3al8
B=0000000000020000
2=0000000R012T3a18
g=000000000008l1000
2=20000000012F4a18
0=0000000000001000
0=x0000000R012T5a18
0=0000000000001000
2=20000000012f6a18
@=0000000000045000
0=000000000133bals
B=0000000000002000

Section to Segment mapping:
Segment Sections ...

2a
81
B2
e
B4
B85
26
a7
Ba
89
1@
11
12
13
14
15
16
17

load
load
load
load
load
load
load
load
load
load
load
load
load
load
load
load
load

@x0000o00000003008
@=xP0007ff5@TaBboo0
@=0000000000003008
@=Q00B7ff50faBeRD
@xg0e0o0o00000L4008
2=@2007ff50fa92000
Bx0bo0ooe000001008
@x@00B7Tf50Ta%6000
@=goe0oooooo00lana
2=@o0e7ff50fa%7000
0x0000000000001008
@=xP0007Tf50Ta%8000
@=0000000000002008
@=xpope7ffs@faafoo
@xgbgoooeoooo0leaa
@xpoRe7ffs@tabloR0
B=0000000000020008
@=x@00@7ff50Tad90eo
@=gogooooooo0olena
@=@0007ff50fadadoo
@x0000o00000001008
@x@o0e7ff5@tadbooo
@=0000000000001008
@=@0007ffc2de3enen
Bx0000000000045008
@xp0Re7ffc2dl63000
B=0000000000002008

Figure. Unpacked memory sections

R Bx1
f=0000000000000000
RW Bx1
0=0000000000000000
RW Bx1
@=0000000000000000
R Bx1
0x0000000000000000
R Bx1
@=0000000000000000
RW Bx1
f=00000000000R0000
RW Bx1
f=0000000000000000
R Bx1
@=0000000000000000
R E Bx1
0=0000000000000000
R Bx1
0=0000000000000000
RW Bx1
f=0000000000000000
RW Bx1
f=0000000000000000
RW Bx1
@=0000000000000000
R E Bx1

These LOADsegments contain unpacked payload: it has different size than and the
number of program-headers and section-headers are also different. The unpacked version
have a lot of clear-text LOAD sections that was previously unpacked from memory, the

following image summarize the unpacked memory regions (the bar on the right):

fhome/kali/De
Result Address A .. Address B Size B
oh oh 10h
[piffe 10h 10h 1Ch
gh
6Eh
12h
2Fh
Dh
EEh
Bh
145h
Bh
BCh
Bh
1D1h
gh
2Fh
gh
2Dh
Ah

[Difference - 27k 648h 2Eh

Figure. Segment difference

Inspecting all these unpacked regions (in red), we found some dictionaries used by the
backdoor for enumeration or brute force. This is very interesting because it shows us the
real capabilities and the magnitude of this Kill Chain. More details in the following
sections.

Pd P B 0

8/17

644FDEh
644FEBh

] 1D

645016h cashier

Figure. Wordlists and dictionaries inside the ELF binary

The APT Swiss Army Knife

At this point of the analysis, we want to provide an overview of the capabilities of this
malware sample. It is a complete toolset for reconnaissance, lateral movement,
exploitation and post exploitation activities. When the toolset is launched, it shows the
complete menu with all the possible commands.

9/17

h [options]

[Ultmp
[Wltmp
[

type (path):

clean (filters):

g/auth.log)

es of context (shortcut for: -m@ -M@ -m3c)

to disable)
) ; @ to disabl

Figure. Malware tool help

One of the sneakiest commands we noticed is the “bleach” one, able to delete all btmp
wtmp and btmp logs. The btmp log keeps track of failed login attempts; wtmp gives
historical data of utmp and btmp provides the complete picture of users logins at which
terminals, logouts, system events and current status of the system, system boot time (used
by uptime) etc. It is also able to clean Syslog logs in /var/log/syslog, /var/log/messages,
/var/log/secure and /var/log/auth.log or optionally all of them with the “-A” flag
(utmp+wtmp+lastlog+syslog) which is the default.

There is also the possibility to apply the so-called “Clean Filters” to clean logs for specific
users or ip or according to date etc.

clean (filters): [-n <user>]

times)

times)

times)

times)

[-t
[-i
[-p
[-d

-9

<tty>] to filter
<ip|host>] to filter
<pid>] to filter
<date>] to filter

<str>] to filter

to filter by user (can be set multiple times)

by tty (can be set multiple
by ip/host (can be set multiple
by pid (can be set multiple
by date (can be set multiple

by string (can be set multiple times

Is clear that the usage of the “bleach” parameter during an intrusion results in hard times

for the DFIR team.

10/17

L/
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Figure. Bleach parameter execution

However the functionalities and tools embedded in this ELF binary are really wide and
this is exactly why we referenced the tool as an APT swiss army knife. Here we sum up a
list of the most interesting ones among the enlisting of all the available commands.

sendmail [sun4me | demo | unixcat | ncl110 | netcat | netcat-ssl | telnet |
traceroute | traceroute-tcp | traceroute-tcpfin | traceroute-udp | traceroute-icmp
| traceroute-all | sctpscan | sdporn | onesixtyone | snmpgrab | tftpd | ciscopush
| ciscown | ciscomg | HEAD | GET | ssleak | rmiexec | pogo | pogo2 | elogic | Cmd
| backfire | netbackup | netrider | sniff | bleach | nfsshell | mikrotik-client |
sid-force | ssh-user | sshock | ssh | arpmap | ricochet | mac2vendor | ip2country
| ipgen | ipsort | ipcalc | range2class | crunch | words.pl | passgen | passcheck
| getpass | decrypt-cisco | decrypt-vnc | decrypt-cvs | wmon | pmon | lemon | pty
| exec | nsexec | nsexec2 | setns | dumpkcore | dumpmem | pcregrep | xxd | strings
| sstrip | shred | md5sum | shalsum | sha256sum | compress | uncompress | encrypt
| decrypt | uuencode | uudecode | base64 | whois | whob | resolv | ahost | adig |
axfr | asrv | aspf | periscope | scanip.sh | aliveips.sh | brutus.pl |
enum4linux.pl | snmpcheck.pl | = | _ | . | -?] [options] [args]

sendmail [s4m | demo | ucat | ncl1® | nc | ncs | tel | tr | trt | trf | tru | tri
| tra | sctp | sd | sn | sg | tf | ccp | cco | ccg | HEAD | GET | ssleak | rmiexec
| pogo | pogo2 | el | Cmd | bf | nb | nr | sni | clean | nfs | mikro | sid | sshu
| ss | ssh | arp | rick | mac | ip2c | ipg | ips | ipc | r2c | crunch | words | 1lp
| pcheck | gpass | dec-cisco | dec-vnc | dec-cvs | wmon | pmon | emon | pty | exec
| nsexec | nsexec2 | setns | kcore | dmem | grep | xxd | str | strip | srm | md5 |
shal | sha256 | comp | uncomp | enc | dec | uue | uud | b64 | whois | whob | res |
host | dig | axfr | asrv | aspf | scope | scanip | aliveips | brutus | e4l |
snmpcheck | = | _ | . | ?] [options] [args]

The amount of available commands is simply impressive: some are known system
utilities, some others are offensive scripts, other ones known hacking tools and other ones
mysterious, custom commands.To sum up, we noticed at least four categories of tools
embedded in this single ELF binary:

¢ Network and Enumeration Tools such asnetcat, unixcat, netcat-ssl, telnet,
traceroute, traceroute-tcp, traceroute-tcpfin, traceroute-udp, traceroute-icmp |
traceroute-all, tftpd, HEAD, GET, sniff, nfsshell, ssh, ricochet,axfr, ,whois, scanip,
sctpscan, sdporn, rmiexec, arpmap, whois, who, ahost, resolv, adig, axfr, asrv, aspf,
periscope, scanip.sh, aliveips.sh, brutus.pl, enumglinux.pl, mikro, ss, sshu,
onesixtyone, snmpgrab, snmpcheck, ciscopush, mikrotik-client.

11/17

* Anti-Forensics tools such asbleach, clean.

e System Utilities such asmds, sha1, mac2vendor, xxd, cmd, netbackup,
ip2country, ipgen, ipsort, ipcalc, range2class, crunch, words.pl, passgen, passcheck,
getpass, wmon, pmon, pty, exec, nsexec, nsexec2, setns, dumpkcore, dumpmem,
pcregrep, strings, sstrip, shred, mdssum, shaisum, sha256sum, compress,
uncompress, encrypt, decrypt, uuencode , uudecode, base64.

» Escalation and Exploitation tools like ssleak, decrypt-vpn, pogo, pogo2, sid-
force, sshock, decrypt-cisco, decrypt-vnc, decrypt-cvs.

There are tools for enumeration such as arp, dns, active directory, whois, ip enumeration
and so on, some network tools and utilities for supporting exploiting and enumerations
operations, also some exploitation and decryption tools specifically for CISCO, VNC, CVS
and Mikrotik systems.

But some of them require a little deep dive.

SShock

SShock is a tool used to bruteforce SSH logins. In fact it is possible to specify an user list
(-u arg) and a password list (-p arg), as shown in the following figure:

ersion 1.0
ock [options] [[ta t1[:portli1

v 2 b times =

ections per ta
result file

: slow mode (hig)
= result f as t list, nmo bruteforce (or only the target specified as argv[1])
passwords from users (use with -u)
color output
: file to uwpload to /var/tmp (do not use with -e)

Figure. SShock help file

Another interesting thing of the tool is the possibility (with the -E flag) to specify some
input file to upload and execute which will then be removed.

Lemon

Lemon is a very powerful monitoring utility which is capable of monitoring all system
events such as (fork, exec, exit, core etc) of specific processes or users. All monitored
events could be filtered with specific switches (-p, -c, -u). Below the tool’s help menu is
show:

12/17

usage: 1_»:ern-:nn. [—dFD < nt,event, ... >p <pid>Fc <cmd>}u <user>—nkHNHtkskHSH1Fmb—xFgqk—vi-h]

ry path from process name.
ition in seconds.
ch events to monitor (fork,exec,exit,core,uid,gid,sid,ptrace,comm,clone,all).
this pid only.
this command only.

ommands and uid:gid.
ommands running inside a TTY/PTY.

t statistics at end of the run.
r displ this number of lines.

run qu1
run im ose madn
show this help.

Figure. Lemon help file

For instance, it is possible to monitor all events related to specific user using the following
switches lemon -u <username> -e all, in this case we monitor all system events related to
kali user:

Crootakali:/home/kali/Desktop# ./sendmail lemon -u kali -e all -x

Figure. Lemon test run

Using this tool it is possible to monitor and track specific user’s activities on specific
machines (or multiple machines) in order to spot the presence of specific users in some
timeframe.

Ssleak

Ssleak is an utility to sniff SSL traffic. It is possible to specify a target and then dump all
packets sent to and from in order to leak some information such as the server’s certificate,
server’s canonical names etc.

ssleak [options] [<host>
/ not needed)

-sub])

ts and val2 is maximum number of tries)

1d TCP read timeout
ut

op

ssleak will read hostnames to scan from <stdin>

Figure. SSLeak help file

13/17

Moreover it is also possible to exploit Heartbleed Vulnerability (CVE-2014-0160) with
custom-forged heartbeat packets with a fake length with -s switch and print also the
hexdump of such leak with -x switch.

AHAHAHA BRB! TAK
ING A LEAK! ..f..

[
(=3

= W0

WNGRD. .."......
Nfe— . x- . 5P..0.

L

d
y
£
11
D5

= 0 0
=+ o

Figure. SSLeak test run

Backfire

Backfire is a tool used to establish and manage connect-back (or reverse) shells. A reverse
shell permits to establish a connection between the compromised host (pivot) and the
target machine when the target machine is not directly accessible for several reasons. For
instance to perform maintenance tasks on hosts behind firewalls or NAT.

As, shown in the following screen, backfire provides the execution of such commands (-c¢
commands) through a connect-back connection that is possible to spawn with -S flag or
with -s <commands>

14/17

backfire [options] < -

requests: [-r]
[-nl]
[=l it te lients ault; '.' ; <targets> z se-lookup whic
h ips are clients of

protocol: [-p]
[-bl

command: [-c command] t ec (it repl y ta tes "/bin/bash -c
<command> &")
uch crond /tmp/t
estl /tmp/te
t list of client

spaces in it)

to reach tar ; use -R? to list
).<name>,out”
in command (this tar/untar /bin/bash into /
ackup/bin/pr

misc:

Figure. Backfire help file

Ricochet

Ricochet is a powerful utility for packet spoofing and FW ACL assessment. The tool can
act as a client or a server. The client version permits to forge IP-PROTO/ICMP/UDP/TCP
packets in order to test fw ACLs while the server is used to listen for replies coming from
the firewall. It is possible to use 2 different methods. One is called spoof (method #1) to
spoof packets and the other is rick (method#2) which stands for “ricochet” used also to
spoof the address and port of the outgoing requests:

f method #1:

client#

ports or TCP/UDP
client# ;
and sending valid UDP probes i
n case of application fir
clien
/ICMP/TCP ports/UDP ports and sending valid UDP probes
client# ./r

serverf ./r
p00,17185 back to exte

client#
port 111 back to extermal IP 11
-U 111

e source port 123 when sending UDP probes and also spoof packets directly to router

MAC 01:¢ 4:05 on
client# icochet -M 2 s 5 18.100. -U 111 -d etheaodl

Figure. Ricochet help file

Conclusion

The versatility of the “STEELCORGI” tool used by TH-239 is really impressive: all such
capabilities embedded in a single, standalone, ready to deploy binary file, potentially
enabling the attacker to establish a hidden communication channel, to recon internal
network and to step in remote endpoint abusing various techniques. Also, this sort of
“swiss army knife” was also heavily protected in a way that could be activated only during
an actual intrusion, because the activation key is inoculated into the compromises system
directly by the malicious operators, at run time.

15/17

All these facts are reminding us how dangerous and slimy an advanced intruder could
sneak into the company network: tackling such kinds of threats requires advanced
intelligence and analysis capabilities.

Appendix

Indicator of Compromise
Hash:

0845835e18a3ed4057498250d30a11b1

Yara:

16/17

rule ELF_packed_STEELCORGI_backdoor_UNC1945{

meta:
description = "Yara Rule for packed ELF backdoor of UNC1945"
author = "Yoroi Malware Zlab"

last_updated = "2020_12_21"
tlp = "white"

category = "informational"
strings:
$s1={4? 88 47 3c cl1l 6C ?4 34 08 8a 54 ?? ?? 4? 88 57 3d cl 6¢}
$s2={0f b6 5?7 ?? Of b6 4? ?? 4?7 cl e2 18 4? cl e0 10 4? }
$s3={8a 03 84 cO 74 ?? 3c 3d 75 ?? 3c 3d 75 ?? c6 03 00 4? 8b 7d 00}
$s4={01 c6 89 44 ?? ?? 8b 44 ?? ?? 31 f2 89 74 ?? ?? cl}
$s5={ 4?7 89 d8 4? 31 f2 4? cl e0® 13 4? 01 d7 4?7 }

condition:
uint32(0) == 0x464c457f and 3 of them

rule ELF_unpacked_STEELCORGI_backdoor_UNC1945{

meta:
description = "Yara Rule for unpacked ELF backdoor of UNC1945"
author = "Yoroi Malware Zlab"

last_updated = "2020_12_21"
tlp = "white"
category = "informational"

strings:

$s1="MCARC"

$52="833fc0088ea41bc3331dh60ae2.debug"

$s3="PORA1022"

$s4="server"

$s5="test"

$s6="no ejecutar git-update-server-info"

$s7="dlopen"

$s8="dlsym"

$s9="5d5c6dal19e62263f67ca63f8bedeb6.debug"

$s10={72 69 6E 74 20 22 5B 56 5D 20 41 74 74 65 6D 70 74 69 6E 67 20 74 6F 20 67
65 74 20 4F 53 20 69 6E 66 6F 20 77 69 74 68 20 63 6F 6D 6D 61 6E 64 3A 20 24 63
6F 6D 6D 61 6E 64 5C 6E 22 20 69 66 20 24 76 65 72 62 6F 73 65 3B}

condition:
all of them and #s4>50 and #s5>20

}

This blog post was authored by Luigi Martire, Antonio Pirozzi and Luca Mella of Yoroi
Malware ZLAB

17/17

